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ABSTRACT

The recurrent interactions between ocean waves and sea ice are a
widespread feature of the polar regions, and their impact on sea-ice dy-
namics and morphology has been increasingly recognized as evidenced
by the surge of research activity during the last two decades. The rapid
decline of summer ice extent that has occurred in the Arctic Ocean
over recent years has contributed to the renewed interest in this subject.
Continuum models have recently gained popularity to describe wave
propagation in various types of ice cover and across a wide range of
length scales. In this paper, we propose a continuum wave-ice model
where the floating sea ice is described as a homogeneous poroelastic
material and the underlying ocean is viewed as a slightly compressible
fluid. The exact dispersion relation for linear traveling wave solutions
of this coupled system is established and compared to predictions from
existing theories.

KEY WORDS: Gravity waves; porous material; viscoelasticity; wave
attenuation; wave scattering; wave-ice interactions.

INTRODUCTION

Wave-ice interaction is a two-way process. Ice scatters ocean waves and
redistributes wave energy, in turn gravity waves stress and potentially
fracture ice. In this paper, we focus on the phenomenon of ice-induced
wave attenuation (Wadhams et al, 1988). A common place where wave-
ice interactions play an important role is the marginal ice zone (MIZ),
which is the outer edge of the ice cover, closest to the open ocean. It
typically consists of ice floes, brash ice and open water.

Several linear models have been proposed to study wave-ice inter-
actions and can generally be classified into two categories: solitary-floe
models and continuum models (Squire, 2007; Kohout and Meylan,
2008). Of special interest here is the latter category. The mass-loading
(ML) model is probably the most basic continuum formulation. It treats
ice floes as a simple mass load on the ocean surface. The thin elastic
plate model (hereafter referred to as FS) incorporates the elastic response
of the ice layer into the formulation, with the ice layer being described
as a Kirchhoff–Love plate (Fox and Squire, 1994). Alternatively, Keller
(1998) proposed a two-layer formulation where a viscous fluid layer
lies on top of an ideal fluid region. In this context, viscosity stems from
the fact that the ice cover is viewed as a suspension of solid particles
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Fig. 1: Sketch of the coupled ice-ocean system.

in water. Building upon Keller’s work, Wang and Shen (2010, now
referred to as WS) included elasticity in the upper layer and described
the ice layer as a homogeneous incompressible viscoelastic medium
according to Voigt’s model. Their viscoelastic fluid model synthesizes
the thin elastic plate and viscous layer models as limiting cases under
suitable conditions. Recently, Mosig et al (2015) extended the FS model
by introducing a complex Voigt shear modulus to account for viscous
dissipation. This extended model is referred to as EFS in the following
sections.

MATHEMATICAL FORMULATION

In this paper, we consider the two-dimensional setting of linear gravity
waves propagating on an ocean of uniform depth H, with an ice layer
lying on top of it. We adopt the continuum viewpoint in which a
heterogeneous ice field such as in the MIZ may be modeled as a
homogeneous medium with effective properties controlled by constant
rheological parameters. The x-axis represents the horizontal direction,
along which waves propagate. The z-axis points upward and the z = 0
level corresponds to the ice-water interface at rest (see Fig. 1). We
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assume there is no separation between the ocean and the ice layer. It is
also necessary to assume that the ocean fluid has small compressibility
to ensure the ocean velocity potential is compatible with solutions of
Biot’s equations for a poroelastic ice layer (Biot, 1956).

Equations for the Underlying Ocean

It follows from mass and momentum conservation for a slightly com-
pressible fluid that the velocity potential Φ satisfies the wave equation

∂
2
t Φ− c2

∇
2
Φ = 0 , for x ∈ R ,−H < z < 0 , (1)

where the speed of sound c is given by

c2 =
∂P
∂ρ

∣∣∣∣
ρ=ρ f

,

in terms of fluid pressure P and fluid density ρ f , assuming the fluid is
isothermal (Renzi and Dias, 2014). The variable t represents time and
the symbol ∇ = (∂x,∂z) stands for the spatial gradient. Let z = η1(x, t)
denote the ice-water interface. For gentle deformations, the kinematic
condition reads

∂zΦ = ∂tη1 , at z = 0 , (2)

and Bernoulli’s condition takes the form

P =−ρ f (∂tΦ+gη1) , at z = 0 . (3)

At the ocean floor, the impermeability condition implies

∂zΦ = 0 , at z =−H .

Equations for the Floating Sea Ice

The ice layer is viewed as an infinite strip of uniform thickness h lying
on top of the ocean and is modeled as a poroelastic material according to
Biot’s theory. At any point in this material, let u = (u,v) and U = (U,V )
denote the solid and fluid displacement fields, respectively. The strain
tensor associated with the solid part is given by the geometric relations

exx = ∂xu , exz = ezx =
1
2
(∂zu+∂xv) , ezz = ∂zv .

The solid and fluid dilatations are defined by

e = ∇ ·u = ∂xu+∂zv ,

ε = ∇ ·U = ∂xU +∂zV ,

respectively.
Following Gilbert et al (2016), the stress-strain relations for an

isotropic poroelastic material take the form

σi j = (λ e+Qε)δi j +2µc ei j , i, j = {x,z} ,
s = Qe+Rε ,

where δi j is the Kronecker delta, λ and µc are the Lamé coefficients
associated with the solid component, Q measures the coupling of changes
in the volume of the solid and fluid parts, and R is a parameter measuring
the pressure required to force a certain volume of fluid into the pores.

These quantities are calculated from measured or estimated values of
parameters given in Table 1 using the following formulas

λ = Kc−
2
3

µc +

[
(1−β )Ks−Kc

]2
D−Kc

,

Q =
βKs

[
(1−β )Ks−Kc

]
D−Kc

,

R =
β 2K2

s
D−Kc

,

where

D = Ks

[
1+β

(
Ks

K f
−1
)]

,

Ks =
2µ (1+ν)

3(1−2ν)
,

and β represents porosity, i.e. the fluid fraction per unit volume. The
bulk and shear moduli, Kc and µc, are often given imaginary parts to
account for viscous effects (Chen et al, 2018). The bulk modulus may be
estimated by

Kc =
2µc (1+ν)

3(1−2ν)
(1−β )n ,

where n = 1.42 and µc denotes the complex Voigt shear modulus as de-
fined by

µc = µ− iωρsη .

Note that the porosity is a dimensionless parameter whose range is β ∈
[0,1], taking the limiting value β = 0 for a solid state and β = 1 for a
fluid state. In the present physical context, its complement 1−β may be
viewed as a measure of ice concentration in the ice field.

The total effective stress acting at any point in this poroelastic ma-
terial can thus be expressed as

τi j = σi j + sδi j , (4)

It can be checked that, as β → 0 (assuming Kc and µc are real), Eq. (4)
simplifies to

τi j =

(
Ks−

2
3

µ

)
eδi j +2µ ei j ,

which is the typical stress-strain relation for an isotropic elastic material.
Having the MIZ in mind, this limiting case would correspond to a solid
ice pack. On the other hand, as β → 1, Eq. (4) reduces to

τi j =

(
K f ε− 2

3
µ e
)

δi j +2µ ei j ,

which involves the fluid dilatation ε together with K f while Ks is absent.
The presence of additional terms containing the solid strain tensor
(associated with the parameter µ) suggests that this fluid limit, rather
than being equivalent to the open ocean, is closer to a situation with a
”soft” ice cover such as brash or grease ice, as it may occur near the
MIZ border with the open ocean.

Equations of Motion

Taking into account effects of gravity g = (0,−g), Biot’s equations of
motion for the ice layer are

µc ∇
2u+∇

[
(λ +µc)e+Qε

]
+Fs = ∂

2
t (ρ11u+ρ12U)+b∂t(u−U) ,

∇(Qe+Rε)+F f = ∂
2
t (ρ12u+ρ22U)−b∂t(u−U) ,
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symbol parameter units

ρ f density of pore fluid kg m−3

ρs density of solid frame kg m−3

K f bulk modulus of pore fluid Pa
Ks bulk modulus of solid frame Pa
Kc complex bulk modulus Pa
µc complex shear modulus Pa
η kinematic viscosity of pore fluid m2 s−1

Kp permeability m2

ω angular frequency s−1

ν Poisson’s ratio
β porosity
α pore tortuosity

Table 1: Parameters in Biot’s equations.

where

Fs = (1−β )ρsg ,
F f = βρ f g .

The parameter b is a damping parameter to account for friction due to the
relative motion between the fluid and the solid constituents. It is related
to Darcy’s coefficient of permeability Kp by

b =
ρsηβ 2

Kp
.

In these equations, ρ11 and ρ22 are density parameters for the solid and
fluid parts, and ρ12 is a density coupling parameter with a negative value.
These are calculated from the following formulas

ρ11 = (1−β )ρs−ρ12 ,

ρ22 = βρ f −ρ12 ,

ρ12 = β (1−α)ρ f ,

where α is a measure of pore tortuosity in the ice layer.
Following Stoll and Kan (1981), we now make the change of vari-

ables

u = ∂xΦs−∂zΨs , v = ∂zΦs +∂xΨs ,

U = ∂xΦ f −∂zΨ f , V = ∂zΦ f +∂xΨ f ,

in terms of displacement potentials (Φs,Φ f ) for the irrotational part and
(Ψs,Ψ f ) for the rotational part. The above equations of motion can then
be rewritten as

(λ +2µc)∇
2
Φs +Q∇

2
Φ f = ∂

2
t (ρ11Φs +ρ12Φ f )+b∂t(Φs−Φ f ) ,

Q∇
2
Φs +R∇

2
Φ f = ∂

2
t (ρ12Φs +ρ22Φ f )−b∂t(Φs−Φ f ) ,

and

µc ∇
2
Ψs = ∂

2
t (ρ11Ψs +ρ12Ψ f )+b∂t(Ψs−Ψ f ) ,

0 = ∂
2
t (ρ12Ψs +ρ22Ψ f )−b∂t(Ψs−Ψ f ) .

Assuming traveling wave solutions of the form

(Φs,Φ f ,Ψs,Ψ f ) = [φs(z),φ f (z),ψs(z),ψ f (z)]ei(κx−ωt) ,

where ω ∈ R+ is the angular frequency and κ = k + iq, with k ∈ R+

being the wavenumber and q ∈ R+ the attenuation rate, this leads to a

system of 4th-order ordinary differential equations that can be solved
analytically, namely

φs(z) = C1F5 cosh(D1z)+C2F5 sinh(D1z)

+C3F6 cosh(D2z)+C4F6 sinh(D2z) ,

φ f (z) = C1F7 cosh(D1z)+C2F7 sinh(D1z)

+C3F8 cosh(D2z)+C4F8 sinh(D2z) ,

and

ψs(z) = C5 cosh(D3z)+C6 sinh(D3z) ,

ψ f (z) = C5F9 cosh(D3z)+C6F9 sinh(D3z) .

Similarly, seeking traveling wave solutions of the form

Φ(x,z, t) = φ(z)ei(κx−ωt) ,

for Eq. (1) in the ocean, we obtain

φ(z) =C7 cosh(D4z)+C8 sinh(D4z) .

More details on the constants Di (i = 1, . . . ,4) and Fj ( j = 5, . . . ,8) can
be found in Chen et al (2019).

Coupling Boundary Conditions

The traveling wave solutions of this coupled system are given in terms
of eight coefficients Ci (i = 1,2, . . . ,8), so eight boundary conditions are
needed in order to close it. These boundaries include the air-ice interface
at z = h, the ice-water interface at z = 0 and the ocean floor at z = −H,
where different boundary conditions are specified. In particular, because
water in the ocean is taken to be inviscid, it does not exert any tangential
stress on the ice layer. On the other hand, Bernoulli’s condition at the
ice-water interface implies that the ice normal stress should match the
water pressure.

Let η2(x, t) =η1(x, t)+h denote the vertical displacement of the top
boundary of the ice layer relative to z = 0. We impose:

• at the air-ice interface z = h

1. vanishing of tangential stress

∂zu+∂xv = 0 ,

2. vanishing of solid normal stress

λ e+Qε +2µc ezz +(1−β )ρsgη2 = 0 ,

3. vanishing of fluid normal stress

Qe+Rε +βρ f gη2 = 0 ,

• at the ice-water interface z = 0

4. continuity of vertical displacement

(1−β )v+β V = η1 ,

5. vanishing of tangential stress

∂zu+∂xv = 0 ,

6. continuity of solid normal stress

λ e+Qε +2µc ezz +(1−β )ρsgη1 =−(1−β )P ,
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7. continuity of fluid normal stress

Qe+Rε +βρ f gη1 =−βP ,

• at the ocean floor z =−H

8. vanishing of fluid flux

∂zΦ = 0 .

This system of equations is completed by the kinematic condition (2),
which gives η1 (and thus η2) from Φ, and by Bernoulli’s condition (3),
which gives P at the ice-water interface.

More explicitly, in terms of the potentials for traveling wave solu-
tions, these boundary conditions read:

• at the air-ice interface z = h

(iκ φs−ψ
′
s)
′+ iκ (φ ′s + iκ ψs) = 0 ,

−iω
[
λ ∇

2
φs +Q∇

2
φ f +2µc (φ

′
s + iκ ψs)

′]+(1−β )ρsgφ
′ = 0 ,

−iω (Q∇
2
φs +R∇

2
φ f )+βρ f gφ

′ = 0 ,

• at the ice-water interface z = 0

−iω
[
(1−β )(φ ′s + iκ ψs)+β (φ ′f + iκ ψ f )

]
−φ
′ = 0 ,

(iκ φs−ψ
′
s)
′+ iκ (φ ′s + iκ ψs) = 0 ,

−iω
[
λ ∇

2
φs +Q∇

2
φ f +2µc (φ

′
s + iκ ψs)

′]
+(1−β )ρsgφ

′− (1−β )ρ f (−ω
2
φ +gφ

′) = 0 ,

−iω (Q∇
2
φs +R∇

2
φ f )+βρ f gφ

′−βρ f (−ω
2
φ +gφ

′) = 0 ,

• at the ocean floor z =−H

φ
′ = 0 .

The primes denote differentiation with respect to z and the Laplacian
operator reduces to

∇
2 =−κ

2 +∂
2
z .

Note that any constant term in conditions 1∼8 may be eliminated
by taking the time derivative of these equations. This amounts to
multiplying the remaining terms by a common coefficient −iω which
may then be factored and canceled out.

DISPERSION RELATION

The resulting linear system admits eight unknowns Ci (i = 1, . . . ,8). By
enforcing the determinant of the associated 8×8 coefficient matrix to be
zero for nontrivial solutions and with help from the software Mathemat-
ica, we obtain an exact dispersion relation that can be stated as

ω
2 =

(
T1 +gT2

T3

)
D4 tanh(D4H) . (5)

The lengthy expressions of T1, T2 and T3 can be found in Chen et al
(2019). Note that the right-hand side of (5) depends on κ but is also a
function of ω .

For a given value of ω and other parameter values, this dispersion
relation is solved numerically for κ using the root-finding routine fsolve
in Matlab. More specifically, as κ is generally complex, Eq. (5) is split
up into its real and imaginary parts. This leads to a system of two inde-
pendent equations that are solved simultaneously for the two unknowns
k and q. As pointed out in Mosig et al (2015) and Zhao et al (2017), such
a dispersion relation very likely admits multiple possible roots for k and
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Fig. 2: Wavenumber k vs. frequency f for (a) varying porosity β , (b)
varying ice thickness h and (c) varying shear modulus µ , in the porous
elastic case (η = 0). Open-water, FS and ML predictions are shown for
comparison.

q. Therefore, as suggested by WS, we adopt the following criteria to se-
lect relevant solutions: (i) k is the wavenumber closest to the open-water
value k0 and (ii) q is the lowest possible attenuation rate. That is, given
ω , we solve (5) for κ such that the error |κ− (k0 + i0)| is smallest. The
open-water wavenumber k0 satisfies the standard dispersion relation

ω
2 = gk tanh(kH) ,

for surface gravity waves and is also determined numerically.
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Typical parameter values for sea ice that we specify in the compu-
tations are (in SI units, see Table 1): g = 9.81, ρs = 917, ρ f = 1025,
c = 1449, α = 5, ν = 0.3, µ = 2×106, and accordingly Ks = 4.3×106,
K f = Ks/4 = 1.1× 106 (Williams and Francois, 1992). We choose
H = 100 m unless stated otherwise. Because of the large disparity in
orders of magnitude among the various parameters, we find it convenient
to non-dimensionalize the equations by using H as a characteristic length
scale,

√
H/g as a characteristic time scale and ρ f H3 as a characteristic

mass. In the following tests, we examine predictions from (5) by varying
β and other parameters, and compare them to results obtained from
simpler existing models. Although we allow β 6= 0, we only investigate
the frictionless case in this preliminary study by setting b = 0.

Porous Elastic Case

A porous elastic model is obtained if µc and Kc are taken to be real (i.e.
η = 0, no viscosity), and accordingly all roots κ of (5) are real. Numeri-
cal estimates of wavenumber k versus frequency f = 2πω are presented
in Fig. 2 for varying β , h and µ . On each plot, FS results are included
for comparison and open-water results are also shown as a reference.

Figure 2(a) illustrates porosity effects, with µ = 2×106 Pa, h = 0.5
m and β ranging from 0.01 to 0.99. Recall that the porosity parameter
β controls the type of ice cover: lower β represents a more compact ice
layer, while higher β indicates a sparser ice layer. As expected, for very
low porosities, our curves are close to FS. For higher porosity, dispersive
effects become weaker. Given f , the higher the porosity, the larger the
wavenumber (which corresponds to shorter wavelength). Figure 2(b)
examines (5) for low porosity (β = 0.01) and varying h. This case is
similar to the FS model. As the ice thickness shrinks (i.e. as h gets
smaller), the wavenumber gets closer to the open-water value. Figure
2(c) shows elasticity effects for β = 0.01 and h = 1 m, considering
values of µ with various orders of magnitude. Shear modulus µ is
a measure of the material rigidity, therefore higher µ is indicative
of a stiffer ice cover. For comparison, predictions based on the ML
model (which ignores the elastic response of the ice layer) are also in-
cluded on this plot. As expected, for small µ , our curves are close to ML.

Porous Viscous Elastic Case

If viscosity is taken into account by allowing µc and Kc to be complex
with imaginary parts, then Eq. (5) describes a porous viscous elastic
ice layer floating on a slightly compressible ocean. Accordingly, the
roots κ of (5) are complex, yielding values for the wavenumber k and
the attenuation rate q. Similar to the previous case, we conduct several
tests by varying β , h as well as the viscosity parameter η , as presented in
Figs. 3∼5. Shear modulus is taken to be µ = 2×106 Pa in all these tests.
Each plot includes comparison with open-water, EFS and WS results.
Note that, although both EFS and WS models feature viscoelasticity, the
EFS model is based on thin plate theory while the WS model describes
the ice cover as a distinctive separate layer above the ocean (as in the
present formulation).

Figure 3 shows results for h = 1 m, η = 10−2 m2 s−1 and vary-
ing β . For low porosities, we see no much difference in wavenumber
between our results and the EFS/WS predictions; all these curves pretty
much coincide. Dispersive effects however strengthen in the open-water
limit and, accordingly, our results become slightly more distinctive (with
larger k) at higher porosities. We also observe stronger attenuation, com-
pared to EFS/WS, in this limit, and it is more pronounced at higher fre-
quencies. More specifically, our predictions on q are almost identical to
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Fig. 3: (a) Wavenumber k and (b) attenuation rate q vs. frequency f for
varying porosity β in the porous viscous elastic case. Open-water, EFS
and WS predictions are shown for comparison.

WS for low β but yield slightly larger values at higher β . The EFS values
on the other hand remain visibly lower. Overall, both k and q increase
as f increases, which gives a natural correspondence between spatial and
temporal scales. This is also consistent with the intuition that viscosity
tends to be stronger at smaller scales and thus shorter waves are more
damped.

In Fig. 4, we set β = 0.3 and η = 10−1 m2 s−1 but vary h. The
wavenumber curves in Fig. 4(a) look similar to those in Fig. 2(b) for
the porous elastic case, showing convergence to the open-water limit as
h→ 0. We again see a close match with EFS and WS. Figure 4(b) de-
picts the corresponding graphs of attenuation rate and reveals differences
in their slope at low frequencies as h is varied. We note incidentally
that, although q grows monotonically with f , its slope is not a mono-
tonic function of f . This behavior is also observed for k but is more
apparent on graphs of q. The slight inflection point at f ' 0.3 Hz on
the wavenumber curves (see also Fig. 2c), which coincides with a sharp
change of slope on the attenuation curves, corresponds to the transition
from mass loading to flexural rigidity as a dominant effect (Collins et al,
2017). Past this transition, the fact that short waves experience more at-
tenuation in thinner ice (which is rather counter intuitive) is reminiscent
of a common feature in models for water waves over seabed composed
of a viscous mud layer, where dissipation has a non-monotonic depen-
dence on mud-layer thickness, with thicker layers being less dissipative
(Dalrymple and Liu, 1978).

Figure 5 shows graphs of k and q for β = 0.3, h = 3 m and varying
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Fig. 4: (a) Wavenumber k and (b) attenuation rate q vs. frequency f for
varying ice thickness h in the porous viscous elastic case. Open-water,
EFS and WS predictions are shown for comparison.

η . This test confirms that viscosity has no effect on k, only on q. The
wavenumbers are found to all lie on the same curve. On the other hand,
the larger the viscosity, the stronger the attenuation at any frequency.
This dependence of q on η seems to be uniform in the sense that the
attenuation curves retain the same shape and are simply shifted upward
as η increases. Further comparison with EFS/WS is provided in Fig. 5
and displays the same features as noticed in the two previous figures.

COMPARISON WITH EXPERIMENTAL DATA

In this section, we provide preliminary validation of our poroelastic
model against laboratory experiments by Newyear and Martin (1997).
These authors conducted experiments using a wave tank located in a lab-
oratory cold room and investigated wave propagation in grease ice.

Comparison between their measurements of k and q, and our model
predictions, is given in Fig. 6 for β = 0.52, h = 0.146 m, H = 0.354
m, µ = 2× 103 Pa and η = 1.8 m2 s−1. The values of β , h and H
were inferred from these authors’ paper, while the values of µ and η

were adjusted in order to obtain a close match with their measurements.
Overall, the general trend of these experimental data is well captured
by our numerical results. The agreement on k is especially good. Our
computations however undershoot the measurements of attenuation rate
at high frequencies. The rapid increase of q with f , as indicated in Fig.
6(b), is characteristic of wave propagation in grease ice, which is known
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Fig. 5: (a) Wavenumber k and (b) attenuation rate q vs. frequency f for
varying viscosity η in the porous viscous elastic case. Open-water, EFS
and WS predictions are shown for comparison.

to be dominated by viscous effects (de Carolis and Desiderio, 2002).
Further investigation is needed here and is left for future work.

CONCLUSIONS

We have proposed a two-dimensional continuum model for linear wave
propagation in ice-infested seas. It is based on a two-layer formulation
where the floating sea ice is described as a homogeneous poroelastic ma-
terial according to Biot’s theory, and the underlying ocean is viewed as
a slightly compressible fluid. Viscoelasticity can also be included in this
formulation by allowing elasticity parameters to be complex numbers. In
view are potential applications to modeling wave scattering and attenua-
tion in the MIZ. A parameter of special interest in our wave-ice model is
the porosity, whose complement may serve as a measure of ice concen-
tration in the ice field.

We have derived the exact dispersion relation for traveling wave so-
lutions of this coupled system and obtained numerical estimates for its
complex roots. These represent the wavenumber and attenuation rate as-
sociated with the traveling waves. We have conducted several tests to
examine the dependence of results on various parameters, and performed
comparisons with other models (including the FS, EFS and WS mod-
els). We have also validated our model predictions against laboratory
measurements of wave propagation in grease ice and found satisfactory
agreement.

Further validation against experimental data is needed and this is
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Fig. 6: (a) Wavenumber k and (b) attenuation rate q vs. frequency f
for β = 0.52, h = 0.146 m, H = 0.354 m, µ = 2× 103 Pa and η =
1.8 m2 s−1 in the porous viscous elastic case. Open-water predictions
and experimental data from Newyear and Martin (1997) are shown for
comparison.

envisioned for future work (Doble et al, 2015). It would also be of
interest to investigate nonlinear extensions of this poroelastic formula-
tion. Nonlinear theory of wave-ice interactions has received increasing
attention in recent years (Guyenne and Părău, 2012, 2014, 2017).
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