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Abstract

An accurate three-dimensional (3D) Numerical Wave Tank solving fully nonlinear potential flow
theory is developed and validated for modeling wave propagation up to overturning over arbi-
trary bottom topography. The model combines a higher-order 3D-BEM and a Mixed-Eulerian-
Lagrangian time updating of the free surface, based on explicit second-order Taylor series expan-
sions, with adaptive time steps. The spatial discretization is third-order and imposes continuity of
the inter-element slopes. Discretized boundary conditions at intersections between domain bound-
ary sections (corner/edges) are well-posed in all cases of mixed Dirichlet-Neuman problems. Waves
can be generated in the tank by wavemakers, or be directly specified on the free surface. If required,
absorbing layers can be specified on lateral boundaries. Node regridding to a finer resolution can
be specified at any time step over selected areas of the free surface. Results are presented for both
validation tests with a permanent wave propagation over constant depth, and for the computation

of a 3D overturning wave over a ridge.

Keywords : Numerical wave tank, shallow water wave transformations, wave breaking, coastal

engineering.



INTRODUCTION

Wave propagation, up to overturning, over slopes and complex bottom features, has been
successfully modeled in two-dimensional (2D) Numerical Wave Tanks (NWT), usually based
on fully nonlinear potential flow equations (FNPF) expressed in a mixed Eulerian-Lagrangian
formulation (MEL) (e.g., Grilli et al., 1996,1997; Grilli and Horrillo, 1999). Such calculations
are in good agreement with laboratory experiments for intermediate water (e.g., Dommer-
muth et al., 1988), and for shallow slopes (e.g., Grilli et al., 1997). In the more recent
2D-NWTs, incident waves can be generated at one extremity, and reflected, absorbed, or
radiated at the other extremity (e.g., Grilli and Horrillo, 1997). In most cases, Laplace’s
equation is solved with a higher-order Boundary Element Method (BEM), either based on
Green’s identity or on Cauchy integral theorem. Time integration of free surface boundary
conditions is performed using either a time marching predictor-corrector scheme, such as
Runge-Kutta (RK) or Adams-Bashforth-Moulton (ABM) (e.g., Dommermuth et al., 1988),
or a Taylor series expansion method (e.g., Grilli et al., 1989).

Although several 3D-NWT's have been developed for non-overturning waves over constant
depth (e.g., Romate, 1989; Boo et al., 1994; Ferrant, 1998; Celebi et al., 1998), only a
few attempts have been reported, which solved 3D-FNPF problems for overturning waves.
Xi and Yue (1992) calculated 3D overturning waves, in a doubly-periodic computational
domain with infinite depth (i.e., only the free surface was discretized). Two-dimensional
periodic waves were made to break by specifying an asymmetric surface pressure. A higher-
order BEM was implemented, based on Green’s identity, with a doubly periodic Green’s
function in horizontal directions = and y, quadratic isoparametric boundary elements, and
a RK-ABM time stepping. Sawtooth-instabilities eventually developed near wave crests;
these were eliminated by smoothing, typically applied every few time steps. Broeze (1993)
developed a numerical model similar to Xt and Yue’s, but for non-periodic domains and
finite depth, and was able to produce the initial stages of wave overturning over a bottom

shoal; numerical instabilities were also experienced, which limited computations.



Based on the limited discussion above (more details can be found in the recent review
of 2D and 3D NWTs by Kim et al., 1999), it appears that FNPF theory is accurate for
modeling overturning waves over arbitrary bottom. Many 2D and a few 3D models (i.e.,
NWTs) of that problem have been proposed. Among these, the most stable and accurate
models were clearly those in which higher-order spatial and temporal discretizations schemes
were used, and important problems such as corner/edge boundary conditions and numerical
integrations were carefully addressed. Importantly, in the few existing higher-order 2D
models, strongly nonlinear waves were accurately propagated over long distances and/or
time, up to overturning, without need for smoothing or filtering of the solution (e.g., Grilli
et al., 1996,1997). The nonlinear nature of the problem and lack of dissipation in FNPF
theory indeed are such that numerical errors, even very small, remain integral part of the
solution and build up as a function of time, through superposition and nonlinear interactions.
Therefore, such errors must be minimized by seeking optimum accuracy in all numerical
aspects of the model.

In the present study, the experience gained by the authors in developing accurate and
stable numerical methods for 2D-FNPF-NW'Ts is applied to the development of a new,
similarly accurate, 3D-FNPF-NWT for overturning waves. The NW'T is developed using a
higher-order 3D-BEM and a MEL time updating, based on second-order Taylor series ex-
pansions, with adaptive time steps, similar to that used in Grilli et al’s 2D model. The
NWT is applicable to nonlinear wave transformations, up to overturning and breaking, from
deep to shallow water over arbitrary bottom topography. Arbitrary waves can be generated
in the NWT (by wavemakers or directly on the free surface). Reflective or absorbing bound-
ary conditions are implemented on lateral boundaries of the NWT; for the latter, on a way
similar to Grilli and Horrillo (1997). Geometry and field variables are represented on the
NWT boundary by 16-node cubic “sliding” two-dimensional elements similar, in principle,
to the one-dimensional 4-node “Middle-Interval-Interpolation (MII)” elements introduced by

Grilli and Subramanya (1996) in their 2D model; such elements provide local inter-element
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Fig. 1 : Sketch of NWT for 3D-BEM solution of FNPF equations. The domain is defined for

x > x,. Note a region of constant depth h = h, is specified for z < z,+ d,, beyond which depth is

set to h = b(z,y). Tangential vectors at point R(¢) of the free surface I'f(¢) are defined as (s, m)
and outward normal vector as n.

continuity of the first and second derivatives. Accurate and efficient numerical integrations
are developed for these elements. Discretized boundary conditions at intersections (cor-
ner/edges) between the free surface or the bottom, and lateral boundaries, are well-posed
in all cases of mixed boundary conditions, following the methods introduced by Grilli and
Svendsen (1990) and Grilli and Subramanya (1996). Higher-order tangential derivatives re-
quired for the time updating are calculated in a local curvilinear coordinate system using
two-dimensional 25-node sliding 4th-order elements similar, in principle, to the 5-node one-
dimensional elements introduced by Grilli and Svendsen (1990) for calculating s-derivatives
in their 2D model. Node regridding to a higher resolution can be specified over selected
areas of the free surface. Details of the model development and applications are given in the

following.

THE MODEL

Governing equations and boundary conditions
Equations for fully nonlinear potential flows with a free surface are summarized below. The
velocity potential ¢(x,t) is used to represent inviscid irrotational 3D flows in Cartesian

coordinates x = (x,y, z), with z the vertical upward direction (and z = 0 at the undisturbed



free surface; Fig. 1), and the velocity is defined by, u = Vo = (u, v, w).
Continuity equation in the fluid domain Q(¢), with boundary I'(¢), is a Laplace’s equation

for the potential,
Vi =0 in Q(t) (1)

The 3D free space Green’s function for Eq. (1) is defined as,

1 oG 1 r-n
G(x,x;) = — ith —(x,x;) = —— 2
( Y l) 47‘['7“ Y Wi an( Y l) 47_[_ T'S Y ( )
r = x —xy, and r =| r | the distance from point x to the reference point x; = (2, y1, 21),

both on boundary I', and n the outward normal unit vector to the boundary at point x.

Green’s second identity transforms Eq. (1) into the Boundary Integral Equation (BIE),

() d(xi) = /F . { g—f(x) G(x, x1) — 3(x) g—i(x, x;) } dr (3)

in which a(x;) = 60;/(4m), with §; the exterior solid angle made by the boundary at point x;
(i.e., 27 for a smooth boundary).
The boundary is divided into various sections, with different boundary conditions (Fig.

1). On the free surface I'¢(t), ¢ satisfies the nonlinear kinematic and dynamic boundary

conditions,
DR
o =u=V¢o on I's(¢) (4)
Do 1 Pa
E:—gz-l-%vﬁb‘vﬁb—? on I's(?) (5)

respectively, with R the position vector of a free surface fluid particle, g the acceleration
due to gravity, p, the atmospheric pressure, p the fluid density, and D/Dt the material
derivative.

Various methods can be used in the model for wave generation. When waves are generated
by simulating a wavemaker motion on the “open sea” boundary of the computational domain,

I'+1(t), motion and velocity [x,,u,] are specified over the wavemaker as,

29 _
on

X =X, and u, - n on I'yy(t) (6)



where overlines denote specified values.
Along the bottom I'y and other stationary parts of the boundary, referred to as I',, a

no-flow condition is prescribed as,

99 _

5 = 0 on I'y and I',, (7)

For well-posed problems, we have, ' =T1'; UT',; UT,, UT}.
Time integration

Free surface boundary conditions (4) and (5) are integrated at time ¢ to establish both the
new position and the boundary conditions on the free surface I'f(?) at a subsequent time
(t 4+ At) (with At a varying time step).

Following the method implemented in Grilli et al.’s (1989,1996) 2D model, second-order
explicit Taylor series expansions are used to express both the new position R(¢ + At) and
the potential ¢(R(t + At)) on the free surface, in a MEL formulation,

— DR (At)? D*R

R(t-+ A1) = R(0) + A% (0 ¢ BIEDR ) oy )
BR(+ A1) = 6(1) + A 2200 + B0y oy )

Coefficients in these Taylor series are expressed as functions of the potential, its partial time
derivative, and the normal and tangential derivatives of both of these along the free surface.
As in the 2D-NWT by Grilli et al., time step At is adapted at each time as a function of
the minimum distance between 2 nodes on the free surface and a constant mesh Courant
number C, ~ 0.5. [Tests performed with this model, for solitary waves, showed that a value
C, = 0.4 — 0.5 leads to minimum errors in mass and energy conservation, for a given spatial
discretization.]
First-order coefficients are given by Eqs. (4) and (5), which requires calculating (¢, %)
on the free surface; this is done by solving Eq. (3) at time ¢, with boundary conditions (6),
(7) and (9). Second-order coefficients are obtained from the material derivative of Eqs. (4)
86 9%

and (5), which requires also calculating (57, 77~

) at time ¢; this is done by solving a BIE
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similar to Eq. (3) for these fields. The free surface boundary condition for this second BIE
is obtained from Bernoulli Eq. (4), after solution of the first BIE for ¢ as,

99 1 Pa

— = —gz— — . - — [s(t 1

5 = 9F 5 VeV p on I's(?) (10)
For a wave generation by a wavemaker, Eq. (6) gives,

0*¢  OJ(u,-n)

= Lq(t 11

dtdn ot on (i) ()
and for the bottom and other stationary boundaries,

2

8ta¢n =0 on [’y and I',9 (12)

Advantages of this time stepping scheme are of being explicit and using spatial derivatives
of the field variables along the free surface in the calculation of values at (¢ + At). This
provides a better stability of the computed solution and makes it possible to use larger time
steps, for a similar accuracy, than in RIK or predictor-corrector methods, which only use
point to point updating based on time derivatives, and are thus more subject to sawtooth
instabilities. Hence, this also makes the overall solution more efficient.

Tangential derivatives

For calculating tangential derivatives, e.g., needed to calculate coefficients in Eqs. (8) and
(9), a local curvilinear coordinate system (s, m,n) is defined at each boundary node (Fig. 1),
with s = X;, m = X,,,, and n = s x m (subscripts indicate partial derivatives). Derivatives of
the geometry and field variables in tangential directions s and m are computed, by defining,
around each node a local 5 by 5 node, 4th-order, sliding element x(&, ), and differentiating

within it. Hence, we find,

W= V6= 65 + dum + dun (13)
where ¢s and ¢,, denote tangential velocities. Using Eq. (13), Laplace’s Eq. (1) can be
expressed as,

GPon = —Pss = Pum T+ s {Xss©8 = Xy M} + G { X M — X, - 8}

+ é, {Xss -1 + Xy - M} (14)



and the particle acceleration, i.e. the second-order term in Eq. (8), as,

Du

Du _
${610 4 81600+ Do + s — 005} 8 (8} — Do m}

10 { G+ Byt + S+ S + 6 (Kas -1} = G [ - 1} = 910 1} |

tn {qu t Gsus + Onbum — Gulbss + G} + %05 -1} + 02 (K - 1} + 20,0 (X - 1}

+¢721{X55 "N+ Xy, 1’1} + qbnqbs{xss 8 — Xgm 1’1’1} + qbnqu{xmm I — Xy - S}} (15)

Finally, the second-order term in Eq. (9) is given by,
D Du  1Dp,

(16)

where Eqs. (13) and (15) are used to calculate the second term in the right hand side, and
w denotes the vertical particle velocity.

Finally for a plane wavemaker boundary on I',1(¢), using Eqs. (13) and (14), Eq. (11)

becomes,
;t;n - (llp ‘ 1’1) —I— (llp ' %) —I_ (llp ) n){qbss —I_ qum} - Qbsqbns - quqbnm (17)

where, u, denotes the absolute wavemaker acceleration, and Dn/Dt = wxn, for a wavemaker

rotating with angular velocity w.
Discretization, numerical integrations, regridding

The BIEs for ¢ and % are solved by a Boundary Element Method (BEM). The boundary
is discretized into collocation nodes and higher-order elements are used to interpolate in
between m of these nodes. Within each element, the boundary geometry and the field
variables (denoted by u = ¢ and ¢ = % for simplicity) are discretized using polynomial

shape functions. These are analitically defined over a single reference element of intrinsic

coordinates (&,n) € [—1,1]. Variations of the geometry and field variables over each element
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k are described by their nodal values, Xf, uf and qf, and by the local shape functions N;(&,n)

as,
x(&,n) = N;j(&,n)x] (18)
u(é,n) = Nj(€,m)ul and  q(&,n) = N;(€,n) ¢ (19)
where j = 1,...,m, numbers the nodes within each element k = 1, ..., Mr, and the sum-

mation convention is applied to repeated subscripts.

[soparametric elements can provide a high-order approximation within their area of def-
inition but only offer Cy continuity of the geometry and field variables at nodes in between
elements. Based on the experience acquired in modeling overturning waves with 2D-NWTs,
for producing stable accurate results, one needs to define elements which are both higher-
order within their area of definition, and at least locally (5 continuous in between elements.
To do so, various methods were implemented and tested in 2D-NW'Ts. Here, elements are
defined using an extension of the so-called Middle-Interval-Interpolation (MII) method in-
troduced by Grilli and Subramanya (1996). Boundary elements are 4-nodes quadrilaterals,
with cubic shape functions defined using both these and additional neighboring nodes in
each direction, for a total of m = 16 nodes. Hence, only part of the interval of variation
(usually the middle part, unless nodes are close to a boundary intersection) of the cubic
shape functions is used for calculating the boundary integrals in Eq. (3).

Details of curvilinear changes of variables needed for expressing boundary integrals over
MII reference elements, treatments of corners and boundary intersections, and final dicretized
equations, are left out due to lack of space.

Discretized boundary integrals are calculated for each collocation node by numerical
integration. When collocation node [ does not belong to the integrated quadrilateral element
(ie., I # j(k) = 1,...,4), a standard Gauss-Legendre quadrature method is used. When
node [ does belong to the element, distance r in the Green’s function, and its normal gradient,

becomes zero at one of the nodes of the element (Eq. (2)). It can be shown, in this case, that
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Fig. 2 : Comparison of 3D (—o—) and 2D (- - - -) results (Grilli et al., 1997) for the shoaling of a
solitary wave of height H,/h, = 0.6 over a slope s =1:15, at times ' = a : 7.551; and b: 8.163.

integrals including G are weakly singular (and thus integrable), whereas integrals including
(7, are non-singular. For the former integrals, new methods of “singularity extraction”, well-
suited to MII elments, were developed based on polar coordinate and other transformations;
again, details are left out due to lack of space.

Finally, a two-dimensional regridding method is implemented for the free surface, based
on a reinterpolation of nodes for equally spaced MII elements in the x and y directions.

Thus, this method assumes a single-valued free surface n(x,y) at the time of regridding.

APPLICATIONS

Solitary wave shoaling over a plane slope

Grilli et al. (1997) calculated the shoaling and breaking of solitary waves over plane slopes
in their 2D-FNPF-NW'T and compared results to detailed laboratory experiments. They
showed that computations of surface elevations matched experimental results within two
percent, up to the breaking point.

To validate the 3D model, similar computations are made in a quasi-2D narrow domain of
width 2h,, having a plane slope s =1:15, starting at d/, = 5.4 in depth A/ = 1 and truncated
at @’ = 18 in depth A’ = 0.16 (Fig. 1; dashes indicate non-dimensional variables based on
long wave theory). The initial wave is an exact FNPF solitary wave of height H! = 0.6,
with its crest located at ' = 5.5 for ¢ = 0. The initial BEM discretization has 60 by 4
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quadrilateral elements in the « and y directions, respectively (node spacing, Az! = 0.30 and
Ay’ = 0.50), on the bottom and free surface boundaries. The lateral boundaries I',2 have
grid lines connecting the free surface and bottom edge nodes, with 4 elements specified in
the vertical direction along each pair of connecting lines. The total number of nodes in the
NWT is 1270 and the number of quadrilateral MII elements is 992 (630”7 CPU time per time
step on a Mac G3-266). The initial time step is set to At/ = 0.14 and, hence, C, = 0.47.
Fig. 2 shows a comparison between a cross-section in the 3D results, at y’ = 0 (horizon-
tally shifted to a” = 2’ — d’), with the 2D results calculated by Grilli et al. (1997). Curve a
corresponds to the break point in the 2D model, i.e., when a vertical tangent occurs on the
front face; the agreement between 3D and 2D results is quite good, except at the tip of the
crest, likely due to the coarser discretization in the 3D-NW'T (about 2 times coarser in the
x direction than for the 2D case). At the time of curve a, numerical errors on wave mass
and energy conservation are quite small (0.056 % and 0.117 %, respectively). Due to node
convergence at the wave crest, the time step has reduced to At" = 0.0259. In curve b, the
wave crest starts overturning, but the agreement of 3D and 2D results is still good. Errors
on wave mass and energy conservation are still small (0.106 % and 0.351 %, respectively)
but the time step has considerably reduced to At’ = 0.0085. Beyond this stage, however, 3D
computations quickly fail, as elements start overlapping on the lateral vertical boundaries
of the NWT, at ' = £1. This limitation could be eliminated by implementing appropriate

regridding techniques for the elements on the sidewalls of the NW'T.

Solitary wave shoaling and breaking over a sloping ridge

A truly three-dimensional overturning wave is now produced in a wider NWT, of width 4h,
in the y direction, with a sloping ridge at its extremity. The ridge starts at 2’ = 5.225 and
has a 1:15 slope in the middle (y = 0), tapered in the y direction by specifying a depth
variation in the form of a sech? modulation. The ridge is truncated at 2/ = 19, where the

minimum depth is A’ = 0.067 in the middle part (y' = 0), and the maximum depth A’ = 0.617
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Fig. 3 : Same case as Fig.2 but over a ridge md&deled as a sloping bottom s =1:15, with a sech?
modulation in y. The region for a/h, > 7.2 was regridded to equal intervals. Results are for time
t' = 9.196.

on the sides (y' = +2). The same solitary wave as before is used, with H! = 0.6 and the
crest being located at 2’ = 5.7 for ¢/ = 0.

The initial BEM discretizations on the bottom and free surface have 40 by 8 quadrilateral
elements in the x and y directions, respectively (node spacing, Az! = 0.475 and Ay! = 0.50).
Lateral boundaries again have 4 elements in the vertical direction. The total number of nodes
is 1238 and the number of quadrilateral MII elementsis 1024 (600” CPU time per time step on
a Mac G3-266). The initial time step is set to At/ = 0.214 and, hence, C, = 0.45. Maximum
numerical errors of 1 % on wave mass and energy conservation were deemed acceptable in this
application. Computations were first performed in the initial discretization, up to reaching
these maximum errors (¢’ = 8.788). Regridding of part of the NWT to a finer discretization
was then specified at an earlier time (¢ = 6.000) for which errors were very small (0.065 %
and 0.045 %, respectively). At this stage, the wave crest was located at =’ = 14.203, with
H' = 0.644. The regridded discretization was increased to 40 by 10 quadrilateral elements
on the free surface and bottom boundaries, for 2’ = 8.075 to 19 (with Axz! = 0.273 and
Ay’ = 0.40; total number of nodes 1422, and elements 1200, with 735 sec CPU per time
step), and computations were restarted up to reaching the maximum errors (¢ = 9.196, and

the time step has reduced to A’ = 0.0051).
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runup on the wall is initially faster close to the sidewalls (y = +2) than in the middle of
the tank. Hence, this creates lateral flows moving from the deeper parts toward the middle
of the NWT, thus focusing the wave impact around (y = 0), in the shallower water region
over the ridge. The strong flow convergence from three major directions creates a local jet
moving along the wall with large upward vertical acceleration. No attempt to better resolve
this jet, in space and time, by regridding to an even finer discretization, was made and the
figure shows results at the instant maximum error on wave energy conservation was reached
for the specified discretization (0.95 %). At this time, the error on wave mass conservation

was 0.26 %.

CONCLUSIONS

A new 3D-NWT solving FNFP equations based on a higher-order BEM was implemented
and validated. The NWT is applied to modeling wave shoaling and overturning over a sloping
bottom. Overall, results show a better stability and numerical accuracy than in previous
attempts reported in the literature for calculating such strongly nonlinear 3D surface waves.
Cases of wave overturning over arbitrary bottom topography are presented which, to our

knowledge, was never attempted in a general 3D-NWT.
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