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ABSTRACT

Simulations in a three-dimensional numerical wave tank are performed
to investigate the shoaling and breaking of a solitary wave over asloping
ridge with a lateral modulation. The model is based on a high-order
boundary element method combined with a mixed Eulerian—Lagrangian
formulation. Our study is focused on the case of a plunging breaker and
is aimed at describing the phenomenon of wave overturning in shallow
water. A local regridding technique is developed to allow computations
to berun until an advanced stage of wave overturning. A detailed analysis
of wave profiles and wave kinematics (both on the free surface and within
the flow) is carried out. As expected, the bottom topography is found to
be an important factor controlling wave transformations and inducing
three-dimensional effects on the flow. Nevertheless, comparisonsof two-
and three-dimensional results in the middle cross-section of the tank
show remarkable similarities in jet shape and dynamics. This supports
the general viewpoint that the evolution of an overturning wave becomes
somewhat independent of theinterior dynamicsand boundary conditions.

KEY WORDS: Breaking ocean waves; nonlinear surface waves;
numerical wave tank; boundary element method; three-dimensional
flows; bottom topography.

INTRODUCTION

Breaking waves play a significant role in air—sea interactions, such as
energy and momentum transfer from wind to water and from waves to
currents, and the generation of turbulenceinthe upper ocean. In nearshore
areas, breaking wave induced currentsdrive the sediment transport which
leads to beach erosion and accretion. The study of breaking waves is
also of importance in applications to naval hydrodynamics due to their
damaging effects on ships and offshore structures in heavy seas. Due
to its complexity, the process of wave breaking has not yet been fully
explained. The present paper reports on numerical simulations aimed at
describing the early stages of wave breaking in shallow water, namely
the phenomenon of wave overturning. In particular, we concentrate on
casesin which the bottom topography induces three-dimensional effects
on the flow, and we restrict our study to plunging breakers which are
characterized by the formation of a more prominent jet.

347

Most of the numerical studies of wave breaking so far have focused
on two-dimensional problems. Significant contributions in the numerical
simulation of steep fully nonlinear waves, based on potential flow the-
ory, were made by Longuet-Higginsand Cokelet (1976) who developed a
mixed Eulerian—Lagrangian (MEL) approach combined with a boundary
integral equation (BIE) formulation. Their computationswerelimited to a
periodic domain in deep water and they were able to reproduce overturn-
ing waves by specifying a localized surface pressure. Results obtained
by New, Mclver and Peregrine (1985), for plunging waves over constant
depth, greatly contributed to our understanding of breakingwavekinemat-
ics. Morerecent two-dimensional modelscanaccommodatebotharbitrary
wavesand complex geometries. They aredirectly implementedin aphys-
ical spaceregion where incident waves can be generated at one extremity
and reflected, absorbed or radiated at the other extremity (e.g. Grilli and
Subramanya, 1996; Grilli and Horrillo, 1997). For thesereasons, they are
often referred to as numerical wave tanks (NWT).

Only afew attempts, however, have been made for extending the
numerical simulationsto three dimensions, due to the more difficult geo-
metric representation and the limitations of computer power. X and Yue
(1992) and Xue et al. (2001) calculated three-dimensional overturning
wavesin adoubly periodic domain with infinite depth (i.e. only the free
surface is discretized). They used a high-order quadratic boundary ele-
ment method (BEM) to solvethe equationsin the MEL formulation. Asin
Longuet-Higginsand Cokelet (1976), theinitial conditionswere progres-
sive Stokes waves and a localized surface pressure was applied to make
waves break. Recently, Grilli, Guyenne and Dias (2001) proposed an ac-
curate three-dimensional NWT for the description of strongly nonlinear
waves over complex bottom topography. It is based on a MEL explicit
time stepping and ahigh-order BEM with third-order spatial discretization
ensuring local continuity of theinter-element slopes. Variousapplications
of thisNWT to nonlinear wave processescan be found in Guyenne, Grilli
and Dias (2000) for the modelling of wave impact on a vertical wall, in
Brandini and Grilli (2001a, b) for the modelling of freak wave genera-
tion dueto directional wavefocusing, andin Grilli, Vogelmann and Watts
(2002) for themodelling of tsunami generation by submarinemassfailure.
In the present paper, the breaking of a solitary wave over a sloping ridge
isinvestigated in detail using the model of Grilli et al. (2001).

In the following section, the mathematical formulation of the wave
model is presented. A local regridding technique is introduced to track
the wave motion far beyond the breaking point, allowing the kinematics



of awell-devel oped plunging wave to be examined. The caseof asolitary
wave propagating and overturning over asloping ridgeis analyzedin the
last section. Results are obtained for the velocity and acceleration fields
both on the free surface and within the flow.

MATHEMATICAL FORMULATION
Governing Equations

Equationsfor afully nonlinear potential flow with afree surfacearelisted
below. Thevelocity potentia ¢ (x, t) isintroduced to describe an inviscid
irrotational flow in Cartesian coordinatesx = (X, y, 2) with z the vertical
upward direction (z = 0 at the undisturbed free surface), and the fluid
velocity isexpressedasu = V.

The continuity equationin thefluid domain 2 (t) with boundary T (t)
is Laplace'sequation
Vv2¢ = 0. @
The corresponding three-dimensional free-space Green's function is de-
fined as
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wherer = |r| = |[x—X| | isthedistancefrom the sourcepoint x to thefield
point x; (both on boundary T"), and n is the outward unit vector normal to
the boundary at point x

Green’s second identity transforms (1) into the BIE
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wherea (X)) = 11;9| and 6, isthe exterior solid angle at point X; .
Theboundary isdividedinto various parts satisfying different bound-
ary conditions. On the free surface, ¢ satisfies the nonlinear kinematic
and dynamic boundary conditionsin the MEL formulation, respectively
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with R being the position vector of a fluid particle on the free surface,
g the acceleration due to gravity, p the atmospheric pressure, p the fluid
density and D/ Dt = 3/dt + V¢ - V the Lagrangian time derivative. The
effects of surfacetension are neglected.

Here, we directly specify at t = 0 on the free surface, the shape
z =no(X, y), potentia ¢o(X, y) and normal velocity d¢o(X, y)/an of the
incident wave. On the bottom and other fixed parts of the boundary, a
no-flow condition is prescribed as

i

o =0. 6)

Solution for Interior Points

Oncethe BIE (3) is solved, the solution within the domain can be easily
evaluated from the boundary values. Using (3), the internal velocity is

given by
a
/ [—¢(X)Q(x, X1)
r

— (X Q(x xn] dr,

ux) =Ve(x)

)
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with

1
QX, X)) = mr , (8

1 r
= 3[ —3(r-n)r—2} ,
andr denoting the distancefrom the boundary point x to theinterior point
X .

Similarly, one can also obtain the internal Lagrangian acceleration
Du DV¢ Ve (V- V)Ve,
Dt Dt  at

where the first term in the right-hand side, corresponding to the local
acceleration, is given by

g B 32¢
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Q

(10)

o5 00X )] dr, (11)
and the last term is computed using (7) and differentiating V¢. This
reguires calculating the spatial derivatives for all components of Q and
9Q/an. Their expressionsare
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wherei, j refer to the spatial dimensionsandr; standsfor thei-th com-
ponent of r.

Thequantitiesd¢ /at andaqu/atan in (11) also satisfy aBIE similar
to (3) for ¢ and 3¢ /an. Actualy, the calculation of their values on the
free surface is done as part of the second-order time integration method
outlined below. Note that the results presented here are restricted to a
no-flow condition on al lateral boundaries. For the use of ‘snake’ flap
wavemaker and absorbing piston boundaries at extremities of the NWT,
the reader is referred to Brandini and Grilli (2001a, b) and Grilli et al.
(2002).

NUMERICAL METHOD

Timelntegration

A second-order explicit schemebased on Taylor seriesexpansionsis used
to updatethe position R and velocity potential ¢ on the free surface, as
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where At isthe varying time step and all terms in the right-hand sides
are evaluated at time t. Thetime step At in (14) and (15) is adaptively
selected at each time as
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where Cg denotesthe Courant number, Ar min js the instantaneous mini-
mum distance between two neighbouringnodesonI” s and h isa charac-
teristic depth.

Global accuracy of the numerical scheme can be assessedat any time
by checking the conservation of volume

V= / m,dr, (€
r

and total energy
1 d¢p

E= Ep/F (d)%%—gzznz) dr, (18)

where the first and second terms represent the kinetic and potential
contributions of the flow respectively, and nz is the vertical component
of the unit normal vector.

Boundary Discretization

A high-order BEM s used to solve numerically the BIEs for ¢ and
d¢/at. Theboundary is discretized into collocation nodes, defining two-
dimensional elements for local interpolations of the solution in between
these nodes. Thus, within each element, the boundary geometry and field
variables are interpolated using polynomial shape functions. Generally,
isoparametric elements can provide a high-order approximation within
their area of definition but only offer cO continuity of the geometry
and field variables at nodes in between elements. A robust treatment
reguires to define elements which are both high-order within their area
of definition and at least locally €2 continuous at their edges. For this
purpose, an extension of the so-called middle-interval-interpolation
(MI1) method introduced by Grilli & Subramanya (1996) has been
developed in the three-dimensional model. The boundary elements
are 4 x 4-node quadrilaterals associated with bi-cubic shape functions.
The discretized boundary integrals are evaluated for each collocation
node by numerical integration. A special treatment based on a new
method of singularity extraction is applied for weakly singular integrals.
As the linear algebraic system resulting from the discretization of the
BIE (3) is in genera dense and non-symmetric, a generalized min-
imal residual (GMRES) a gorithm with preconditioningisusedto solveit.

Regridding Techniques

Two types of regridding techniques for nodes on the free surface have
been implemented. When the free surface is still single-valued, a two-
dimensional regridding to ahigher resolution can be performed in selected
areas. It consists in specifying new equally spaced elements at a given
time by reinterpolating nodesin both x- and y-directions. This offersthe
possihility of refining the mesh only when it becomesnecessary to resolve
larger variation or smaller scales of the solution.

In the MEL formulation, situations of quasi-singular integrals (when
r in(3) isnot zerobut very small duetotheinter-node proximity) arelikely
to occur and lead to aloss of accuracy of integrations, and eventually to
numerical instabilities if the treatment of these quasi-singular integrals
is not accurate enough. To overcome this difficulty, we have extended
to our three-dimensional NWT the local regridding technique of Grilli
and Subramanya (1996), which adaptively redistributes nodes at constant
arclength intervals. More specifically, when the distance between two
nodeson grid lines along the direction of wave propagation becomestoo
small as compared to that between neighbouring nodes (say by a factor
%), alocal regridding is carried out to make these distancesequal. Grilli
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and Subramanya (1996) carried out two-dimensional simulations up to
impact of the plunging jet onthe free surface by using local regridding. It
turns out that the direct extension of their techniqueis not asefficient here
andfailsto yield reliable results on the very last stages of the overturning
process. Thisis likely because this local regridding technique slightly
alters the smooth transverse variation of node distribution on the free
surface, leading to small inaccuracies in the transition zones between
regridded and non-regridded nodeswhere el ementscan bevery distorted.

Fig. 1. Bottom topography for the shoaling of a solitary wave over a
ridge modelled asa 1 : 15 slope with alateral sech 2 modulation.

NUMERICAL RESULTS
Solitary Wave Shoaling and Breaking over a Sloping Ridge

For the purpose of inducing three-dimensional breaking, we specify a
somewhat idealized sloping bottom topography in our NWT. Asshownin
Fig. 1, the water depth is constant in the first part of the tank (h = hg).
A doping ridge starts at X’ = 5.225, with a1 : 15 slope in the middle
cross-section and a transverse modulation of the form sech 2(ky/ ) (k =
0.25). The computational domain is of width 8hg in the y-direction and
istruncated at X’ = 19 in the x-direction. Primes hereafter indicate non-
dimensional variables based on long wave theory, i.e. lengthsare divided
by the reference depth hg and times by /hg/g. Theinitial conditionisa
numerically exact solitary wave of potential flow theory (Tanaka, 1986),
with height H) = 0.6 anditscrestinitially located at x" = 5.7. Theinitial
discretization consists of 50 x 20 x 4 quadrilateral elementsin the x-, y-
and z-directions respectively (Ax; = 0.38, Ay; = 0.4, Az; = 0.25).
The total number of nodesis N = 2862 and the initial time step is set
to At(/) = 0.171 for Cp = 0.45. The computation is first performed in
theinitial discretization aslong aserrors remain acceptable(i.e. lessthan
0.05% or so on wave mass and energy). A two-dimensional regridding
to a finer resolution is then applied at t’ = 5.851 for which errors on
volume and energy conservation are 0.012% and 0.032% respectively.
The discretization is increased to 60 x 40 x 4 quadrilateral elementsin
theportion 8 < x’ < 19 (Ax’ = 0.18, Ay’ = 0.2, N;r = 6022).

As the solitary wave travels up the sloping ridge, it loses the
initial vertical symmetry and develops a very steep forward face. The
transformation is more pronounced in the middle of the tank (y’ = 0)
where the water depth is the least. The three-dimensional wave profile
in advanced stages of wave overturning is shown in Fig. 2. Asthe
overturning process propagates laterally to the sidewalls (y’ = +4), the
projected water forms a sharp tongue-shaped jet, which is obviously
a three-dimensional effect. We used the local regridding technique to
reduce the occurrence of quasi-singularities due to node convergence
in the bresker jet. However, the computation cannot be pursued
much beyond t’ = 8.965 because the elements become too distorted.
The CPU time for N = 6022 is currently O(7) minutes per time
step on a single processor of a NEC SX5 supercomputer. It should be
emphasizedthat no smoothing/filtering wasused to stabilize the sol ution.



Fig. 2: Wave profilesat t’ = 8.757 (upper) andt’ = 8.965 (lower).

Fig. 3 displaysthe vertical cross-sections of the free surface in the
middle (y' = 0) and at the sidewalls (y’ = +4) for timest’ = 7.911,
8.255, 8.502, 8.757 and 8.965. Due to the depth difference, one can
see that the wave profile at y’ = 0 has developed overturning with a
prominent jet while the profile at y’ = +4 remains single-valued. The
wave reaches its maximum height H’ ~ 0.71 near the breaking point
(t’ = 7.911) with its crest located at X’ = 16.2.
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Fig. 3: Vertical cross-sectionsat y’ = 0 (upper) and y’ = +4 (lower) for
t/ = 7.911, 8.255, 8.502, 8.757 andt’ = 8.965.

Fig. 4 and 5 show a comparison of free surface profiles using
the two-dimensional model of Grilli et a. (1997) and the present
three-dimensional model for the same experimental parameters. At a
given time, the crests of both two- and three-dimensional waves are
roughly located at the same position. However, in Fig. 4, we see that
wave breaking occurs earlier in two dimensions. This observation can be
explained by differences in wave evolution between the middle and the
sides of the tank. Thus, near sidewalls, the wave is |ess affected due to
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the deeper bottom. This somewhat delays the overturning processin the
middlepart of thetank. Fig. 5 presentsacomparisonfor slightly different
times, at which the two- and three-dimensional waves exhibit similar
free surface profiles. Furthermore, to alow for a direct comparison of
breaker jet geometry, the two-dimensional profile is shifted forward to
make it approximately coincide with the three-dimensiona profile. The
breaker jet of the three-dimensional wave almost perfectly coincideswith
that of the two-dimensional wave. Careful examination reveals that the
three-dimensional wave has a higher back slope and a more arched front
facethan for the two-dimensional case.

10.5 11 13

Fig. 4 Wave profilesat t” = 8.55 using the two-dimensional model of
Grilli et al. (1997) (dashedline) and the present three-dimensional model
aty’ = 0(solid line).
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Fig. 5: Comparison of two-dimensional (dashed line) and three-

dimensional (solid line) results at the same stage of overturning:
t/ = 8.560, 8.920 for the two-, three-dimensional wave.

Kinematics of Three-Dimensional Overturning Waves

We address now the effects of three-dimensional breaking on the wave
kinematics. Fig. 6 shows the surface velocity and acceleration fields
(uy, Uz) and (ax, az) inthemiddle of thetank (y’ = 0). Asthewavecrest
overturns, the particle velocity increases and is almost twice c = +/ghg
near the tip of the plunging jet at t’ 8.965. It can be seen that
accel eration magnitudesas high asalmost six times g occur at t ' = 8.965
onthefront facewherethe curvatureislarge. Asoneapproachesthetip of
thejet, accelerationscloseto g indicate the tendency to afreefall motion.
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Fig. 6: Vertica cross-sections of the surface velocity (upper) and
acceleration (lower) fieldat y’ = Ofor t’ = 8.255, 8.965.

Fig. 7 displaysthe internal velocity and acceleration fields (u x, Uz)
and (ay, az) in the middle of the tank (y’ = 0) at t’ = 8.965. Outside
the overturning region, the quasi-uniformity of the velocity distribution
is clearly shown. The velocity increases and exhibits more variation
in the vertical direction as one enters the breaker jet. In contrast, the
corresponding acceleration field (ax, az) has appreciable values only in
the region adjacent to the wave front face. Further examination reveals
that atransition zonetakes place beneath the back slope of the wave, more
precisely at x’ ~ 11.9 (t’ = 8.965), between low backward accelerations
and high forward accelerations. The location of this transition zone
coincides with the location of the wave crest at y’ = 44 which has not
overturned yet.
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Fig. 7: Vertical cross-sections of the internal velocity (upper) and
acceleration (lower) field at t’ = 8.965. Inthe (z, x)-plane, the maximum
velocity (acceleration) magnitudeis |u’ |max = 1.918 (| |max = 2.474).

The transverse variation of the wave kinematicsisillustrated in Fig.
8 where we plot the internal velocity and acceleration fields (ux, Uy)
and (ax, ay), in a horizontal cross-section at depth h’ = —0.2 and
timet’ = 8.965. As indicated, the propagation of the solitary wave is
associated with a forward displacement of water beneath the surface.
The wave-induced velocity and acceleration fields are appreciable only
in the vicinity of thewave crest position. A remarkable featureisthat the
fluid motion remains primarily longitudinal but there are small transverse
variations due to focusing of the flow by the ridge. The transition zone,
as mentioned earlier, between small negative accelerations and large
positive accelerationsis clearly represented by a transverse dotted line.
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Fig. 8 Horizontal cross-sections of the internal velocity (upper) and
acceleration (lower) field at depth h’ = —0.2 and t’ = 8.965.
the (X, y)-plane, the maximum velocity (acceleration) magnitude is

In



U |max = 0.683 (]&’|max = 0.580). Theratio of maximum |uyx| (|ax|) to
maximum |uy| (|ay) is [ux/Uy|max = 8.9 (lax/ay|max = 6.5).

Three-dimensional effects are especially conspicuous in Fig. 9
which shows the internal velocity field (uy, uz) and the corresponding
acceleration field (ay, az). Componentsu; and az decreaserapidly with
z, attaining negligible values near the bottom and near the sidewalls
where depth is the greatest. This is a typical effect in shallow water,
which results from the flattening of the orbital motion of fluid particles
near the bottom. The development of wave breaking is indicated by
the flow convergence above the top of the ridge, and by the decay of
velocities just beneath the surface as one tends laterally to y’ = O.
As wave breaking develops, variations of ay become more and more
significant with values comparable to those of a; in the upper region
just behind the plunging jet. Thus, the kinematics of three-dimensional
overturning waves is characterized by a strong energy and momentum
transfer from the vertical to transverse motion.

Fig. 9 Transverse vertical cross-sections of the internal velocity
(upper) and acceleration (lower) field at t’ = 8.965 (x’ = 17.2). In
the (y, 2-plane, the maximum velocity (acceleration) magnitude is
U |max = 0.172 (|a’|max = 0.613). Theratio of maximum |u| (|az|) to
maximum |uy| (lay]) is [uz/Uylmax = 2.7 (|]az/ay|max = 1.8).

CONCLUSIONS

The three-dimensional NWT of Grilli et al. (2001) has been used to
investigate the shoaling and overturning of a solitary wave over asloping
ridge with alateral modulation. A local regridding technique has been
developed to allow computationsto be pursued until an advanced stage of

overturning. Wefocused on the case of aplunging breaker and performed

adetailed analysisof its dynamicsand kinematics. Comparisonsbetween
two- and three-dimensional results for similar parameters have been
carried out. Overall, the corresponding wave profiles at y’ = 0 are
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found to be almost identical, particularly near the plunging jet, but
breaking is found to occur for dlightly different times and x-locations.
Moreover, results for maximum velocity and accel eration computed near
thethree-dimensional breakingjet (at y’ = 0) are consistentin magnitude
and direction with the two-dimensional results reported by New et al.
(1985) for plunging breakers over constant depth. Such similarities in
near jet shape and dynamics of two- and three-dimensional plunging
waves seems to indicate that the flow near breaking jets in the latest
stages of overturning somewhat becomesindependent of the background
flow and boundary conditions (including shape of the sloping bottom),
which haveled to breaking.
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