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ABSTRACT

Simulations in a three-dimensional numerical wave tank are performed
to investigate the shoaling and breaking of a solitary wave over a sloping
ridge with a lateral modulation. The model is based on a high-order
boundary element method combined with a mixed Eulerian–Lagrangian
formulation. Our study is focused on the case of a plunging breaker and
is aimed at describing the phenomenon of wave overturning in shallow
water. A local regridding technique is developed to allow computations
to be run until an advanced stage of wave overturning. A detailed analysis
of wave profiles and wave kinematics (both on the free surface and within
the flow) is carried out. As expected, the bottom topography is found to
be an important factor controlling wave transformations and inducing
three-dimensional effects on the flow. Nevertheless, comparisons of two-
and three-dimensional results in the middle cross-section of the tank
show remarkable similarities in jet shape and dynamics. This supports
the general viewpoint that the evolution of an overturning wave becomes
somewhat independent of the interior dynamics and boundary conditions.

KEY WORDS: Breaking ocean waves; nonlinear surface waves;
numerical wave tank; boundary element method; three-dimensional
flows; bottom topography.

INTRODUCTION

Breaking waves play a significant role in air–sea interactions, such as
energy and momentum transfer from wind to water and from waves to
currents, and the generationof turbulence in the upper ocean. In nearshore
areas, breaking wave induced currents drive the sediment transport which
leads to beach erosion and accretion. The study of breaking waves is
also of importance in applications to naval hydrodynamics due to their
damaging effects on ships and offshore structures in heavy seas. Due
to its complexity, the process of wave breaking has not yet been fully
explained. The present paper reports on numerical simulations aimed at
describing the early stages of wave breaking in shallow water, namely
the phenomenon of wave overturning. In particular, we concentrate on
cases in which the bottom topography induces three-dimensional effects
on the flow, and we restrict our study to plunging breakers which are
characterized by the formation of a more prominent jet.

Most of the numerical studies of wave breaking so far have focused
on two-dimensional problems. Significant contributions in the numerical
simulation of steep fully nonlinear waves, based on potential flow the-
ory, were made by Longuet-Higgins and Cokelet (1976) who developed a
mixed Eulerian–Lagrangian (MEL) approach combined with a boundary
integral equation (BIE) formulation. Their computationswere limited to a
periodic domain in deep water and they were able to reproduce overturn-
ing waves by specifying a localized surface pressure. Results obtained
by New, McIver and Peregrine (1985), for plunging waves over constant
depth, greatly contributed to our understandingof breakingwave kinemat-
ics. More recent two-dimensionalmodels canaccommodateboth arbitrary
waves and complex geometries. They are directly implemented in a phys-
ical space region where incident waves can be generated at one extremity
and reflected, absorbed or radiated at the other extremity (e.g. Grilli and
Subramanya, 1996; Grilli and Horrillo, 1997). For these reasons, they are
often referred to as numerical wave tanks (NWT).

Only a few attempts, however, have been made for extending the
numerical simulations to three dimensions, due to the more difficult geo-
metric representation and the limitations of computer power. Xü and Yue
(1992) and Xue et al. (2001) calculated three-dimensional overturning
waves in a doubly periodic domain with infinite depth (i.e. only the free
surface is discretized). They used a high-order quadratic boundary ele-
ment method (BEM) to solve the equations in the MEL formulation. As in
Longuet-Higgins and Cokelet (1976), the initial conditions were progres-
sive Stokes waves and a localized surface pressure was applied to make
waves break. Recently, Grilli, Guyenne and Dias (2001) proposed an ac-
curate three-dimensional NWT for the description of strongly nonlinear
waves over complex bottom topography. It is based on a MEL explicit
time steppinganda high-order BEM with third-order spatial discretization
ensuring local continuity of the inter-element slopes. Various applications
of this NWT to nonlinear wave processes can be found in Guyenne, Grilli
and Dias (2000) for the modelling of wave impact on a vertical wall, in
Brandini and Grilli (2001a, b) for the modelling of freak wave genera-
tion due to directional wave focusing, and in Grilli, Vogelmann and Watts
(2002) for the modelling of tsunami generationby submarinemass failure.
In the present paper, the breaking of a solitary wave over a sloping ridge
is investigated in detail using the model of Grilli et al. (2001).

In the following section, the mathematical formulation of the wave
model is presented. A local regridding technique is introduced to track
the wave motion far beyond the breaking point, allowing the kinematics
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of a well-developed plunging wave to be examined. The case of a solitary
wave propagating and overturning over a sloping ridge is analyzed in the
last section. Results are obtained for the velocity and acceleration fields
both on the free surface and within the flow.

MATHEMATICAL FORMULATION

Governing Equations

Equations for a fully nonlinear potential flow with a free surface are listed
below. The velocity potential φ(x, t) is introduced to describe an inviscid
irrotational flow in Cartesian coordinates x = (x, y, z) with z the vertical
upward direction (z = 0 at the undisturbed free surface), and the fluid
velocity is expressed as u = ∇φ.

The continuity equation in the fluid domain �(t) with boundary �(t)
is Laplace’s equation

∇2φ = 0 . (1)

The corresponding three-dimensional free-space Green’s function is de-
fined as

G(x, xl ) = 1
4πr

with
∂G

∂n
(x, xl ) = − 1

4π

r · n

r3 , (2)

where r = |r| = |x−xl | is the distance from the source point x to the field
point xl (both on boundary �), and n is the outward unit vector normal to
the boundary at point x

Green’s second identity transforms (1) into the BIE

α(xl )φ(xl ) =
∫
�

[
∂φ

∂n
(x)G(x, xl ) − φ(x)

∂G

∂n
(x, xl )

]
d� , (3)

where α(xl ) = 1
4π θl and θl is the exterior solid angle at point xl .

The boundary is divided into various parts satisfying different bound-
ary conditions. On the free surface, φ satisfies the nonlinear kinematic
and dynamic boundary conditions in the MEL formulation, respectively

D R
D t

= u = ∇φ , (4)

D φ

D t
= −gz + 1

2
∇φ · ∇φ − p

ρ
, (5)

with R being the position vector of a fluid particle on the free surface,
g the acceleration due to gravity, p the atmospheric pressure, ρ the fluid
density and D/Dt = ∂/∂t + ∇φ · ∇ the Lagrangian time derivative. The
effects of surface tension are neglected.

Here, we directly specify at t = 0 on the free surface, the shape
z = η0(x, y), potential φ0(x, y) and normal velocity ∂φ0(x, y)/∂n of the
incident wave. On the bottom and other fixed parts of the boundary, a
no-flow condition is prescribed as

∂φ

∂n
= 0 . (6)

Solution for Interior Points

Once the BIE (3) is solved, the solution within the domain can be easily
evaluated from the boundary values. Using (3), the internal velocity is
given by

u(xl ) = ∇φ(xl ) =
∫
�

[
∂φ

∂n
(x)Q(x, xl )

− φ(x)
∂Q
∂n

(x, xl )

]
d� , (7)

with

Q(x, xl ) = 1

4πr3 r , (8)

∂Q
∂n

(x, xl ) = 1

4πr3

[
n − 3(r · n)

r

r2

]
, (9)

and r denoting the distance from the boundary point x to the interior point
xl .

Similarly, one can also obtain the internal Lagrangian acceleration

D u
D t

= D ∇φ

D t
= ∂∇φ

∂t
+ (∇φ · ∇)∇φ , (10)

where the first term in the right-hand side, corresponding to the local
acceleration, is given by

∇ ∂φ

∂t
(xl ) =

∫
�

[
∂2φ

∂t∂n
(x)Q(x, xl )

− ∂φ

∂t
(x)

∂Q
∂n

(x, xl )

]
d� , (11)

and the last term is computed using (7) and differentiating ∇φ. This
requires calculating the spatial derivatives for all components of Q and
∂Q/∂n. Their expressions are

∂ Qi

∂x j
=




3
4πr5 ri r j , i �= j

1
4πr3

(
3
r2 r2

i − 1
)

, i = j .
(12)

∂

∂x j

(
∂ Q

∂n

)
i

=
{

3
4πr5

[
r j ni + ri n j − 5

r2 (r · n)ri r j

]
,

i �= j

=
{

3
4πr5

[
r · n + 2ri ni − 5

r2 (r · n)r2
i

]
,

i = j .
(13)

where i, j refer to the spatial dimensions and r i stands for the i -th com-
ponent of r.

The quantities ∂φ/∂t and ∂ 2φ/∂t∂n in (11) also satisfy a BIE similar
to (3) for φ and ∂φ/∂n. Actually, the calculation of their values on the
free surface is done as part of the second-order time integration method
outlined below. Note that the results presented here are restricted to a
no-flow condition on all lateral boundaries. For the use of ‘snake’ flap
wavemaker and absorbing piston boundaries at extremities of the NWT,
the reader is referred to Brandini and Grilli (2001a, b) and Grilli et al.
(2002).

NUMERICAL METHOD

Time Integration

A second-order explicit scheme based on Taylor series expansions is used
to update the position R and velocity potential φ on the free surface, as

R(t + 
t) = R + 
t
D R
D t

+ 
t2

2
D2R

Dt2
+ O

(

t3

)
, (14)

φ(t + 
t) = φ + 
t
D φ

D t
+ 
t2

2
D2φ

Dt2
+ O

(

t3

)
, (15)

where 
t is the varying time step and all terms in the right-hand sides
are evaluated at time t . The time step 
t in (14) and (15) is adaptively
selected at each time as


t = C0

rmin
√

gh
, (16)
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where C0 denotes the Courant number, 
r min is the instantaneous mini-
mum distance between two neighbouring nodes on � f and h is a charac-
teristic depth.

Global accuracy of the numerical scheme can be assessedat any time
by checking the conservation of volume

V =
∫
�

znz d� , (17)

and total energy

E = 1

2
ρ

∫
�

(
φ

∂φ

∂n
+ gz2nz

)
d� , (18)

where the first and second terms represent the kinetic and potential
contributions of the flow respectively, and n z is the vertical component
of the unit normal vector.

Boundary Discretization

A high-order BEM is used to solve numerically the BIEs for φ and
∂φ/∂t . The boundary is discretized into collocation nodes, defining two-
dimensional elements for local interpolations of the solution in between
these nodes. Thus, within each element, the boundary geometry and field
variables are interpolated using polynomial shape functions. Generally,
isoparametric elements can provide a high-order approximation within
their area of definition but only offer �

0 continuity of the geometry
and field variables at nodes in between elements. A robust treatment
requires to define elements which are both high-order within their area
of definition and at least locally �

2 continuous at their edges. For this
purpose, an extension of the so-called middle-interval-interpolation
(MII) method introduced by Grilli & Subramanya (1996) has been
developed in the three-dimensional model. The boundary elements
are 4 × 4-node quadrilaterals associated with bi-cubic shape functions.
The discretized boundary integrals are evaluated for each collocation
node by numerical integration. A special treatment based on a new
method of singularity extraction is applied for weakly singular integrals.
As the linear algebraic system resulting from the discretization of the
BIE (3) is in general dense and non-symmetric, a generalized min-
imal residual (GMRES) algorithm with preconditioning is used to solve it.

Regridding Techniques

Two types of regridding techniques for nodes on the free surface have
been implemented. When the free surface is still single-valued, a two-
dimensional regridding to a higher resolution can be performed in selected
areas. It consists in specifying new equally spaced elements at a given
time by reinterpolating nodes in both x- and y-directions. This offers the
possibility of refining the mesh only when it becomesnecessaryto resolve
larger variation or smaller scales of the solution.

In the MEL formulation, situations of quasi-singular integrals (when
r in (3) is not zerobut very small due to the inter-node proximity) are likely
to occur and lead to a loss of accuracy of integrations, and eventually to
numerical instabilities if the treatment of these quasi-singular integrals
is not accurate enough. To overcome this difficulty, we have extended
to our three-dimensional NWT the local regridding technique of Grilli
and Subramanya (1996), which adaptively redistributes nodes at constant
arclength intervals. More specifically, when the distance between two
nodes on grid lines along the direction of wave propagation becomes too
small as compared to that between neighbouring nodes (say by a factor
1
4 ), a local regridding is carried out to make these distances equal. Grilli

and Subramanya (1996) carried out two-dimensional simulations up to
impact of the plunging jet on the free surface by using local regridding. It
turns out that the direct extension of their technique is not as efficient here
and fails to yield reliable results on the very last stages of the overturning
process. This is likely because this local regridding technique slightly
alters the smooth transverse variation of node distribution on the free
surface, leading to small inaccuracies in the transition zones between
regridded andnon-regridded nodeswhere elements can be very distorted.
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Fig. 1: Bottom topography for the shoaling of a solitary wave over a
ridge modelled as a 1 : 15 slope with a lateral sech 2 modulation.

NUMERICAL RESULTS

Solitary Wave Shoaling and Breaking over a Sloping Ridge

For the purpose of inducing three-dimensional breaking, we specify a
somewhat idealized sloping bottom topography in our NWT. As shown in
Fig. 1, the water depth is constant in the first part of the tank (h = h 0).
A sloping ridge starts at x ′ = 5.225, with a 1 : 15 slope in the middle
cross-section and a transverse modulation of the form sech 2(ky ′) (k =
0.25). The computational domain is of width 8h 0 in the y-direction and
is truncated at x ′ = 19 in the x-direction. Primes hereafter indicate non-
dimensional variables based on long wave theory, i.e. lengths are divided
by the reference depth h 0 and times by

√
h0/g. The initial condition is a

numerically exact solitary wave of potential flow theory (Tanaka, 1986),
with height H ′

0 = 0.6 and its crest initially located at x ′ = 5.7. The initial
discretization consists of 50 × 20 × 4 quadrilateral elements in the x-, y-
and z-directions respectively (
x ′

0 = 0.38, 
y ′
0 = 0.4, 
z′0 = 0.25).

The total number of nodes is N� = 2862 and the initial time step is set
to 
t ′0 = 0.171 for C0 = 0.45. The computation is first performed in
the initial discretization as long as errors remain acceptable (i.e. less than
0.05% or so on wave mass and energy). A two-dimensional regridding
to a finer resolution is then applied at t ′ = 5.851 for which errors on
volume and energy conservation are 0.012% and 0.032% respectively.
The discretization is increased to 60 × 40 × 4 quadrilateral elements in
the portion 8 ≤ x ′ ≤ 19 (
x ′ = 0.18, 
y ′ = 0.2, N� = 6022).

As the solitary wave travels up the sloping ridge, it loses the
initial vertical symmetry and develops a very steep forward face. The
transformation is more pronounced in the middle of the tank (y ′ = 0)

where the water depth is the least. The three-dimensional wave profile
in advanced stages of wave overturning is shown in Fig. 2. As the
overturning process propagates laterally to the sidewalls (y ′ = ±4), the
projected water forms a sharp tongue-shaped jet, which is obviously
a three-dimensional effect. We used the local regridding technique to
reduce the occurrence of quasi-singularities due to node convergence
in the breaker jet. However, the computation cannot be pursued
much beyond t ′ = 8.965 because the elements become too distorted.
The CPU time for N� = 6022 is currently O(7) minutes per time
step on a single processor of a NEC SX5 supercomputer. It should be
emphasizedthat no smoothing/filtering was used to stabilize the solution.
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Fig. 2: Wave profiles at t ′ = 8.757 (upper) and t ′ = 8.965 (lower).

Fig. 3 displays the vertical cross-sections of the free surface in the
middle (y ′ = 0) and at the sidewalls (y ′ = ±4) for times t′ = 7.911,
8.255, 8.502, 8.757 and 8.965. Due to the depth difference, one can
see that the wave profile at y ′ = 0 has developed overturning with a
prominent jet while the profile at y ′ = ±4 remains single-valued. The
wave reaches its maximum height H ′ � 0.71 near the breaking point
(t ′ = 7.911) with its crest located at x ′ = 16.2.
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Fig. 3: Vertical cross-sections at y ′ = 0 (upper) and y ′ = ±4 (lower) for
t ′ = 7.911, 8.255, 8.502, 8.757 and t ′ = 8.965.

Fig. 4 and 5 show a comparison of free surface profiles using
the two-dimensional model of Grilli et al. (1997) and the present
three-dimensional model for the same experimental parameters. At a
given time, the crests of both two- and three-dimensional waves are
roughly located at the same position. However, in Fig. 4, we see that
wave breaking occurs earlier in two dimensions. This observation can be
explained by differences in wave evolution between the middle and the
sides of the tank. Thus, near sidewalls, the wave is less affected due to

the deeper bottom. This somewhat delays the overturning process in the
middle part of the tank. Fig. 5 presents a comparison for slightly different
times, at which the two- and three-dimensional waves exhibit similar
free surface profiles. Furthermore, to allow for a direct comparison of
breaker jet geometry, the two-dimensional profile is shifted forward to
make it approximately coincide with the three-dimensional profile. The
breaker jet of the three-dimensional wave almost perfectly coincides with
that of the two-dimensional wave. Careful examination reveals that the
three-dimensional wave has a higher back slope and a more arched front
face than for the two-dimensional case.
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−0.5
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x’’

z’
Fig. 4: Wave profiles at t ′ = 8.55 using the two-dimensional model of
Grilli et al. (1997) (dashed line) and the present three-dimensional model
at y′ = 0 (solid line).
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Fig. 5: Comparison of two-dimensional (dashed line) and three-

dimensional (solid line) results at the same stage of overturning:
t ′ = 8.560, 8.920 for the two-, three-dimensional wave.

Kinematics of Three-Dimensional Overturning Waves

We address now the effects of three-dimensional breaking on the wave
kinematics. Fig. 6 shows the surface velocity and acceleration fields
(ux , uz) and (ax , az) in the middle of the tank (y ′ = 0). As the wave crest
overturns, the particle velocity increases and is almost twice c = √

gh0
near the tip of the plunging jet at t ′ = 8.965. It can be seen that
acceleration magnitudes as high as almost six times g occur at t ′ = 8.965
on the front face where the curvature is large. As one approaches the tip of
the jet, accelerations close to g indicate the tendency to a free fall motion.
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Fig. 6: Vertical cross-sections of the surface velocity (upper) and
acceleration (lower) field at y ′ = 0 for t′ = 8.255, 8.965.

Fig. 7 displays the internal velocity and acceleration fields (u x , uz)

and (ax , az) in the middle of the tank (y ′ = 0) at t ′ = 8.965. Outside
the overturning region, the quasi-uniformity of the velocity distribution
is clearly shown. The velocity increases and exhibits more variation
in the vertical direction as one enters the breaker jet. In contrast, the
corresponding acceleration field (a x , az) has appreciable values only in
the region adjacent to the wave front face. Further examination reveals
that a transition zone takes place beneath the back slope of the wave, more
precisely at x ′ � 11.9 (t ′ = 8.965), between low backward accelerations
and high forward accelerations. The location of this transition zone
coincides with the location of the wave crest at y ′ = ±4 which has not
overturned yet.
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Fig. 7: Vertical cross-sections of the internal velocity (upper) and
acceleration (lower) field at t ′ = 8.965. In the (z, x)-plane, the maximum
velocity (acceleration) magnitude is |u ′|max = 1.918 (|a′|max = 2.474).

The transverse variation of the wave kinematics is illustrated in Fig.
8 where we plot the internal velocity and acceleration fields (u x , uy)

and (ax , ay), in a horizontal cross-section at depth h ′ = −0.2 and
time t′ = 8.965. As indicated, the propagation of the solitary wave is
associated with a forward displacement of water beneath the surface.
The wave-induced velocity and acceleration fields are appreciable only
in the vicinity of the wave crest position. A remarkable feature is that the
fluid motion remains primarily longitudinal but there are small transverse
variations due to focusing of the flow by the ridge. The transition zone,
as mentioned earlier, between small negative accelerations and large
positive accelerations is clearly represented by a transverse dotted line.
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Fig. 8: Horizontal cross-sections of the internal velocity (upper) and
acceleration (lower) field at depth h ′ = −0.2 and t ′ = 8.965. In
the (x, y)-plane, the maximum velocity (acceleration) magnitude is
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|u′|max = 0.683 (|a′|max = 0.580). The ratio of maximum |ux | (|ax |) to
maximum |u y| (|ay |) is |ux/uy|max = 8.9 (|ax/ay|max = 6.5).

Three-dimensional effects are especially conspicuous in Fig. 9
which shows the internal velocity field (u y, uz) and the corresponding
acceleration field (ay, az). Components u z and az decrease rapidly with
z, attaining negligible values near the bottom and near the sidewalls
where depth is the greatest. This is a typical effect in shallow water,
which results from the flattening of the orbital motion of fluid particles
near the bottom. The development of wave breaking is indicated by
the flow convergence above the top of the ridge, and by the decay of
velocities just beneath the surface as one tends laterally to y ′ = 0.
As wave breaking develops, variations of a y become more and more
significant with values comparable to those of a z in the upper region
just behind the plunging jet. Thus, the kinematics of three-dimensional
overturning waves is characterized by a strong energy and momentum
transfer from the vertical to transverse motion.
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Fig. 9: Transverse vertical cross-sections of the internal velocity
(upper) and acceleration (lower) field at t ′ = 8.965 (x ′ = 17.2). In
the (y, z)-plane, the maximum velocity (acceleration) magnitude is
|u′|max = 0.172 (|a′|max = 0.613). The ratio of maximum |u z| (|az|) to
maximum |u y| (|ay |) is |uz/uy|max = 2.7 (|az/ay|max = 1.8).

CONCLUSIONS

The three-dimensional NWT of Grilli et al. (2001) has been used to
investigate the shoaling and overturning of a solitary wave over a sloping
ridge with a lateral modulation. A local regridding technique has been
developed to allow computations to be pursued until an advanced stage of
overturning. We focused on the case of a plunging breaker and performed
a detailed analysis of its dynamics and kinematics. Comparisons between
two- and three-dimensional results for similar parameters have been
carried out. Overall, the corresponding wave profiles at y ′ = 0 are

found to be almost identical, particularly near the plunging jet, but
breaking is found to occur for slightly different times and x-locations.
Moreover, results for maximum velocity and acceleration computed near
the three-dimensional breaking jet (at y ′ = 0) are consistent in magnitude
and direction with the two-dimensional results reported by New et al.
(1985) for plunging breakers over constant depth. Such similarities in
near jet shape and dynamics of two- and three-dimensional plunging
waves seems to indicate that the flow near breaking jets in the latest
stages of overturning somewhat becomes independent of the background
flow and boundary conditions (including shape of the sloping bottom),
which have led to breaking.
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