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ABSTRACT
We derive a Hamiltonian formulation of the problem of a dy-

namic free interface (with rigid lid upper boundary conditions),
and of a free interface coupled with a free surface, this latter sit-
uation occurring more commonly in experiment and in nature.
Based on the linearized equations, we highlight the discrepan-
cies between the cases of rigid lid and free surface upper bound-
ary conditions, which in some circumstances can be significant.
We also derive systems of nonlinear dispersive long wave equa-
tions in the large amplitude regime, and compute solitary wave
solutions of these equations.

INTRODUCTION
Internal waves in a fluid body occur in a sharp interface be-

tween two fluids of different densities. Scientific interest in in-
ternal waves includes the need to quantify induced loads on sub-
merged engineering constructions (such as oil platforms and rail
and road tunnels lying on the sea bed), as well as the mathe-
matical interest in the variety of nonlinear dispersive evolution
equations that occur in the discipline of free surface hydrody-
namics. In nature they are observed in the pycnocline induced
by an abrupt jump in salinity, often occurring in fjords, and in
thermoclines found in relatively common situations in tropical
seas. Observations report amplitudes of internal waves greater
than 100m in fluid bodies of depth less than 1000m with wave-
length of one to ten kilometers. This is a highly nonlinear regime
of wave motion, characterized by large amplitudes which are
nevertheless of small slope. Additionally, in oceanographic ob-
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servations, waves on the sea surface are affected in a nontrivial
manner by the presence of disturbances in the interface. Indeed
one characteristic signature of internal waves can be a change in
the smaller scale wave patterns in the surface, giving rise to a
differential reflectancy property under oblique lighting. We are
also motivated by the recent work of Choi and Camassa [1] on
internal waves, and their models for larger amplitude long wave
motion.

In this paper we give a formulation for the equations of mo-
tion of a system of one or several ideal fluids with a dynamic free
surface, free interfaces, or both, as Hamiltonian systems with in-
finitely many degrees of freedom. The top surface of the upper
layer is either subject to rigid lid boundary conditions, or else
it is itself a free surface. We confine our considerations to two
dimensional fluid motions, which are valid approximations for
long-crested waves. In principle our methods extend to the fully
three dimensional case. A Hamiltonian formulation of the prob-
lem of a free interface between two ideal fluids, under rigid lid
boundary conditions for the upper fluid, was given by Benjamin
and Bridges [2]. Craig and Groves [3] gave a similar expres-
sion for Benjamin and Bridges’ Hamiltonian for the free inter-
face problem, using the Dirichlet-Neumann operators for both
the upper and lower fluid domains. Our present formulation of
the problem is complete, with the Hamiltonian being given in
terms of the deformations of the free surface and the free inter-
face, the traces of the velocity potential functions on them, and
the Dirichlet-Neumann operators for the upper and lower fluid
domains. This formulation has implications for the convenience
of perturbation calculations in these variables.

We focus here on quantifying the difference between the
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Figure 1. Sketch of the physical problem.

choice of rigid lid boundary conditions, most often used in math-
ematical modeling, and the setting of a free surface top boundary,
which is the physically most relevant case. There are a number of
important differences, affecting in particular the linear dispersion
relation and the linear wave speed. In addition we develop new
model systems of equations for perturbation regimes in which
wave profiles have small slope, but with amplitudes that are fully
of the same order as the mean depth of the fluid layers. This
regime reflects the realities of the observed interfacial waves in
the ocean, where the ratio of amplitude to layer depth may be of
order O(1), while the ratio of amplitude to wavelength remains
small. In this scaling regime, we have found unusual and inter-
esting Hamiltonian models which have nonlinear rational coeffi-
cients of dispersion. These models admit solitary wave solutions
which are computed numerically and compared with other exist-
ing models.

This paper is structured as follows. In the next section, we
derive the Hamiltonian formulation of the free interface problem
and the problem of a free surface above a free interface, using the
description of the Dirichlet integral for the velocity potentials in
terms of the Dirichlet-Neumann operators on the fluid domain
boundaries. This is followed by the analysis of two linearized
problems; the free interface case with rigid lid boundary condi-
tions on the upper surface, and the free interface with free surface
boundary conditions on the upper fluid surface. We quantify the
behavior of the dispersion relations of the two problems, and in-
dicate a number of significant differences. We then study the
long wave regime for the free interface problem with an upper
rigid lid. We describe the setting of large interfacial deviations
of small slope, between finite upper and lower layers. Numerical
results on solitary wave solutions are shown.

Most of the results presented here have been described in
[4–6]. New computations of internal solitary waves in certain
parameter regimes are shown (Fig. 4).

EQUATIONS OF MOTION
The fluid domain is the region consisting of the points (x,y)

such that−h< y< h1+η1(x,t), and it is divided into two regions
S(t;η) = {(x,y) : −h < y < η(x,t)} and S1(t;η,η1) = {(x,y) :
η(x,t) < y < h1 +η1(x,t)} by the interface {y = η(x,t)}. The
two regions are occupied by two immiscible fluids, with ρ the
density of the lower fluid and ρ1 the density of the upper fluid
(Fig. 1). The system is in a stable configuration, in that ρ > ρ1.
In such a configuration, the fluid motion is assumed to be poten-
tial flow, namely in Eulerian coordinates the velocity is given by
a potential in each fluid region, u(x,y,t) = ∇ϕ(x,y,t) in S(t;η),
and u1(x,y,t) = ∇ϕ1(x,y,t) in S1(t;η,η1), where the two poten-
tial functions satisfy

Δϕ = 0 , in the domain S(t;η) (1)
Δϕ1 = 0 , in the domain S1(t;η,η1) .

The boundary conditions on the fixed bottom {y = −h} of the
lower fluid are that

∇ϕ ·N0(x,−h) = −∂yϕ(x,−h) = 0 , (2)

where N0 is the exterior unit normal, enforcing that there is no
fluid flux across the boundary.

On the interface {(x,y) : y = η(x,t)} it is natural to impose
three boundary conditions, two kinematic conditions which are
essentially geometrical, and a physical condition of force bal-
ance. The kinematical conditions assume that there is no cavita-
tion in the interface between the fluids, and therefore the function
η(x,t) whose graph defines the interface satisfies simultaneously

∂tη= ∂yϕ− ∂xη∂xϕ= ∇ϕ ·N(1+ |∂xη|2)1/2 (3)

where N is the unit exterior normal on the interface for the lower
domain, and

∂tη= ∂yϕ1− ∂xη∂xϕ1 = −∇ϕ1 · (−N)(1+ |∂xη|2)1/2 . (4)

The third boundary condition imposed on the interface is the
Bernoulli condition, which states that

ρ(∂tϕ+ 1
2 |∇ϕ|

2+gη) = ρ1(∂tϕ1+ 1
2 |∇ϕ1|

2+gη) . (5)

Finally, in assigning boundary conditions for the upper
boundary in the problem, we are interested in considering two
situations. The first is where η1 = 0 and the top surface is con-
sidered a solid boundary (a rigid lid). In this case the boundary

2 Copyright c© 2007 by ASME



condition

∇ϕ1 ·N1(x,h1) = ∂yϕ1(x,h1) = 0 (6)

is appropriate, where N1 is the unit exterior normal to the upper
fixed surface. The problem is therefore to find the evolution of
a single free interface {(x,η(x,t))}. We allow 0 < h,h1 ≤ +∞,
and either h or h1 or both are specifically allowed to be infinite.

The second situation that we consider is where the top sur-
face is itself a free surface {(x,y) : y = h1+η1(x,t)}, on which
the velocity potential ϕ1 and the function η1 satisfy a surface
kinematic condition

∂tη1 = ∂yϕ1− ∂xη1 ∂xϕ1 = ∇ϕ1 ·N1(1+ |∂xη1|2)1/2 (7)

and a Bernoulli condition

∂tϕ1+ 1
2 |∇ϕ1|

2+gη1 = 0 . (8)

The problem then is to describe the simultaneous evolution
of the free surface {(x,h1 + η1(x,t))} and the free interface
{(x,η(x,t))}.

HAMILTONIAN FORMULATION AND DIRICHLET-
NEUMANN OPERATOR
Hamiltonian for Free Interfaces

It is straightforward to derive useful expressions for the ki-
netic energy and the potential energy for the first system above,
consisting of one free interface separating two otherwise con-
fined fluid regions. From these one can pose a Lagrangian for
the system. In an analogy with classical mechanics the Hamil-
tonian for the system and the form of the canonically conjugate
variables can be derived. In this way we deduce from the ‘first
principles’ of mechanics the form of the canonical variables that
were originally given in Benjamin and Bridges [2].

The kinetic energy is given by the weighted sum of Dirichlet
integrals of the two velocity potentials,

K = 1
2

Z

R

Z η(x)

−h
ρ|∇ϕ(x,y)|2 dydx

+ 1
2

Z

R

Z h1

η(x)
ρ1|∇ϕ1(x,y)|2 dydx , (9)

and the potential energy is

V =
Z

R

Z η(x)

−h
gρydydx+

Z

R

Z h1

η(x)
gρ1ydydx

= 1
2

Z

R
gρη2(x)dx− 1

2

Z

R
gρ1η2(x)dx+C . (10)

The constant termC is superfluous to the dynamics, and it is able
to be normalized to zero. Following the analogy with mechanics,
the Lagrangian of the system is given by L= K−V .

To place the kinetic energy in a more convenient expression
for analysis, we introduce the Dirichlet-Neumann operators for
the two fluid domains. Let N be the unit exterior normal to the
lower fluid domain S(η) along the free interface. Given Φ(x) =
ϕ(x,η(x)) and Φ1(x) = ϕ1(x,η(x)) the boundary values of the
two velocity potentials on the free interface {(x,η(x,t))}, and
following Craig and Sulem [7], define the operators

G(η)Φ = ∇ϕ ·N(1+ |∂xη|2)1/2 , (11)

which is the Dirichlet-Neumann operator for the fluid domain
S(η), and

G1(η)Φ1 = −∇ϕ1 ·N(1+ |∂xη|2)1/2 , (12)

the Dirichlet-Neumann operator for the fluid domain S1(η).
These operators are linear in the quantities Φ and Φ1, however
they are nonlinear and reasonably complicated in their depen-
dence on η(x) which determines the two fluid domains. Using
Green’s identities, the kinetic energy (9) can be rewritten as

K = 1
2

Z

R
ρΦG(η)Φdx+ 1

2

Z

R
ρ1Φ1G1(η)Φ1 dx . (13)

Under the conditions of no cavitation at the interface, the kinetic
boundary conditions (3)-(4) read

∂tη= G(η)Φ= −G1(η)Φ1 . (14)

Solving (14) forΦ(x) =G−1(η)η̇(x) andΦ1(x) =−G−1
1 (η)η̇(x)

and substituting into the quantity (13) one obtains a reasonable
expression for the Lagrangian

L(η, η̇) = 1
2

Z

R
ρη̇G−1(η)η̇+ρ1η̇G−1

1 (η)η̇dx

− 1
2

Z

R
g(ρ−ρ1)η

2(x)dx .

From this Lagrangian, which depends upon (η, η̇), we are
in a position to deduce from the principles of classical mechan-
ics the Hamiltonian and the canonically conjugate variables with
respect to which the system (1)-(6) is formally a Hamiltonian
dynamical system. Namely, we define

ξ(x) = δη̇L= ρG−1(η)η̇+ρ1G−1
1 η̇

= ρΦ(x)−ρ1Φ1(x) , (15)
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which is precisely the expression of Benjamin and Bridges [2]
for the variable conjugate to η(x).

The Hamiltonian for the system is given by K+V since L
is a quadratic form in η̇. Using (14) and (15), one finds that
(ρ1G(η) + ρG1(η))Φ = G1(η)ξ and (ρG1(η) + ρ1G(η))Φ1 =
−G(η)ξ, whereupon the Hamiltonian can be written

H(η,ξ) = 1
2

Z

R
ξG1(η)(ρ1G(η)+ρG1(η))−1G(η)ξdx

+ 1
2

Z

R
g(ρ−ρ1)η2 dx . (16)

This expression for the Hamiltonian has appeared in [3]. The
system of equations of motion for the interface takes the form of
a classical Hamiltonian system, namely

∂tη= δξH , ∂tξ= −δηH , (17)

which is equivalent to (1) subject to the boundary conditions
(2), (6) and the free interface conditions (3)-(5). Expressions
for G(η) and G1(η) can be found in [3, 7].

We note that by setting ρ1 = 0 the expressions (10) and (13)
reduce to the ones for a single free surface alone, the canon-
ical conjugate variables (15) state that ξ(x) = ρΦ(x) which is
precisely the choice of Zakharov [8], and the sum K+V is the
Hamiltonian for the system.

Hamiltonian for Free Surfaces and Interfaces
In the second situation described above, the system of in-

terest involves the coupled evolution of the free interface and a
free surface lying over the upper fluid. This problem can also
be described in terms of a Lagrangian, which will depend upon
both the deformationsη1(x,t) of the free surface, as well as those
of the free interface η(x,t). Again the ‘first principles’ of me-
chanics can be cited in deriving the natural canonically conjugate
variables for a Hamiltonian description of the problem, and for a
convenient expression for the Hamiltonian function. This choice
of variables has been previously given by Ambrosi [9], however
the form of the Hamiltonian is to our knowledge new.

As in the first case, the kinetic energy is again given as a
weighted sum of the Dirichlet integrals of the two velocity po-
tentials, namely

K = 1
2

Z

R

Z η(x)

−h
ρ|∇ϕ(x,y)|2 dydx

+ 1
2

Z

R

Z h1+η1(x)

η(x)
ρ1|∇ϕ1(x,y)|2 dydx . (18)

In a manner similar to (10), the potential energy is

V = 1
2

Z

R
g(ρ−ρ1)η2(x)dx

+ 1
2

Z

R
gρ1η21(x)+2gρ1h1η1(x)dx+C . (19)

The analogy with mechanics implies that the Lagrangian of the
system is given by L= K−V .

Following (13), we express the Dirichlet integrals in terms
of the boundary values for the two velocity potentials and the
Dirichlet-Neumann operators for the two fluid domains. We de-
fine the quantities Φ(x) = ϕ(x,η(x)), Φ1(x) = ϕ1(x,η(x)) as
above, and Φ2(x) = ϕ1(x,h1 +η1(x)) on the free surface. The
Dirichlet-Neumann operator for the lower domain is the same
as in the first case, namely G(η)Φ(x) = ∇ϕ ·N(1+ (∂xη)2)1/2.
For the upper fluid domain S1(η,η1) both Φ1(x) and Φ2(x) con-
tribute to the exterior unit normal derivative of ϕ1 on each bound-
ary. That is, the Dirichlet-Neumann operator is a matrix operator
which takes the form

(

G11 G12
G21 G22

)(

Φ1(x)
Φ2(x)

)

=

(

−(∇ϕ1 ·N)(x,η(x))(1+(∂xη(x))2)1/2
(∇ϕ1 ·N1)(x,h1+η1(x))(1+(∂xη1(x))2)1/2

)

. (20)

Using Green’s identities, and expressing the normal derivatives
of the velocity potentials on the boundaries in terms of Dirichlet-
Neumann operators, the kinetic energy takes the form

K= 1
2

Z

R
ρΦG(η)Φdx+ 1

2

Z

R
ρ1

(

Φ1
Φ2

)T (

G11 G12
G21 G22

)(

Φ1
Φ2

)

dx .

(21)
In terms of the Dirichlet-Neumann operators (11)(20), the kine-
matic boundary condition (14) for Φ(x) is unchanged, while (4)
and (7) become

η̇ = −(G11Φ1+G12Φ2)
η̇1 = G21Φ1+G22Φ2 . (22)

Using (14) and (22) we rewrite the kinetic energy in terms of the
variables (η,η1, η̇, η̇1), giving the following expression for the
Lagrangian for the free surface/free interface problem;

L = 1
2

Z

R
ρη̇G−1(η)η̇dx (23)

+ 1
2

Z

R
ρ1

(

−η̇
η̇1

)T (

G11 G12
G21 G22

)−1(−η̇
η̇1

)

dx

− 1
2

Z

R
g(ρ−ρ1)η

2(x)dx− 1
2

Z

R
gρ1(h1+η1)

2(x)dx .

4 Copyright c© 2007 by ASME



In these terms we are able to deduce from ‘first principles’
the appropriate canonically conjugate variables for the problem,
namely

(

ξ
ξ1

)

=

(

δη̇L
δη̇1L

)

= ρ

(

G−1(η)η̇
0

)

+ρ1

(

G11 −G12
−G21 G22

)−1( η̇
η̇1

)

=

(

ρΦ−ρ1Φ1
ρ1Φ2

)

. (24)

The expression (24) also appears in [9]. Using (24), the kinetic
energy (21) has the form

K = 1
2

Z

R

(

ξ
ξ1

)T (

η̇
η̇1

)

dx

= 1
2

Z

R

(

ξ
ξ1

)T (

−G11 −G12
G21 G22

)(

Φ1
Φ2

)

dx . (25)

Solving (14) and (24) for (Φ,Φ1,Φ2) in terms of (ξ,ξ1), and
defining ρG11+ρ1G(η) = B, we have

Φ = B−1(G11ξ−G12ξ1)

Φ1 = B−1
(

−G(η)ξ−
ρ
ρ1
G12ξ1

)

(26)

ρ1Φ2 = ξ1 ,

and (25) can be written as

K = 1
2

Z

R

(

ξ
ξ1

)T (

G11B−1G(η) −G(η)B−1G12
−G21B−1G(η) 1

ρ1
G22− ρ

ρ1
G21B−1G12

)

×
(

ξ
ξ1

)

dx . (27)

The Hamiltonian for the free surface and free interface problem
is H = K+V where K = K(η,η1,ξ,ξ1) is given by (27) and the
potential energy V = V (η,η1) is simply (19). This expression
corrects [9] in giving the full coupling in the kinetic energy be-
tween the variables ξ and ξ1. Expressions for the Gi j can be
found in [5]. Hamilton’s equations of motion take the form

∂tη= δξH , ∂tξ= −δηH ,

∂tη1 = δξ1H , ∂tξ1 = −δη1H , (28)

for the interface and free surface respectively.

LINEARIZED EQUATIONS
Linear Free Interfaces

Restricting to the quadratic part of the Hamiltonian (16), one
obtains

H =
1
2

Z

R

[

ξ
D tanh(hD) tanh(h1D)

ρ tanh(h1D)+ρ1 tanh(hD)
ξ+g(ρ−ρ1)η2

]

dx ,

(29)
where D= −i∂x. The linearized form of (17) then reads

∂tη = δξH =
D tanh(hD) tanh(h1D)

ρ tanh(h1D)+ρ1 tanh(hD)
ξ ,

∂tξ = −δηH = −g(ρ−ρ1)η . (30)

The corresponding dispersion relation giving the wave frequency
ω(k) as a function of the wavenumber k is

ω2 =
g(ρ−ρ1)k tanh(kh) tanh(kh1)
ρ tanh(kh1)+ρ1 tanh(kh)

. (31)

Equivalently, it can be stated in terms of the phase velocity of a
single Fourier mode

c=
ω
k

=

√

g(ρ−ρ1) tanh(kh) tanh(kh1)
k(ρ tanh(kh1)+ρ1 tanh(kh))

. (32)

In the long-wave regime, we can distinguish three different
situations giving rise to characteristic asymptotics for the phase
speed (32); the first being where both kh→ 0 and kh1 → 0 (two
finite layers), with the ratio h1/h fixed,

c2 ' c20 =
g(ρ−ρ1)
ρ/h+ρ1/h1

. (33)

The second is where kh > O(1) (deep lower layer) while kh1 →
0 (finite upper layer) (or the reverse situation in which kh→ 0
while kh1 > O(1)). Then

c2 ' c20 = g
ρ−ρ1
ρ1/h1

(34)

(respectively, c20 = g(ρ−ρ1)/(ρ/h)). The third situation occurs
for two deep layers separated by the free interface. Letting k→ 0
while both kh and kh1 > O(1), one finds

ω20 =
g(ρ−ρ1)
ρ+ρ1

k . (35)
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In the opposite regime, one lets k → +∞ while fixing the fluid
domain geometry. The resulting asymptotic behavior of the dis-
persion relation is that

ω2∞ =
g(ρ−ρ1)
ρ+ρ1

k , (36)

which coincides with the scaling invariant third situation above.
These expressions are to be compared with the case of a free
surface lying over a free interface in a two fluid system.

Linear Free Surfaces and Interfaces
Using (19) and (27), the quadratic part of the Hamiltonian

for the problem of a free interface underlying a free surface is
given by

H =
1
2

Z

R

[

ξ
D tanh(hD)coth(h1D)

ρcoth(h1D)+ρ1 tanh(hD)
ξ

+2ξ
D tanh(hD)csch(h1D)

ρcoth(h1D)+ρ1 tanh(hD)
ξ1

+ξ1
D(coth(h1D) tanh(hD)+ (ρ/ρ1))

ρcoth(h1D)+ρ1 tanh(hD)
ξ1

+g(ρ−ρ1)η
2+gρ1η21

]

dx . (37)

The linearized equations of motion are

∂tη = δξH =
D tanh(hD)coth(h1D)

ρcoth(h1D)+ρ1 tanh(hD)
ξ

+
D tanh(hD)csch(h1D)

ρcoth(h1D)+ρ1 tanh(hD)
ξ1

∂tξ = −δηH = −g(ρ−ρ1)η ,

and

∂tη1 = δξ1H =
D tanh(hD)csch(h1D)

ρcoth(h1D)+ρ1 tanh(hD)
ξ

+
D(coth(h1D) tanh(hD)+ (ρ/ρ1))

ρcoth(h1D)+ρ1 tanh(hD)
ξ1

∂tξ1 = −δη1H = −gρ1η1 . (38)

The corresponding dispersion relation for ω2 is determined by
the quadratic equation

ω4 − gρk
1+ tanh(kh)coth(kh1)
ρcoth(kh1)+ρ1 tanh(kh)

ω2

+ g2(ρ−ρ1)k2
tanh(kh)

ρcoth(kh1)+ρ1 tanh(kh)
= 0 . (39)

The two solutionsω±(k) of (39) are associated with two different
modes of wave motion, namely surface and interface displace-
ments. They are given by

(ω±)2 =
1
2
gρk

1+ tanh(hk)coth(h1k)
ρcoth(h1k)+ρ1 tanh(hk)

±
1
2
gk

[

ρ2(1− tanh(hk)coth(h1k))2

+ 4ρρ1 tanh(hk)(coth(h1k)− tanh(hk))

+ 4ρ21 tanh(hk)2
]1/2

/(ρcoth(h1k)+ρ1 tanh(hk)) . (40)

The radicand is always positive, as can be assured by the fact
that for all wavenumbers k > 0, tanh(hk) < 1 < coth(h1k). The
branchω+ is associated with free surface wave motion, while the
linear behavior of the interface is governed by ω− (at least in the
limit of large k). This expression also appears in [10].

Comparison With the Rigid Lid Case
It is important to compare the dispersion relation ω− for the

interfacial mode with the dispersion relationω for the case with a
rigid lid (31). In the regime where k→ +∞, fixing other aspects
of the fluid domain, one finds that

(ω+
∞)2 = gk , (ω−

∞)2 =
g(ρ−ρ1)
ρ+ρ1

k . (41)

The latter agrees with the asymptotics as k→ +∞ of the disper-
sion relation (36) of the case with a rigid lid. The expression for
(ω+

∞)2 = gk agrees with the dynamics of the free surface with no
free interface present.

However the behavior of the dispersion relations for long
wave regimes are very different when considering the case of a
free surface lying over a free interface and the case of rigid lid
upper boundary conditions. Letting kh and kh1 → 0 while fixing
the ratio h/h1 to be finite, one finds that the two phase speeds
associated with the two branches of the dispersion curve ω± are
asymptotic to

(c±0 )2 = 1
2g

(

h+h1±
√

(h−h1)2+4(ρ1/ρ)hh1
)

. (42)

We only consider ρ1 < ρ, so the ‘faster’ free surface phase veloc-
ity c+0 is somewhat slower than if there were no interface present.
Note that the phase velocity (c−0 )2 associated with the free inter-
face (the ‘slower’ dispersion curve) is positive for ρ > ρ1 (sta-
ble stratification). Examining c−0 we conclude that it can behave
completely differently than the case of the rigid lid, given in (33).
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There is also a significant difference between the dispersive be-
havior in this long wave regime, in the case of a free surface and
a free interface, as compared to the case of a rigid lid.

In other situations, such as when kh → ∞ (infinitely deep
lower layer) and kh1 → 0 (finite upper layer),

(c+0 )2 =
g
k

and (c−0 )2 = gh1
(

1−
ρ1
ρ

)

. (43)

This differs from the regime of two finite layers where both (c±0 )2

are of the same order of magnitude, as shown in (42).
In Fig. 2, we plot the linear phase speeds for the differ-

ent configurations as functions of the wavenumber. The linear
phase speed c = ω/k for the interface in the rigid lid case is
given by (32), while those of the coupled system are given by
(40) (c± = ω±/k). We show the comparison between c and c±
for two different values of the density ratio ρ1/ρ = 0.2,0.8 and
for three different values of the depth ratio h1/h= 10,1,0.1. As
expected, c− coincides with c at large k and their graphs always
lie below that of c+. The differences between c and c− are most
significant for small values of ρ1/ρ. Also, the values of c and
c− are slightly larger for small ρ1/ρ than large ρ1/ρ. This is the
fact that interfacial waves propagate more rapidly beneath a less
dense fluid. For a given value of ρ1/ρ, the differences between
c and c− are most important when the ratio h1/h is small. When
h1/h is large, their graphs match perfectly since in this case the
effects of a rigid lid or a free surface are negligible.

LONG WAVE MODELS
Large-Amplitude Long Internal Waves

We focus on the regime in which the typical wavelength λ
of the internal waves is long compared to the depths h and h1 of
the two layers, with rigid lid boundary conditions. However the
typical wave amplitude a is not assumed to be small compared to
h or h1 unlike the classical Boussinesq regime. In the framework
of Hamiltonian perturbation theory, we take the small parame-
ter to be ε2 ' (h/λ)2 ' (h1/λ)2 ' (a/λ)2 ( 1 characterizing
steepness, and we introduce the scaling x′ = εx,η′ = η,ξ′ = εξ.
Expanding G(η) and G1(η), and grouping terms in powers of ε
in the Hamiltonian, one finds up to order O(1)

H =
1
2

Z

R

[

R0(η)u2+g(ρ−ρ1)η
2] dx+O(ε2) , (44)

where

R0(η) =
(h+η)(h1−η)

ρ1(h+η)+ρ(h1−η)
,
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Figure 2. Linear phase speed c vs. wavenumber k for (left column)
ρ1/ρ = 0.2 and (right column) ρ1/ρ = 0.8: (a) h1/h = 10, (b)
h1/h = 1, (c) h1/h = 0.1. The linear phase speed for the interface
in the rigid lid case is represented in solid line. The linear phase speeds
c− and c+ in the coupled system are represented in dashed line and
circles respectively.

and u = ∂xξ. For convenience, we have dropped the primes in
(44). The corresponding approximate equations of motion are
given by

∂tη = −∂xδuH = −∂x(R0u) ,

∂t u = −∂xδηH = −∂x
[

1
2
(∂ηR0)u2+g(ρ−ρ1)η

]

. (45)

Note that the factor R0(η) is nonsingular in the whole domain
−h < η < h1, vanishing at both endpoints η = −h and η = h1.
In the case ρ1 = 0, the canonical variables are η(x) and ξ(x) =
ρΦ(x), and the equations of motion (45) reduce to

∂tη= −
1
ρ
∂x ((h+η)u) , ∂t u= −

1
ρ
u∂xu−gρ∂xη , (46)

which are the classical shallow water equations for surface water
waves.

The next approximation can be derived in a straightforward
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manner. Retaining terms up to order O(ε2), one gets

H =
1
2

Z

R

R0(η)u2+g(ρ−ρ1)η2 (47)

+ε2
[

R1(η)(∂xu)2+(∂xR2(η))∂x(u2)

+R3(η)(∂xη)2u2
]

dx+O(ε4) .

The corresponding equations of motion read

∂tη = −∂x(R0u)− ε2∂x
[

−∂x(R1∂xu)− ∂2x(R2)u+R3(∂xη)2u
]

,

∂t u = −∂x
[

1
2
(∂ηR0)u2+g(ρ−ρ1)η

]

(48)

−ε2∂x
[

1
2
(∂ηR1)(∂xu)2−

1
2
(∂ηR2)∂2x(u

2)

+
1
2
(∂ηR3)(∂xη)2u2− ∂x

(

R3(∂xη)u2
)

]

,

where

R1(η) = −
1
3

(h+η)2(h1−η)2(ρ1(h1−η)+ρ(h+η))

(ρ1(h+η)+ρ(h1−η))2
,

∂xR2(η) = −
1
3
ρρ1(h+h1)(h+η)(h1−η)

×
(h1−η)2− (h+η)2

(ρ1(h+η)+ρ(h1−η))3
∂xη ,

R3(η) = −
1
3
ρρ1(h+h1)2

ρ1(h+η)3+ρ(h1−η)3

(ρ1(h+η)+ρ(h1−η))4
.

These are novel evolution equationswhich exhibit nonlinear vari-
ations in wave speed and in their coefficients of dispersion. Us-
ing a different formulation and a different method, Choi and Ca-
massa [1] also derived model equations with rational coefficients
which have some similarities with (48), for large amplitude long
internal waves in the configuration of two finite layers. The
three-term expansion of (48) in small amplitudes (η,u), when
additionally one specializes to the case of uni-directional wave
motions, bears some resemblance to the extended Korteweg–
de Vries equation. There is a well-known singularity of the
small amplitude/long wave limit in two-layer flows, having to
do with the vanishing of the coefficient of nonlinearity when
ρ/h2 = ρ1/h21. Our rational coefficients for the nonlinearity in-
clude this case, in which the first Taylor coefficient of the non-
linear term vanishes.

In the limit of small amplitudes, Eqs. (48) reduce to the

Kaup-Boussinesq (KB) equations

∂tη = −∂x
[

hh1
ρ1h+ρh1

u+ ε2
(

1
3

(hh1)2(ρ1h1+ρh)
(ρ1h+ρh1)2

∂2xu

+
ρh21−ρ1h2

(ρ1h+ρh1)2
(ηu)

)]

,

∂t u = −∂x
[

g(ρ−ρ1)η+
ε2

2
ρh21−ρ1h2

(ρ1h+ρh1)2
u2

]

, (49)

which admit explicit solitary wave solutions of the form

η(x,t) =
c
β
u(x,t)−

γ
2β
u(x,t)2 , (50)

u(x,t) = 2
√

αβ
γ

(

c2
αβ −1

)

cosh
(

√

α
δ

(

c2
αβ −1

)

(x− ct)
)

+ c√
αβ

,

where

α=
hh1

ρ1h+ρh1
, β= g(ρ−ρ1) ,

δ=
1
3

(hh1)2(ρ1h1+ρh)
(ρ1h+ρh1)2

, γ=
ρh21−ρ1h2

(ρ1h+ρh1)2
,

and c denotes the wave speed.

Solitary Wave Solutions
We look for solutions of (48) which are stationary in a ref-

erence frame moving at constant speed c and which decay very
fast at infinity. These correspond to fixed points of δ(H − cI),
where I =

R

R
ηudx is the momentum of the system. We thus

need to solve the following system of nonlinear, ordinary differ-
ential equations

0 = −cη+R0u− (R1u′)′ − (R2)′′u+R3(η′)2u ,

0 = −cu+
1
2
(∂ηR0)u2+g(ρ−ρ1)η+

1
2
(∂ηR1)(u′)2

−
1
2
(∂ηR2)(u2)′′ +

1
2
(∂ηR3)(η′)2u2−

(

R3η′u2
)′

, (51)

where the symbol ′ stands for differentiation with respect to x in
the moving reference frame. Note that ∂ηR2 in (51) is related to
∂xR2 through the chain rule ∂xR2 = ∂ηR2 ∂xη.

System (51) can be solved numerically using a pseudospec-
tral method and assuming periodic boundary conditions in x.
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Both η and u are expanded in truncated Fourier series with the
same number of modes N. All operations are performed using
the fast Fourier transform, which yields high accuracy at rela-
tively low cost. We solve the resulting discretized system by an
iterative procedure (Newton–Raphson’s method), and the bifur-
cation parameter in the problem is the wave speed c. Because
small-amplitude waves of the KB equations are close approxi-
mations to those of (48) in the weakly nonlinear regime, we use
the KB solutions (50) as the initial guess in the iterative proce-
dure, to find solitary wave solutions of (48). We then gradually
increase the parameter c (thus increasing the wave amplitude)
and repeat the procedure, using smaller-amplitude solutions as
an initial guess to compute higher-amplitude solutions.

Numerical Results
Computations have been performed with a discretization

N = 1024, for a domain of length L/h = 50. The domain is
specified long enough to ensure that the tails of the solitary
waves are rapidly decaying at its ends and that periodicity has
no significant effect on the solutions. As determined by the
initial guess (50), we look for solitary waves moving at speeds
c2 > c20 = αβ = ghh1(ρ−ρ1)/(ρ1h+ρh1) where c0 denotes the
linear wave speed for two-layer flows. Fig. 3 shows the com-
puted wave profiles for h1/h = 1/3 and ρ/ρ1 = 0.997; the soli-
tary waves being of depression in this case. This regime of pa-
rameters was chosen because it is representative of situations
close to oceanic conditions [11]. The linear wave speed in this
configuration is c0/

√
gh = 0.0274 (or c0/

√
gh1 = 0.0475). For

comparison, solitary wave solutions of the Korteweg–de Vries
(KdV) and Gardner equations [12,13] as well as those computed
by the fully nonlinear model of Grue et al. [14], with matching
amplitudes, are also shown in the figure. The model of Grue
et al. [14] solves the full equations for two-layer flows using
a boundary integral method. The KdV equation has a family
of well-known ‘sech2’ solitary wave solutions. For the Gardner
equation (also known as the extended KdV equation), the solitary
waves (also called kink-antikink solutions) are of the form

η(x,t) = −
α
α1

ν
2

[

tanh
(

x− ct
Δ

+ δ

)

− tanh
(

x− ct
Δ

− δ

)]

,

(52)
where

α=
3c1(h1−h)
2hh1

, c21 =
ghh1(ρ−ρ1)
ρ(h+h1)

,

α1 =
3c1
h2h21

[

7
8
(h−h1)2−

h3+h31
h+h1

]

,

Δ2 = −
24α1β
α2ν2

, β=
c1hh1
6

,

c= c1−
α2ν2

6α1
, δ=

1
4
ln

(

1+ν
1−ν

)

,

and ν is a nonlinearity parameter with values 0 < ν < 1. Soli-
tary waves of the Gardner equation are broader than their KdV
analogues, and they become more box shaped with flat crests
(table-top solutions) as the amplitude increases toward the limit
α/α1 = 0.857h1 (hereafter we define the wave amplitude as
a= |η|max).

As expected, for small amplitudes, the KdV wave profiles
are close to those of (48) but the latter become significantly
broader as the amplitude increases. Broad internal solitary waves
have also been observed by other authors, e.g. [15, 16]. We see
in Fig. 3 that the ‘computed’ profiles (i.e. of model (48)) are
also broader than the Gardner and fully nonlinear profiles for
amplitudes up to a/h1 ' 0.795; the fully nonlinear solutions ly-
ing between the Gardner and computed ones. For a/h1 ' 0.795,
the computed, Gardner and fully nonlinear wave shapes almost
coincide, especially in the lower part around the wave crest. For
higher amplitudes, as ν→ 1, the picture is reversed; the Gardner
solitary waves flatten and become broader than the computed and
fully nonlinear waves.

Similar features are observed for h1/h = 0.24 and ρ/ρ1 =
0.977, which was the configuration considered by Camassa et
al. [17] (Fig. 4).

CONCLUSIONS
In this paper, we have derived a Hamiltonian formulation

for the problem of coupled free interface and free surface wave
motion, in the spirit of the Hamiltonian given by Benjamin and
Bridges [2] and Craig and Groves [3] for the case of one free
interface with an upper rigid lid.

We have found a number of significant differences between
the two cases. Even at the level of the linear dispersion relation,
the linear phase and group velocities can differ. We show that for
small values of the density difference ρ−ρ1, the differences are
small between the rigid lid and the free surface cases. However
there can be significant deviations when the difference in densi-
ties is large. The deviations are most important when the ratio
h1/h is small, as one would expect.

Using the framework of Hamiltonian perturbation theory,
in the setting of a free interface between two finite layers, we
have derived Hamiltonian models involving coefficients of dis-
persion and nonlinearity which are rational functions of the in-
terface displacement. Solitary wave solutions of these models
have been computed numerically in parameter regimes close to
oceanic conditions. They are found to compare reasonably well
with solutions of other existing models.
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Figure 3. Comparison of wave profiles η for the KdV equation (dots),
Gardner equation (triangles), fully nonlinear model of Grue et al. [14]
(dashed line) and present model (solid line). The parameters are h1/h=
1/3 and ρ1/ρ = 0.997. The different plots correspond to amplitudes
(a) a/h1 = 0.064, (b) a/h1 = 0.353, (c) a/h1 = 0.582, (d) a/h1 =
0.795, (e) a/h1 = 0.833, (f) a/h1 = 0.929.
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