Dissertation Defense Schedule

Academic Excellence

Sharing original dissertation research is a principle to which the University of Delaware is deeply committed. It is the single most important assignment our graduate students undertake and upon completion is met with great pride.

We invite you to celebrate this milestone by attending their dissertation defense. Please review the upcoming dissertation defense schedule below and join us!

Dissertation Defense Form

Must be received two weeks prior to your defense.

Join Us

Celebrate your colleague’s academic success!

It's official

Download the official UD thesis/dissertation manual.

Dissertation Discourse

Need a creative jumpstart?

PROGRAM | Electrical & Computer Engineering

Technology Trend-driven Reliable Embedded System Design

By: Fateme Sadat Hosseini Chair: Chengmo Yang

ABSTRACT

Embedded systems are widely adopted in modern human society to perform a broad range of tasks including many safety-critical, medical, and banking applications. Their reliability therefore has become a major design concern. However, developing an efficient and cost-effective reliable design for embedded systems is a challenging multi-dimensional optimization task due to their intrinsic resource limitations and energy-constraints. What make this task even more complicated are the constant challenges raised by new technology trends. In particular, modern embedded systems are facing three prominent technology trends: dramatic technology scaling, emerging non-volatile memory technologies, and emerging complex applications.

This dissertation proposes a number of cost-effective and software-based techniques to address major reliability challenges raised by these technology trends. First, dramatic technology scaling will end up elevating the probability of hardware faults, making fault recovery overhead critical. The first technique aims to reduce such overhead by selectively executing only the instructions that are necessary to recover from a detected fault. The second work presents a tool, designed to provide comprehensive fault assessment of embedded systems and applications in the face of elevated fault rates. Meanwhile, this dissertation also examines new fault types brought by emerging technology. Specifically, the third work aims to tolerate disturbance errors caused by read operations in Spin-transfer torque magnetic random-access memory (STT-RAM), the most promising emerging on-chip memory technology. Last but not the least, this dissertation also considers the challenges brought by emerging complex applications, specifically, embedded machine learning. The last two techniques address the adverse impact of memory faults that may occur in either traditional Dynamic Random Access Memory (DRAM) or emerging Non-Volatile Memory (NVM), aiming to mitigate the potential accuracy drop caused by these faults.

The reliability enhancement techniques introduced in this dissertation all follow a static-dynamic collaborative design philosophy, where a series of static, compile-time optimizations are applied to the target embedded applications before its deployment on the device, so that the desired reliability requirements can be met at run-time within negligible overhead in power, performance, and hardware. Compared to traditional fault-tolerance solutions that require non-trivial level of redundancy, this cost-effective design philosophy is a much better solution for critical embedded applications such as automotive driving, medical, and banking, which are confined to a strict real-time performance constraint and a tight budget of battery lifetime and hardware cost.

 

Back >

The Process

Step-by-Step

Visit our “Step-by-Step Graduation Guide” to take you through the graduation process.From formatting your Dissertation to Doctoral Hooding procedures.

Your First Step >

Dissertation Manual

Wondering how to set up the format for your paper. Refer to the “UD Thesis/Dissertation Manual” for formatting requirements and more.

Download Your Manual >

Defense Submission Form

This form must be completed two weeks in advance of a dissertation defense to meet the University of Delaware Graduate and Professional Education’s requirements.

Submission Form >