Dissertation Defense Schedule

Academic Excellence

Sharing original dissertation research is a principle to which the University of Delaware is deeply committed. It is the single most important assignment our graduate students undertake and upon completion is met with great pride.

We invite you to celebrate this milestone by attending their dissertation defense. Please review the upcoming dissertation defense schedule below and join us!

Dissertation Defense Form

Must be received two weeks prior to your defense.

Join Us

Celebrate your colleague’s academic success!

It's official

Download the official UD thesis/dissertation manual.

Dissertation Discourse

Need a creative jumpstart?

PROGRAM | Electrical & Computer Engineering

I. Solar Electrolyzer Coupling via Load-Matching;  II. Sb-Doping in Cadmium Telluride Solar Cells to Overcome Voltage Limitations

By: Gowri Sriramagiri Chair: Steven Hegedus

ABSTRACT

This dissertation comprises two distinct topics concerning photovoltaics: studying solar electrolyzer performance with a practical consideration of their design and operation, and extrinsic p-type doping in thin-film CdTe solar cells using Sb for improved voltage output.

Solar fuel generation via water and CO₂ reduction using photovoltaics has witnessed considerable growth since the identification of photocatalysis four decades ago. Numerous photovoltaic-driven electrochemical cells (PV-ECs) and photoelectrochemical cells (PECs) with efficiencies reaching 30% for H₂O reduction and 10% for CO₂ reduction have been reported. We will discuss the many benefits of a PV-EC system over the PEC approach. This dissertation discusses the implementation of a high-efficiency PV-EC using silicon solar cells and a flow-cell CO₂ electrolyzer (in collaboration with Prof. Feng Jiao group from UDel’s Center for Catalytic Science and Technology). With 25 cm² electrode area, this is the largest CO₂ electrolysis device yet reported that exhibited >6.5% efficiency at operating currents in excess of 1A. The development of a model to optimize the coupling of such devices and to simulate annual field performance will be presented. Improvement in fuel generation by >20% is demonstrated by employing power electronic devices to continuously optimize the PV-EC operating point for maximum power coupling despite variable sunlight and temperature.

Polycrystalline thin-film CdTe/CdS heterojunction solar cells are the leading commercial competitor to c-Si solar modules. While having demonstrated good performance at low cost and large scale, the potential to exceed 25% efficiency by enhancing open circuit voltage (Voc), from present ~0.9V to the near-ideal 1.1 V, is possible with carrier concentrations exceeding 5×10¹⁶ cm⁻³ while retaining bulk minority carrier lifetime >10 ns. State-of-the-art intrinsic CdTe solar cells, wherein n- or p-type doping is achieved through native point defect (VCd) control during film growth, are limited to acceptor concentration levels of <10¹⁵ cm⁻³. Bridging the Voc gap through extrinsic doping of polycrystalline CdTe films with Sb during film growth using vapor transport deposition technique is examined. Applying device characterization and analysis techniques to cells processed with different post-growth device treatments for dopant activation shows where optimization effort is needed. Admittance and current-voltage measurements indicate that despite significant improvement in acceptor density (up to 3×10¹⁵ cm⁻³), Voc is limited to < 600 mV due to increased defect density and thus reduced minority carrier lifetime.

 

Back >

The Process

Step-by-Step

Visit our “Step-by-Step Graduation Guide” to take you through the graduation process.From formatting your Dissertation to Doctoral Hooding procedures.

Your First Step >

Dissertation Manual

Wondering how to set up the format for your paper. Refer to the “UD Thesis/Dissertation Manual” for formatting requirements and more.

Download Your Manual >

Defense Submission Form

This form must be completed two weeks in advance of a dissertation defense to meet the University of Delaware Graduate and Professional Education’s requirements.

Submission Form >