Dissertation Defense Schedule
Academic Excellence
Sharing original dissertation research is a principle to which the University of Delaware is deeply committed. It is the single most important assignment our graduate students undertake and upon completion is met with great pride.
We invite you to celebrate this milestone by attending their dissertation defense. Please review the upcoming dissertation defense schedule below and join us!
PROGRAM | Electrical and Computer Engineering
Optically Addressed Ultra-Wideband Phased Antenna Array
By: Jian Bai Chair: Dennis Prather
ABSTRACT
Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave.
However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz.
A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization techniques for both single and array antennas.
In addition, a prototype transmitting phased array system is developed and shown to demonstrate large bandwidth as well as a beam steering capability. The architecture of this system can be further developed to a large-scale array at higher frequencies such as mm-wave. This solution serves as a candidate for UWB multifunctional frontends.
The Process
Step-by-Step
Visit our “Step-by-Step Graduation Guide” to take you through the graduation process.From formatting your Dissertation to Doctoral Hooding procedures.
Dissertation Manual
Wondering how to set up the format for your paper. Refer to the “UD Thesis/Dissertation Manual” for formatting requirements and more.
Defense Submission Form
This form must be completed two weeks in advance of a dissertation defense to meet the University of Delaware Graduate and Professional Education’s requirements.