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Abstract
In this paper, a variational formulation for the transmission prob-

lem of the fluid-bone interaction is formulated. The formulation is
based on a modified Biot system of equations for the cancellous bone
together with a boundary integral equation formulation of the pres-
sure in the water. Existence and uniqueness for the weak solution of
the interaction problem are established in appropriate Sobolev spaces.
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1 Introduction

This paper is concerned with a fluid-bone interaction problem. The physical
situation can be simply described as follows: A cancellous bone specimen is
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placed in a water tank occupied a region extended to the infinity. We are
interested in the harmonic motion of the frame and fluid within the bone
and the scattered pressure in the water due to a point source (or many point
sources) located ate point (or points) in the water. Mathematically, we can
formulated the problem as a transmission problem for the Biot equations
and the Helmoholz equation in the bone and water, respectively. As well
known, the Biot-Stoll [?, ?, ?] model treats a poroplastic medium as an elastic
frame with interspinal pore fluid. Cancellous bone is anisotropic, however, as
pointed out by Williams [?], if the acoustic waves passing through it travel in
the trabecular direction an isotropic model may be acceptable. For simplicity,
we will simulate a two dimensional version of the experiments described in
McKelvie and Palmer [?] and Hosokawa and Otani[?].

Because of not enough physical interface conditions, in order to formulate
a well posed problem, one must modify the standard Biot equations (see (??)
and (??) below) for the displacements fields for the frame and fluid within
the bone. For the computational purpose, we will then reduce the Helmholtz
equation to a boundary integral equation on the interface face of bone and
water. This leads a nonlocal boundary value problem of which the variational
formulation is formulated. Our main results concerning the existence and
uniqueness results of the variational solution are given in Section 5.

The rest of paper is organized as follows. In the next section, we begin
with the basic equations of the standard Biot model for a poroelastic material
such as cancellous bones. Section 3 contain the modified Biot equations and
the formulation of the nonlocal boundary value problem of the bone–fluid
interaction problem. The variational formulation of the problem is given in
Section 4. For interested readers, we include an appendix containing the
relevant Biot-Stoll parameters appeared in the Biot model equations.

2 The Biot model for a poroelastic material

The motion of the frame and fluid within the bone are tracked by position
vectors u = (u1, u2) and U = (U1, U2). The constitutive equations used by
Biot are those of a linear elastic material with terms added to account for
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the interaction of the frame and interstitial fluid

σx1x1 = 2µex1x1 + λe+Qε,

σx2x2 = 2µex2x2 + λe+Qε, (2.1)

σx1x2 = µex1x2 , σx2x1 = µex2x1 ,

s = Qe+Rε,

where the solid and fluid dilatations are given by

e = ∇ · u =
∂u1

∂x1

+
∂u2

∂x2

, ε = ∇ ·U =
∂U1

∂x1

+
∂U2

∂x2

. (2.2)

Here the parameter µ is the measured complex frame shear modulus, and
λ, Q and R are calculated from measured or estimated parameters given in
Table 1 in Appendix. The strains are defined by

ex1x1 =
∂u1

∂x1

, ex1x2 = ex2x1 =
∂u1

∂x2

+
∂u2

∂x1

, ex2x2 =
∂u2

∂x2

. (2.3)

Equations (??), (??) and (??) and an argument based upon Lagrangian
dynamics are shown in [?, ?] to lead to the following equations of motion for
the displacements u,U and dilatations e, ε

µ∇2u +∇
(
(λ+ µ)e+Qε

)
=

∂2

∂t2
(ρ11u + ρ12U) + b

∂

∂t
(u−U), (2.4)

∇
(
Qe+Rε

)
=

∂2

∂t2
(ρ12u + ρ22U)− b

∂

∂t
(u−U).

Here ρ11 and ρ22 are density parameters for the solid and fluid, ρ12 is a den-
sity coupling parameter, and b is a dissipation parameter (see Appendix).
If the poroelastic material is assumed to oscillate harmonically in time:
u(x, y, t) = u(x, y)eiωt, U(x, y, t) = U(x, y)eiωt, then by substituting these
representations into (??) gives

µ∇2u +∇[(λ+ µ)e+Qε] + p11u + p12U = 0,

∇[Qe+Rε] + p12u + p22U = 0,
(2.5)

where

p11 := ω2ρ11 − iωb, p12 := ω2ρ12 + iωb, p22 := ω2ρ22 − iωb. (2.6)

In the sequel, we refer equation (??) as the standard Biot equations.
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3 The transmission problem

To formulate the transmission problem, let bone specimen be occupied the re-
gion denoted by Ωb and the exterior water region by Ωw. In Ωw the governing
equation can be reduced to the two-dimensional non-homogeneous Helmo-
holz equation for fluid pressure p subject to the linearized Navier -Stokes
equation for compressible fluid flow for the pressure p and fluid displacement
Uw := (Uw

1 , U
w
2 ). That is, we require that p and Uw satisfying the equations

−(∇2p+ k2
0p) = f in Ωw, (3.1)

∇p − ρwω2Uw = f in Ωw, (3.2)

where f is a given function with compact support, and f = −div f ; see the
Appendix of [?].

In the bone specimen Ωb, however, in order to formulate a well-posed
boundary value problem, one must modify the standard form of the Biot
equation (??), since there are not enough transmission conditions for the
components of displacements fields u and U for the frame and fluid within
the bone. The main idea here is to replace the unknowns U form the fluid
displacement fields of the fluid within the bone specimen Ωb by a single known
stress s in (??) in the equations (??). To see this, we first express ε and U
in terms of s from (??) and (??),

ε =
1

R
(s−Qe), U = − 1

p22

(∇s+ p12u). (3.3)

By taking the divergence of the second equation of (??), we obtain

∇2s+ p12 e+ p22 ε = 0,

which reduces to

∇2 s+
p22

R
s+ (p12 −

p22Q

R
) e = 0, (3.4)

by making use of (??). Similarly, the first equation of (?? )can be written in
the form:

µ∇2u +∇
[
(λ+ µ− Q2

R
) e+ (

Q

R
− p12

p22

) s
]

+ (p11 −
p2

12

p22

)u = 0. (3.5)

Equations (??) and (??) then form the modified Biot equations for u
and s in the bone specimen Ωb. We are now in a position to formulate the
transmission problem for the bone-fluid interaction:
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Definition 1 (The non-homogeneous transition problem (TPf)) The
problem consists of finding the triplet (u, s, p) such that

(Eb) µ∇2u+∇
(
(λ+µ−Q2

R
) e+(

Q

R
− p12

p22

) s
)

+(p11−
p2

12

p22

)u = 0 in Ωb,

(Es) ∇2 s+
p22

R
s+ (p12 −

p22Q

R
) e = 0 in Ωb

(Ep), −
(
4p+ k2

0p
)

= f in Ωw, f := −div f

having compact support in Ωw, together with the transmission conditions

(B1)
(
σ(u) +Q div U + s

)
n = −p n on Γ = ∂Ωb

with vanishing of the tangent frame stress σ12 = σ21 = 0, where σ(u) and
ε(u) denote the stress and strain tensors, and div U the fluid dilatation

σ(u) = λdivu + 2µε(u), ε(u) =
1

2

(
∇u +∇uT

)
div U =

1

R
(s−Q e) ,

(B2) ρwω2

[
1− β

(
1 +

p12

p22

)]
u · n − βρwω2

p22

∂s

∂n
=

(
∂p

∂n
− n · f

)
on Γ

(B3). s = − βp on Γ.

In addition we assume that the Sommerfeld radiation condition holds for p.

In the formulation, transmission condition (B1) and (B2) represents respec-
tively, the continuity of the flux and continuity of the aggregate pressure ,
while condition (B3) expresses the continuity of pore pressure.

For the uniqueness proof, we now introduce the traction-free solution of
the bone as in fluid-structure interaction problem [?].
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Definition 2 (Traction free problem) The problem for (u, s) in Ωb con-
sists of the partial differential equations (Eb) and (Es) together with the ho-
mogeneous boundary conditions

(B1)0

(
σ(u) +Q div U + s

)
n = 0 on Γ,

(B2)0 ρwω2

[
1− β

(
1 +

p12

p22

)]
u · n − βρwω2

p22

∂s

∂n
=

∂p

∂n
on Γ,

(B3)0 s = 0 on Γ.

are called traction free problem for (u, s), and the corresponding non-trivial
solutions are referred to as the traction free solutions.

For the variational formulation, we now reduce the partial differential
equation (Ep) for p, namely

−
(
4p+ k2

0p
)

= f in Ωw, (3.6)

to a boundary integral equation for p on Γ. We use the indirect approach for
the reduction of partial differential equation by seeking a solution p in the
form of a simple-layer potential

p = −Sφ + pf in Ωw, (3.7)

where φ is an unknown density function and Sφ is the simple layer potential

Sφ(x) :=

∫
Γ

i

4
H

(1)
0 (k0|x− y|)φ(y)dsy, x ∈ Ωw, (3.8)

where − i
4
H

(1)
0 (k0|x− y|) denotes the fundamental solution of the Helmholtz

operator ∆ + k0, and pf ,

pf (x) :=
i

4

∫
suppf

H
(1)
0 (k0|x− y|) f(y) dy, x ∈ Ωw,

is a particular solution of (??), which is known. Hence, if p|Γ is known ,
applying the trace operator γ0 to (??), we then obtain a boundary integral
equation for the known density φ

p(x)|Γ = −Vφ+ γ0pp, (3.9)
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where V = γ0S is the simple layer boundary integral operator. Then from
the transmission condition (B3), we obtain the boundary integral equation

(Epb) Vφ− 1

β
s = γ0pf .

Definition 3 (Nonlocal boundary value problem) The transmission prob-
lem TPf is termed a nonlocal boundary value problem for the triple (u, s, φ)
if the triple (u, s, φ) satisfies equations (Eb), (Es), and the boundary integral
equation (E3p) together with the transmission conditions

(B1b),
(
σ(u) +Q div U + s

)
n = −p n on Γ = ∂Ωb

with
p = −Vφ+ γ0pf .

(Here again σ12 = σ21 = 0, where σ(u) denotes the stress tensor, and div U
the fluid dilatation)

(B2b) ρwω2

[
1− β

(
1 +

p12

p22

)]
u ·n − βρwω2

p22

∂s

∂n
=

(
∂p

∂n
− n · f

)
on Γ

with
∂p

∂n
=

1

2

(
φ−K

′
φ
)

+
∂pf

∂n
.

The boundary integral operator K′ in (B2b) is defined by

K′φ(x) :=
i

4

∫
Γ

∂

∂nx

H
(1)
0 (k0|x− y|)φ(y)dsy, x ∈ Γ.

We note that condition (B2b) can be explicitly written in terms of φ

∂s

∂n
=
p22

β

{[
1− β

(
1 +

p12

p22

)]
u ·n− 1

ρwω2

(1

2
φ−K

′
φ
)}

+
p22

βρwω2
(n · f− ∂

∂n
pf ),

which will be needed for the variational formulation in the next section.
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4 The Variational formulation

In this section, we will consider the variational formulation of the nonlocal
boundary value problem. As usual, multiplying (Eb) by the conjugate of the
test function v and integrating by parts, we obtain∫

Ωb

{[(
λ− Q2

R

)
(div u) (div v) + 2µ ε(u) : ε(v)

]
+

(
Q

R
− p12

p22

)
s(div v)

−
(
p11 −

p2
12

p22

)
u · v

}
dx

−
∫
Γ

[(
λ− Q2

R

)
div u + 2µ ε(u) +

(
Q

R
− p12

p22

)
s

]
n · v ds = 0. (4.1)

We define the sesquilinear bilinear form

a(u,v) :=

∫
Ωb

[(
λ− Q2

R

)
(div u) (div v) + 2µ ε(u) : ε(v)

]
dx, (4.2)

and by rewriting the boundary term in (??), we see that

a(u,v) +

∫
Ωb

(
Q

R
− p12

p22

)
s( div v)dx −

∫
Ωb

(
p11 −

p2
12

p22

)
u · v dx

+

∫
Γ

(
1 +

p12

p22

)
s n · v dsΓ

−
∫
Γ

(
λdivu + 2µ ε(u) +Q

[ 1

R
(s−Qdiv u)

]
+ s

)
n · v dsΓ = 0

Hence, the above equation with the transmission condition (E1b) leads to the
variational equation of equation (Eb):

a(u,v) +

∫
Ωb

(
Q

R
− p12

p22

)
s( div v)dx −

∫
Ωb

(
p11 −

p2
12

p22

)
u · v dx

−
[
1− β(1 +

p12

p22

)
]
< Vφn,v >Γ (4.3)

= −
[
1− β(1 +

p12

p22

)
]
< γ0pf ,v >Γ, ∀v ∈

(
H1(Ωb)

)2
.
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We repeat this process for the s equation by multiplying equation (Es)
by the test function τ and integrating by parts yields∫
Ωb

∇ s·∇τ dx−
∫
Ωb

p22

R
s τ dx−

∫
Ωb

(
p12 −

p22Q

R

)
(div u) τ dx−

∫
Γ

∂ s

∂ n
τ ds = 0.

By introducing the sesquilinear form

b(s, τ) =

∫
Ωb

∇ s · ∇τ dx (4.4)

and using the condition (B2b), the variational form of the s equation now
may be written as

b(s, τ) + p22

∫
Ωb

(
Q

R
− p12

p22

−
)
div (u) τ dx−

∫
Ωb

p22

R
s τ dx

−p22

β

[
1− β

(
1 +

p12

p22

)]
< u · n, τ >Γ +

p22

βρwω2
<
(1

2
φ−K

′
φ
)
, τ >Γ

(4.5)

=
p22

βρwω2
< (n · f − ∂

∂n
pf ), τ >Γ, ∀ τ ∈ H1(Ωb).

Finally, we multiply the boundary integral equation (Epb) by the test
function ψ, and integrate it. This yields the variational equation for (Epb)

p22

2ρwω2

〈
Vφ, ψ

〉
− p22

2ρwω2β

〈
s, ψ
〉

=
p22

2ρwω2

〈
γ0pp, ψ

〉
, ∀ψ ∈ H−1/2(Γ).

(4.6)
Collecting (??), (??), and (??), we have the variational formulation for

the nonlocal boundary value problem:

Definition 4 (Variational formulation) Given f, find the triple (u, s, φ) ∈(
H1(Ωb)

)2 ×H1(Ωb)×H−1/2(Γ) such that

A
(
u, s, φ), (v, τ, ψ)

)
= `f (v, τ, φ) (4.7)
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for all (v, τ, ψ) ∈
(
H1(Ωb)

)2 × H1(Ωb) × H−1/2(Γ), where A and `f are
respectively the sesqulinear form and linear functional defined by

A
(
u, s, φ), (v, τ, ψ)

)
:= a(u,v) + b(s, τ) +

p22

2ρwω2

〈
Vφ, ψ

〉
Γ

+

(
Q

R
− p12

p22

)[∫
Ωb

s( div v)dx + p22

∫
Ωb

div (u) τ dx
]

−
(
p11 −

p2
12

p22

) ∫
Ωb

u · v dx− p22

R

∫
Ωb

s τ dx (4.8)

−
[
1− β(1 +

p12

p22

)
]{

< Vφn,v >Γ +
p22

β
< u · n, τ >Γ

}
+

p22

βρwω2

[
<
(1

2
φ−K

′
φ
)
, τ >Γ −

1

2

〈
s, ψ
〉

Γ

]

`f (v, τ, φ) := −
[
1− β(1 +

p12

p22

)
]
< γ0pf ,v >Γ +

p22

βρwω2
< (n · f − ∂

∂n
pf )τ >Γ

+
p22

2ρwω2

〈
γ0pp, ψ

〉
(4.9)

5 Existence and uniqueness

From the definition of the sesqulinear form A(·, ·) in (??), it is not difficult to
see that A(·, ·) satisfies a G̊arding’s inequality. Setting (v, τ, ψ) = (u, s, φ),
we see that

A
(
u, s, φ), (u, s, φ)

)
:= a(u,u) + b(s, s) +

p22

2ρwω2

〈
Vφ, φ

〉
Γ

+

(
Q

R
− p12

p22

)[∫
Ωb

s( div u)dx + p22

∫
Ωb

div (u) s dx
]

−
(
p11 −

p2
12

p22

) ∫
Ωb

|u|2 dx− p22

R

∫
Ωb

|s|2 dx

−
[
1− β(1 +

p12

p22

)
]{

< Vφn,u >Γ +
p22

β
< u · n,u >Γ

}
+

p22

βρwω2

[
<
(1

2
φ−K

′
φ
)
, s >Γ −

1

2

〈
s, φ
〉

Γ

]
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We can show that

ReA
(
u, s, φ), (u, s, φ)

)
= a(u,u) + b(s, s) +

p22

2ρwω2

〈
Vφ, φ

〉
Γ

+C
(
u, s, φ), (u, s, φ)

)
,

where C is compact on
(
H1(Ωb)

)2 ×H1(Ωb)×H−1/2(Γ). In fact we have

Theorem 5 The sesqulinear form in (??) satisfies the G̊arding’s inequality
in the form

ReA (u, s, ϕ,u, s, φ) ≥ α

{
‖u‖2

(H1(Ωb))
2 + ‖s‖2

H1(Ωb) + ‖s‖2

H− 1
2 (Γ)

}
− δ

{
‖u‖2

(H1−ε(Ωb))
2 + ‖s‖2

H1−ε(Ωb) + ‖s‖2

H− 1
2−ε(Γ)

}
,

where α > 0 and δ ≥ 0 are constant and ε > 0 is a small parameter.

As is well known, G̊arding’s inequality implies the validity of the Fredholm
alternative. Hence uniqueness implies the existence. For this purpose, we
now consider the the homogeneous transmission problem TPf with f = 0,
since the uniqueness of the solution of the variational equation (??) will be
depending upon that of TPf .

Theorem 6 If the triplet (u, s, p) is a classical solution of homogeneous
transmission problem TP0 with Imk0 = 0, then p = 0.

Proof. The proof follows the standard uniqueness proof used for the scat-
tering transition problem. A simple application of the divergence theorem
together with the radiation condition leads to∫
SR

∣∣∣∣∂p∂r − ik0p

∣∣∣∣2 ds =

∫
SR

(∣∣∣∣∂p∂r
∣∣∣∣2 + |k0 p|2

)
ds + 2k0Im

∫
∂Ωb

p
∂p̄

∂n
ds = o(1)

as R→∞, where SR is the surface of a ball of radius R, enclosing the body
Ωb. The main idea here is to show that

∫
∂Ωb

p ∂p̄
∂n
ds is real. Then

∫
SR

(∣∣∣∣∂p∂r
∣∣∣∣2 + |k0 p|2

)
ds = o(1)
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and from the Rellich-Vekua lemma, p = 0. To show this, we now compute∫
∂Ωb

p ∂p̄
∂n
ds by using the variational forms for (Eb) and (Es) in Section 4. A

simple computation shows that by eliminating the common term∫
Γ

[
1− β

(
1 +

p12

p22

)]
pn · u dsΓ,

we obtain

1

ρwω2

∫
Γ

p
∂p

∂n
dsΓ =

1

p22

b(s, s)− 1

R

∫
Ωb

|s|2 dx +

(
Q

R
− p12

p22

)∫
Ωb

(
div u

)
s dx−

a(, u, u) +

(
Q

R
− p12

p22

)∫
Ωb

(
div u

)
s dx −

(
p11 −

p2
12

p22

)∫
Ωb

|u|2 dx

 , (5.1)

which implies immediately that the term is real and hence

Im

∫
Γ

p
∂p̄

∂n
dsΓ = 0,

as was desired.
We remark that Theorem ?? does not imply that the components (u, s) of

the triple (u, s, p) considered in TP 0 are trivial solutions, since they may be
solutions of the traction free problem defined in Section 3. Hence in order to
ensure the existence of a solution of the variational equation (??), we make
the following assumptions.

Assumptions:

(I) There is no traction free solution.

(II) The square of the wave number, k2
0, is not an eigenvalue of the Dirichlet

problem for the negative Laplacian in Ωb.

We remark that Assumption (II) is a guarantee for the invertbility of the
simple-layer operator V (see [?, p. 30]). We now summarize our results in
the following theorem.

Theorem 7 Under Assumptions (I) and (II) , there exists an unique solution

of the problem TPf in
(
H1(Ωb)

)2 ×H1(Ωb)×H− 1
2 (Γ) .
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6 Appendix

6.1 The Biot-Stoll parameters

The Biot-Stoll parameters are calculated from the inputs of Table ?? using
the formulas

ρ11 = (1− β)ρr − β(ρf −mβ)

ρ12 = β(ρf −mβ)

ρ22 = mβ2

b =
F
(
a
√
ωρf/η

)
β2η

k

where
m =

αρf

β

and the multiplicative factor F (ζ), which was introduced in [?] to correct
for the invalidity of the assumption of Poiseuille flow at high frequencies, is
given by

F (ζ) =
1

4

ζT (ζ)

1− 2T (ζ)/iζ
(6.2)

where T is defined in terms of Kelvin functions

T (ζ) =
ber′(ζ) + ibei′(ζ)

ber(ζ) + ibei(ζ)
.

The parameter µ, the complex frame shear modulus is measured. The
other parameters λ,R and Q occurring in the constitutive equations are
calculated from the measured or estimated values of the parameters given in
Table ?? using the formulas

λ = Kb −
2

3
µ+

(Kr −Kb)
2 − 2βKr(Kr −Kb) + β2K2

r

D −Kb

(6.3)

R =
β2K2

r

D −Kb

Q =
βKr ((1− β)Kr −Kb)

D −Kb

.
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Symbol Parameter

ρf Density of the pore fluid
ρr Density of frame material
Kb Complex frame bulk modulus
µ Complex frame shear modulus
Kf Fluid bulk modulus
Kr Frame material bulk modulus
β Porosity
η Viscosity of pore fluid
k Permeability
α Structure constant
a Pore size parameter

Table 1: Parameters in the Biot model

where
D = Kr(1 + β(Kr/Kf − 1)). (6.4)

The bulk and shear moduli Kb and µ are often given imaginary parts to
account for frame inelasticity.
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