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1 Introduction

Cancellous bone is a two component material consisting of a calcified bone ma-
trix with interspinal fatty marrow. Hence mathematical models of poroplastic
media are applicable. McKelvie and Palmer [16], Williams [18], and Hosokawa
and Otani [11] discuss the application of Biot’s model for a poroplastic medium
to cancellous bone. Use of this model requires determination of the parameters
upon which it depends. This can be an expensive process. In this article we
investigate whether these parameters can be ascertained by acoustic interroga-
tion.

2 The Biot model applied to cancellous bone

The Biot-Stoll [1, 2, 17] model treats a poroplastic medium as an elastic frame
with interspinal pore fluid. Cancellous bone is anisotropic, however, as pointed
out by Williams, if the acoustic waves passing through it travel in the tra-
becular direction an isotropic model may be acceptable. We will simulate a
two dimensional version of the experiments described in McKelvie and Palmer
and Hosokawa and Otani. See also in this regard [3, 4]. The motion of the
frame and fluid within the bone are tracked by position vectors u = [u1, u2]
and U = [U1, U2]. The constitutive equations used by Biot are those of a linear
elastic material with terms added to account for the interaction of the frame
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and interstial fluid

σx1x1
= 2µex1x1

+ λe + Qǫ, (1)

σx2x2
= 2µex2x2

+ λe + Qǫ,

σx1x2
= µex1x2

, σx2x1
= µex2x1

,

s = Qe + Rǫ,

where the solid and fluid dilatations are given by

e = ∇ · u =
∂u1

∂x1
+

∂u2

∂x2
, ǫ = ∇ · U =

∂U1

∂x1
+

∂U2

∂x2
. (2)

The strains are defined by

ex1x1
=

∂u1

∂x1
, ex1x2

= ex2x1
=

∂u1

∂x2
+

∂u2

∂x1
, ex2x2

=
∂u2

∂x2
. (3)

The parameter µ, the complex frame shear modulus is measured. The other
parameters λ,R and Q occurring in the constitutive equations are calculated
from the measured or estimated values of the parameters given in Table 1 using
the formulas

λ = Kb −
2

3
µ +

(Kr − Kb)
2
− 2βKr(Kr − Kb) + β2K2

r

D − Kb
, (4)

R =
β2K2

r

D − Kb
,

Q =
βKr ((1 − β) Kr − Kb)

D − Kb
,

where
D = Kr(1 + β(Kr/Kf − 1)). (5)

The bulk and shear moduli Kb and µ are often given imaginary parts to account
for frame inelasticity. Equations (1), (2) and (3) and an argument based upon
Lagrangian dynamics are shown in [1, 5] to lead to the following equations of
motion for the displacements u,U and dilatations e, ǫ

µ∇2u + ∇[(λ + µ)e + Qǫ] =
∂2

∂t2
(ρ11u + ρ12U) + b

∂

∂t
(u − U), (6)

∇[Qe + Rǫ] =
∂2

∂t2
(ρ12u + ρ22U) − b

∂

∂t
(u − U).

Here ρ11 and ρ22 are density parameters for the solid and fluid, ρ12 is a density
coupling parameter, and b is a dissipation parameter. These are calculated from
the inputs of Table 1 using the formulas

ρ11 = (1 − β)ρr − β(ρf − mβ),

ρ12 = β(ρf − mβ),

ρ22 = mβ2,

b =
F

(

a
√

ωρf/η
)

β2η

k
,
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Symbol Parameter

ρf Density of the pore fluid
ρr Density of frame material
Kb Complex frame bulk modulus
µ Complex frame shear modulus
Kf Fluid bulk modulus
Kr Frame material bulk modulus
β Porosity
η Viscosity of pore fluid
k Permeability
α Structure constant
a Pore size parameter

Table 1: Parameters in the Biot model

where
m =

αρf

β
,

and the multiplicative factor F (ζ), which was introduced in [1] to correct for
the invalidity of the assumption of Poiseuille flow at high frequencies, is given
by

F (ζ) =
1

4

ζT (ζ)

1 − 2T (ζ)/iζ
, (7)

where T is defined in terms of Kelvin functions

T (ζ) =
ber′(ζ) + ibei′(ζ)

ber(ζ) + ibei(ζ)
.

The bone specimen is assumed to oscillate harmonically in time: u(x, y, t) =
u(x, y)eiωt, U(x, y, t) = U(x, y)eiωt. Substituting these representations into (6)
gives

µ∇2u + ∇[(λ + µ)e + Qǫ] + p11u + p12U = 0, (8)

∇[Qe + Rǫ] + p12u + p22U = 0,

where

p11 := ω2ρ11 − iωb, p12 := ω2ρ12 + iωb, p22 := ω2ρ22 − iωb. (9)

3 Boundary value problem

A bone specimen is placed in a water tank. The region occupied by the bone
specimen and the water are Ωb and Ωw respectively. In Ωw we have in the two-
dimensional case the differential equations for fluid pressure P and the fluid
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displacement Uw := (Uw
1 , Uw

2 ), i.e.

−∇2P − k2
0P = −q δ(x;x0; k0), (10)

∇P − ρwω2Uw = q∇xΓ(x,x0, k0), (11)

where Γ(x,x0, k0) is the harmonic Green’s function with a fixed source point
located at x0 = (x0, y0); see the Appendix, Equation (31).

In the bone specimen Ωb, in order to formulate a well-posed boundary value
problem, one must modify the present form of the Biot equation (8), since there
are not enough transmission conditions for the components of displacements
fields u1, u2, U1 and U2. The main idea here is to replace the unknowns U1 and
U2 by a single known s in the equations. To see this, we first express ǫ and U

in terms of s from (1) and (8),

ǫ =
1

R
(s − Qe), U = −

1

p22
(∇s + p12u). (12)

By taking the divergence of the second equation of (8), we obtain

∇2s + p12 e + p22 ǫ = 0,

which reduces to

∇2 s +
p22

R
s + (p12 −

p22Q

R
) e = 0, (13)

by making use of (12). Similarly, the first equation of (8) can be written in the
form:

µ∇2u + ∇
[

(λ + µ −
Q2

R
) e + (

Q

R
−

p12

p22
) s

]

+ (p11 −
p2
12

p22
)u = 0. (14)

Equations (13) and (14) then form the modified Biot equations for u and s in
the bone specimen Ωb. These equations should be satisfied by u and s together
with boundary conditions on the interface between bone and water. These are:

• Continuity of the flux: From (11)

ρwω2 (βn · U + (1 − β)n · u) = ρwω2n · Uw ≡ n · (∇P − q∇xΓ(x,x0)) ,

and thus

ρwω2

(

[

1 − β(1 +
p12

p22
)
]

n · u −
β

p22

∂s

∂n

)

− n · (∇P − q∇xΓ(x,x0)) = 0.

(15)
Here n is the exterior normal to Ωb, which points into the water.

• Continuity of the aggregate pressure

σℓ,j nj + s nℓ = −Pnℓ, (16)

since an expansion of the bone induces a compression in the water. Here
σℓ,j = σxℓxj

denotes the components of the stress tensor in (1).
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• Continuity of pore pressure:

s = −βP. (17)

• Vanishing of the tangential frame stress σ12 ≡ σ21 = 0 which is equiva-
lent to

∂u1

∂x2
+

∂u2

∂x1
= 0. (18)

In addition, it is understood that the pressure P is also required to satisfy
the two-dimensional Sommerfeld radiation condition at infinity. We have so
far giving the precise formulation of the exterior transmission problem (ETP)
consisting of the partial differential equations (13), (14) for the unknowns u, s in
Ωb and the equation (10) for the unknown P in Ωw together with transmission
conditions (15)-(18) and the radiation condition at infinity.

From the computational point of view, it is more convenient to reduce the
problem (ETP) to a nonlocal problem in a finite computational domain such as
Ωb. For this purpose, we now reduce the Helmholtz equation (10) to a boundary
integral equation by using the Green representation of P in Ωw. More precisely,
we seek a solution of (10) in the form of a simple-layer potential in terms of the
unknown density function ϕ:

P (x,x0) := −q G(x,x0; k0) −

∫

∂Ωb

G(x, ζ; k0)ϕ(x0, ζ) dsζ , x ∈ Ωw,

where G(x,x0, k0) is free-space Helmholtz-Green’s function given by

G(x,x0, k0) :=
i

4
H

(1)
0 (k0 ||x − x0||),

with x = (x, y), x0 = (x0, y0). (See Appendix Equation (33).) Clearly, the
unknown density function ϕ is related to the unknowns u and U via the trans-
mission conditions (15)-(18).

If the bone sample, ∂ Ωb, has positive orientation, then letting x → X ∈ ∂ Ωb

we obtain from condition (16) that
(

λ∇ · u + 2µ
∂u1

∂x1
+ Qǫ

)

+ s = q G(X,x0; k0) +

∫

∂Ωb

G(X, ζ; k0)ϕ(x0, ζ) dsζ ,

(19)
and

(

λ∇ · u + 2µ
∂u2

∂x2
+ Qǫ

)

+ s = q G(X,x0; k0) +

∫

∂Ωb

G(X, ζ; k0)ϕ(x0, ζ) dsζ .

(20)
Note that in deriving these equations, we have tacitly employed the condition

(18). In view of the similarity of the equations (19) and (20), a substraction of
the two equations leads to the simple relation

∂u1

∂x1
−

∂u2

∂x2
= 0. (21)
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Hence in computation, we may use (21) and either (19) or (20), but not both.
Here the term ǫ should be replaced by ǫ = 1

R (s − Qe) in (12).
Next, the flux continuity condition (15) leads to the natural boundary con-

dition for s:

ρwω2

(

[

1 − β(1 +
p12

p22
)
]

n · u −
β

p22

∂s

∂n

)

+ q
∂

∂ nX

(

G(X,x0; k0) + Γ(X,x0, k0)
)

=
1

2
ϕ(x0,X) −

∫

∂ Ωb

ϕ(x0, ζ)
∂G(X, ζ; k0)

∂ nX

dsζ . (22)

Finally, from the representation formula for P , the condition (17) leads to a
boundary integral equation for ϕ:

β

∫

∂Ωb

G(X, ζ; k0)ϕ(x0, ζ) dsζ − s + β q G(X,x0; k0) = 0. (23)

It is worthy mentioning that all the equations (19), (20), (22) and (23) contain
no singularities, since for the first three equations the source point x0 is in Ωb,
whereas for equation (22), the singularity is cancelled, because of the last term
on the left hand side.

Before we formulate what is called the nonlocal problem for (ETP), some
observations are in order. We observe that the transmission conditions (19)
and (20) can be considered as natural boundary conditions for the displacement
fields u for given s and ϕ, whereas condition (22) is a natural condition for
the stress s, if u and ϕ are known. From the variational formulation point of
view, both equations define the relevant Dirichlet-Neumann maps. On the other
hand, the condition (23) only relates the trace of the stress s and the known
density function ϕ, which may be considered as a boundary integral equation
for ϕ for the given stress s. With these observations, we are now in a position
to state the nonlocal problem for (ETP):
Find the four unknowns u1, u2, s, ϕ. The first three unknowns are required to

satisfy the Biot equations (13)-(14) and the boundary conditions (or rather the
transmission conditions) either (19) or (20), (21) and (22), where the density ϕ
may be considered as an unknown parameter subject to the constraint (23).

We note that if ϕ is given, then we have an uncoupled system for displace-
ment fields u1, u2, s. On the other hand, if the displacement fields u1, u2 and the
stress s are known, then the unknown density function ϕ is required to satisfy
the standard Fredholm boundary integral equation of the first kind (23). In
general this is a coupled system for the five unknowns, and can only be treated
by numerical methods, which is the content of the next section.

4 Numerical approximation

We consider the simple situation where the bone specimen is a square of dimen-
sion L × L. The domain is discretized into a uniform Cartesian grid consisting

6



of N ×N points. We solve the coupled system of equations (13)-(14), (19), (21)
(or (20), (21)), (22) and (23) by using a finite-difference method.

More specifically, the derivatives in the equations are approximated by 2nd-
order finite difference schemes: central difference schemes are used for the bulk
equations, while backward or forward difference schemes are used for the bound-
ary conditions (depending on the square’s edge or corner under consideration).
An exception is made for the discretization of the tangential derivatives along the
edges, which are approximated only by 1st-order backward difference schemes.
This choice is motivated by two reasons: to keep the implementation relatively
simple (as compared to 2nd-order backward/forward formulas which would re-
quire special treatment near corners) and to avoid solving a badly ill-conditioned
linear system (as compared to 2nd-order central formulas which would imply
having zeros on the main diagonal of the resulting coefficient matrix).

The quadrature of the boundary integrals in (19) (or (20)), (22) and (23) is
based on constant interpolation of the solution between grid points, which gives
a reasonably good approximation given the simple geometry of the problem.
For simplicity H = 0 in Γ. Finally, the resulting linear system is solved by a
direct method (Gaussian elimination).

As an example, for a point X(j, l) located on the left edge of the bone
specimen (except the corners), the discretized form of (19) is given by

(

λ + 2µ −
Q2

R

)

[

−u1(j + 2, l) + 4u1(j + 1, l) − 3u1(j, l)
]

+2

(

λ −
Q2

R

)

[

u2(j, l) − u2(j, l − 1)
]

+ 2∆x

(

1 +
Q

R

)

s(j, l)

= 2q ∆x G(X,x0; k0) + 2
∑

ζ∈∂Ωb

G(X, ζ; k0)ϕ(x0, ζ)(∆x)2, (24)

where

G(X, ζ; k0) =

{

i
4H

(1)
0 (k0 ||X − ζ||) if X 6= ζ,

i
8π ∆x

[

log
(

2
∆x

)

+ 1
]

if X = ζ,
(25)

and ∆x is the grid spacing.

5 Numerical experiments

To validate the model, we perform a sensitivity test on the parameter β (poros-
ity). More precisely, for a given β, we compute the pressure P at 11 receiving
points outside the bone specimen, and we do so for different resolutions in order
to compare the results. We should mention that, in clinical practice, it would
be possible to wrap the member with a series of receiving and source points
which would lead to a more accurate determination of the porosity. The center
of the square (bone specimen) is located at x1 = x2 = 5L/2, a single source
is positioned at x1 = L, x2 = 5L/2 and the receiving points are positioned at
x1 = 4L, equaly spaced between L ≤ x2 ≤ 4L.
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The physical parameters we use are (in dimensional units): L = 0.01, ρf =
950, ρr = 1960, Kf = 2 × 109, Kr = 2 × 1010, η = 1.5 and a = 0.001. For the
sensitivity test, the reference high resolution is N = 41 and this is compared
with simulations of lower resolution N = 25. The comparison is performed by
computing the relative error on P between the two resolutions and over the 11
receiving points, i.e.

error =

[

∑11
j=1

(

P 41
j − P 25

j

)2
]1/2

[

∑11
j=1

(

P 41
j

)2
]1/2

, (26)

where P 25 and P 41 are the pressures for resolutions N = 25 and N = 41,
respectively.

Figure 1 shows the results for β = 0.7, 0.83, 0.9 and ω = 2π × 104, while
Figure 2 shows the results for the same set of β but a larger frequency ω =
2π × 5 × 104. In Figure 1, the reference β’s do not coincide exactly with the
minimum of the curves but the values are nevertheless relatively close. The
agreement becomes better as ω increases, especially for large β (Figure 2). The
results would certainly improve if higher resolutions were used. However we
could not specify resolutions much larger than N = 41 due to the memory
limitations of our computer. Overall the outcome of the sensitivity test on β is
satisfactory.

The comparison of the results of the two frequencies also suggests that there
are so-called good frequencies and bad frequencies. Choosing a pulsed signal
would allow many frequencies to be used and the appropriated weighted norm
could also be tried. We believe this to be the case and that is the purpose of a
future investigation.

6 Appendices

6.1 Gradient of the pressure

To derive the correct integral equations which describe our problem, we must
first go back to the interaction with fluid and poro-elasctic solid equations. In
the fluid we have the Navier-Stokes equations holding for V = U̇

ρw ∂V

∂t = −∇P + µw
(

△V + 1
3∇(∇ · V)

)

+ F,

∂ρw

∂t + ρw
0 ∇ · V = 0 where ρ0 = a constant ,

P = c2ρw,
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where ρw
0 is a constant reference density. If we assume that µw = 0 then the

system reduces to

ρw ∂V

∂t
= −∇P + F, (27)

∇ · V = −
1

ρw
0 c2

∂P

∂t
, (28)

which may be combined to form the equation

−△ P + ∇·F = −
1

c2

∂2P

∂t2
(29)

We now consider the time harmonic case and assume P = p(x)e−iωt, ∂2P
∂t2 =

−ω2p(x)e−iωt, ∇ · F = (∇ · f) e−iωt, from which we have

△p + k2p = φ, where k2 =
ω2

c2
, and φ = ∇ · f .

The relationship between pressure may then be found using (27), i.e.

∂V

∂t
=

1

ρw
(−∇P + F) ,

which for time-harmonic motion reduces to

ρwω2Uw = (∇p − f) .

From this we get the interface condition

ρwn · U =
∂p

∂n
− n · f . (30)

If φ(x) = δ(x,x0), then we may choose

f(x) =
1

2π
∇x {log (x − x0) − H (x,x0)} , (31)

where H (x,x0) is an arbitrary harmonic function. How we choose the harmonic
function determines n · f on the boundary. One possible choice is to take

Γ(x,x0) :=
1

2π
(log (||x − x0||) − H (x,x0)) ,

as the Laplacian Green’s function. This function vanishes on the boundary
whose normal derivatives must be computed. Other choices are possible, i.e.
the Laplacian Neumann function, whose normal derivative on the boundary
is equal to 1

L , where L is the perimeter of the boundary and whose Dirichlet
boundary values must be computed, etc..

9



6.2 Integral equations

For the solution of equation (10) in the water Ωw, we now employ the method
of boundary integral equations. Let

G(x, ζ; k0) :=
i

4
H

(1)
0 (k0||x − ζ||) (32)

denote the fundamental solution of the Helmholtz equation with H
(1)
0 being the

modified Bessel function of the first kind. Then we may seek a solution of (10)
in the form:

P (x,x0) =

∫

Ωw

G(x, ζ; k0)f(ζ,x0)dsζ −

∫

Γ

G(x, ζ; k0)ϕ(ζ)dsζ , x ∈ Ωw, (33)

for fixed source point x0 ∈ Ωw, where f(ζ,x0) = −qδ(ζ,x0) is the point source
term. The first term on the right hand side is the Newton potential which re-
duces to −qG(x,x0; k0), while the second term is the simple-layer potential with
the unknown density function ϕ to be determined. By the standard argument
in potential theory (see [14]), we arrive at the boundary integral equation of the
first kind for the unknown density ϕ:

P (x,x0) = −qG(x,x0; k0) − V ϕ(x), x ∈ Γ, (34)

where V is the simple-layer boundary integral operator defined by

V ϕ(x) :=

∫

Γ

G(x, ζ; k0)ϕ(ζ)dsζ .

As was shown in [14], G(x, ζ; k0) admits an asymptotic development

G(x, ζ; k0) = G(x, ζ) −
1

2π
(log(k0 + γ0) + Sk0

(x, ζ),

where

γ0 = c0 − log 2 − i
π

2
with c0 = 0.5772 (Euler’s constant),

Sk0
(x, ζ) = −

1

2π
(log(k0||x − ζ||)

∞
∑

m=1

am(k0||x − ζ||)2m

+
∞
∑

m=1

bm(k0||x − ζ||)2m,

am =
−1

22m(m!)2
, bm = (γ0 − 1 − 1/2 · · · − 1/m)am.

Here

G(x, ζ) = −
1

2π
log ||x − ζ||
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is the fundamental solution for the Laplacian (or -∆ rather). Based on the
asymptotic development, it can be shown that

V ϕ(x) = V0ϕ(x) + O(k0 log k2
0), x ∈ Γ, (35)

where

V0ϕ(x) := −
1

2π

∫

Γ

log(||x − ζ||)ϕ(ζ)dsζ .

This shows that for low frequency, we may approximate V by using V0 in order
to simplify the computation as used in our numerical experiments.

In the same manner, by taking the normal derivative of the pressure P on
Γ, we obtain a boundary integral equation of the second kind,

(
1

2
I − K ′)ϕ =

∂

∂n
P + q

∂

∂n
G(x,x0; k0)|Γ, x ∈ Γ, (36)

where K ′ is the adjoint of the double-layer boundary integral operator given by

K ′ϕ(x) :=

∫

Γ

∂

∂nx

G(x, ζ; k0)ϕ(ζ)dsζ , x ∈ Γ.

Again K ′ can be approximated in terms of the corresponding adjoint operator
for the Laplacian,

K ′

0ϕ(x) :=

∫

Γ

∂

∂nx

G(x, ζ)ϕ(ζ)dsζ , x ∈ Γ.

For interested readers, we refer the details to [13] and [14], where one may also
find mapping properties of related boundary integral operators.
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Figure 1: Relative error on P for β = 0.7, 0.83, 0.9 and ω = 2π × 104.
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Figure 2: Relative error on P for β = 0.7, 0.83, 0.9 and ω = 2π × 5 × 104.
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