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Abstract This paper considers the application of multiscalelead to the early detecting of osteoporosis. This patho&dgi
finite element method (FEM) to the modeling of cancellousprocess manifests itself through increasing bone resorpti
bone as an alternative for Biot's model, whereby the main inand decreasing bone production. In its late stage, evereenti
tention is to decrease the extent of the necessary labgratowalls of the solid bone frame disappear leading to abrupt
tests. At the beginning the paper gives a brief explanation adecrease of material strength. The laboratory measurement
the multiscale concept and thereafter focuses on the modethow that during the process porosity increases from 72%
ing of the representative volume element (RVE) and on theip to 95% causing the density to change from 1200 to 1000
calculation of the effective material parameters inclgdim  kg/m®.
analysis of their change with respect to increasing poros- For the investigation of cancellous bone different ap-
ity. The latter part of the paper concentrates on the macrgroaches are developed, some of them being of experimen-
scopic calculations, which is illustrated by the simulatad  tal character, the other ones focusing on developing a con-
ultrasonic testing and a study of the attenuation deperydenwenient mathematical or mechanical model. Among the ex-
on material parameters and excitation frequency. Thetsesulperimental methods the dual X-ray absorptiometry (DXA)
endorse conclusions drawn from the experiments: incrgasirand the quantitative ultrasonic (QUS) technique are the one
excitation frequency and material density cause incrgasinmostly used, but the latter has a few important advantages:
attenuation. while the DXA is convenient only for investigation of bone
mineralogy density (BMD), the QUS technique yields data
on the speed of sound (SOS) and broadband ultrasonic at-
tenuation (BUA), two parameters strongly related to the mi-
crostructure of trabecular bone and significantly influagci
1 Introduction its strength (Hosokawa and Otani, 1997; Zysset et al, 1999;
Barkmann et al, 2000a; Bossy et al, 2004a; Laugier et al,
In recent times, the investigation of the effective projesrt 1994a). Moreover, in contrast to X-ray technology, ultra-
of cancellous bone has been especially intensive as it magound does not ionize the tissue and its implementation is
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relatively inexpensive.

Among the analytic solutions, those based on Biot’s the-
ory (Biot, 1956a,b) are certainly established as the lead-
ing ones. The shortcoming of these methods is its depen-
dence on many material parameters which have to be deter-
mined experimentally. An analytical approach to the inves-
tigation of these parameters and especially of the accuracy
up to which they can be determined, is presented in works
of Buchanan et al (2004) and Buchanan and Gilbert (2006).

Finally, the rush development of computer technology
gave a new aspect to the bone modeling where the appli-
cation of numerical solvers plays an important role. Here



also two groups of methods deserve to be mentioned: thare studied. Attention is drawn to their change with respect
finite difference time domain (FDTD) technique and the fi-to increasing porosity which is simulated changing the ge-
nite element method (FEM). The FDTD method was firstometry of the RVE.

applied in biomechanics by Luo et al (1999), and since then Chapter 4 concentrates on macroscale simulation where
has gained in importance. For example, Hosokawa (2006je ultrasonic attenuation test is used for illustrationthlis
used this method to simulate biphasic materials accordinghapter, the details about the model and results of a stdndar
to the purely viscoelastic theory and according to Biot&sth test are described. The final simulations concern the calcu-
ory for porous media, while the most recent works in thislation of the attenuation coefficients and an analysis df the
field consider 3D simulations (Bossy et al, 2005, 2004atla dependence on material properties and excitation frequenc
et al, 2007). Simulations based on a true reproduction ofhe paper closes with a short overview and outlook.
microstructure geometry are also an actual topic within the
scope of the FEM application. Here the accent is especiall
put on the digital image based meshing process (Bayrakt
et al, 2004, Hollister and Kikuchi, 1994; Niebur et al, 2000;

Concept of the multiscale FEM

Rietbergen et al, 1996) Multiscale FEM belongs to the group of homogenization
. ’ ' . ._methods so that it is applicable only in the case of statis-
This paper also repprts on the res-ults obtained l:_)y USInﬁcally uniform materials (Mura, 1993; Nemat-Nasser and
the FEM or more prgmsely, the. multiscale FEM (_”'C and Hori, 1993; Torquato, 2002; Willis, 1981, 1982; Zohdi and
gggglgorﬁm 23()27; HIC{ 22(?)0088 M_Il_t;he ettil,j(?OZ; S@dl' lder., . Wriggers, 2005). For this kind of materials, it is typicaltha
 mahrand £ySset, )- The me. 0d 1S applied In hf%ey possess a representative volume element (RVE) whose
context of sound excitation (Hackl, 1998; Gilbert et al, 899 analysis yields the effective material parameters, buiine

where three ranges are to be distinguished: low frequencigﬁng condition is that the ratio of the characteristic ldrg
(100-500 kHz), the resonance frequency (about 500 KHZ)of RVE and the simulated body has to tend to zero. This is

and high frequencies (0.5-2MHz). The lower frequencies ar%om where the usual terminology macro- and microscale

convenient for a parameter analysis while the higher ON€%s derived. As both scales are analyzed simultaneously, the

gspeually in the range of 1-2MHz, are used fo.r '.nve,suga'standard notation distinguishes between quantitiesectat
tion of the attenuation effects. In contrast to the digitsdge

) . o S the different scales by introducing an overbar symbol. Thus
technique where the intention is to map the realistic stinect

; . . ) . position vector, displacements vector, strain tensoesstr
to the FE model, this work investigates a relatively simple

o i , tensor, and potential respectively are denoted by
geometry whose analysis yields effective material proper-
ties. Indeed, bearing in mind the real physical microstrucx, U, &, o, (=(g,X) at the macrocontinuum
ture, it can be expected that local differences in trabecula

. : X
mesh can be neglected, and that it can be substituted by
the mesh of periodically repeated representative celthdn The method is based on the principle of volume averaging,
model presented here such a cell consists of a solid frandeéading to the definition of the macrostress tensor in thefor
and fluid marrow, both simulated as viscoelastic materials 1
with the energy absorption influencing the macroscopic atd = v /%) odv

tenuation. Due to its simplicity, the assumed concept seemsh he | . ied he R ith
to be convenient for an iterative procedure typical for in-"""¢"® the integrattion is carried out over the RVE wit

verse problems where the optimal geometrical paramete“ge v%:umef\/. '\_IOtPT that W'Lhmr:he scofpe of Illz)gnfe modgllng,
of the microstructure are determined. consideration is given to the theory of small deformations.

Within th th lied d d obtained The well-posedness of the problem on the microscale
'thin the paper, the applied procedure and obtaine ref%lso requires the equality of macrowork with the volume av-
sults are presented as follows: Chapter 2 considers the mul- .
. . . . erage of microwork
tiscale FEM which is a method resulting from the coupling
of homogenization theory with FEM. Particular attention is 5. z _ 1/ o edV )
: v/,

given to derivation of boundary conditions at the microleve

Chapter 3 focuses on calculations at microscale. It firstvhich is known as Hill-Mandel macrohomogeneity condi-
explains the concept of the RVE additionally giving sometion (Hill, 1963, 1972). Expression (1) is satisfied by three
further details about the modeling of the solid and fluid ghastypes of boundary conditions at the microlevel: staticgkin
The standard as well as the extended formulation of the shethatic, and periodic onedt is also worth mentioning that
element and 8-node cubic element are described. The extewithin the scope of cancellous bone modeling and especially
sion concerns modeling in the complex domain where thén approaches where the accent is put on a realistic repre-
imaginary part is responsible for the internal materiat-fri sentation of geometry (Pahr and Zysset, 2008), the consid-
tion. Furthermore effective elasticity tensors and patanse eration of a sample smaller than the present RVE is often

u, & o, Y=y x) at the microcontinuum



needed. Such an analysis yields "apparent” instead of-effec

tive material parameters and apart from the static, kinemat Global FE Analysis - Macrolevel

and periodic boundary conditions also the mixed boundary | €
conditions guarantee that Hill's condition is fulfilled (#a 1. is given

anov and Amieur, 1995; Ostoja-Starzewski, 2006). As we

assume in our model that without loss of generality the mi- 2. Calculation of i as a solution of
crostructure consists of periodically repeated RVE's, Wk w BVP on the RVE.

work in the following analysis exclusively with periodic bo

o . . . . (Standard FE-principles in B.)
ndary conditionsin this case the microdeformation, is as-

sumed to be dependent on the macrostrain teasord on 3. Calculation of & as a volume average:
the microfluctuationsi 1 _ 95
U= &x+0. ) B €
. . . . 1&,C
Now microfluctuations have to be periodic and traction an- -
tiperiodic on the periodic boundary of the RVE Global FE Analysis - Macrolevel
it = 0, Fig. 1 Connection of scales in the program code.

and the additive decomposition is characteristic for the miDue to the complex geometry of cancellous bone, different

crostrain tensor types of the RVE can be proposed for its modeling. More-
1 over, it is well known that the bone structure changes depen-
£=¢£+8, g= E(Dﬁ +00) = O%0. (3) dent on many factors and that the deterioration of trabecu-

lar bone is characterized by a conversion from bone plates

Such a decomposition permits to split the problem of simuto bone rods. Consequently the terms "rod-like” and "plate-
lation of a heterogeneous body into two parts, each consislike” are frequently used for a subjective classification of
ing of one boundary value problem (BVP). The first BVP cancellous bone. For an objective quantification a morpho-
relates to the simulation of the homogenized macroscopimetric parameter called structure model index (SMI) is in-
body and the second one to the analysis of the RVE. troduced by Hildebrand andilrgsegger (1997). This index

For solving these two BVPs, any standard method can bshows the amount of plates and rods composing the struc-
applied and FEM is chosen here for this purpose. Moreoveture, and for an ideal plate and rod structure the SMI value is
using the described theory and standard program FEAB and 3 respectively. In our model we treat the solid frame as
(Zienkiewicz and Taylor, 2000), a new multiscale FE pro-a system of thin walls whose thickness and width can be var-
gram is written. Its main difference in comparison with aied. In limit cases such an RVE can contain complete solid
standard FE program code is that calculations at the mifacets or thin columns in its edges. The RVE is assumed to
crolevel replace the missing effective constitutive laviha  have a cubic form with the side leng#h The other param-
macroscale (Fig. 1). eters that are needed to completely determine the RVE, are

The simplified flow chart (Fig. 1) shows that macroscalethickness of the wald and width of the wallb. Figure 2
calculations provide the macrostrain tensowhich has to  shows an example of the real microstructure of cancellous
be understood as a priori given at the microlevel. Solutiorbone affected by osteoporosis, and a proposal for the cor-
of the BVP at this level results in distributions of the mi- responding RVE. In the part of figure that shows the real
crofluctuationdl and of the microstresseswhose volume  structure of the bone, it can be seen that most of the solid
average represents the sought counterpart on the madrolevealls are resorbed and only the edge columns remain.
0. The _calculations at this level also supply the elasticity  To calculate the effective material parameters, a dynamic
tensorC. In contrast to the case of finite deformations, thisanalysis of the proposed RVE is necessary, and periodic ex-
tensor has to be calculated only once as it is independeattation is preferable because of its simplicity. In suclase;

from the deformation state. the load and induced deformations are harmonic functions in
time
3 Microscale: Modeling of the RVE and calculation of p(x,t) = p(x)e, u(x,t) = u(x)e, (4)

the effective material properties
wherep(x) andu(x) may be complex-valuedy is the fre-
3.1 Modeling of the RVE for cancellous bone guency of excitation anidrepresents the imaginary unit. The
application of (4) yields the simplified form of the equation



Real microstructure of the cancellous bone

Fluid phase

Complete RVE

Fig. 2 Real bone microstructure and corresponding RVE.
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Here C'is the elasticity tensor of the solid phasehe iden-

tity tensor,c the sound velocity of the marrow so that

v/ K/px, K is the bulk modulusp and & are the viscos-

ity coefficients. The indices s and f are used to distinguish

the phases. Furthermore, the coupling condition betwezn th

phases requires that there is no deformation jump on the in-
terface of phases

Recall that all the expressions (5)-(9) are defined in the-com
plex domain. The material parameters of the solid phase,
bulk moduluskKs and shear modulugs are also complex-

valued an they can be written in the form

where the imaginary parts are related to the real ones ac-
cording to

and o denotes the logarithmic decrement amounting to 0.1
for underwater acoustics (Buchanan et al, 2002, 2004; Fang
etal, 2007). Remaining material parameters appearingin th

constitutive laws defined above, are listed in Table 1.

of motion
p(x)u(x,t) —O-a(x,t) = p(x)b(x,t) Table 1 Parameters for cancellous bone due to Williams and Johnson
(1989).
5 ! Parameter Sym. | Value Unity
—wp(x)u(x) —0-0(x) = p(x)b(x) Pore fluid density o 950 kgm3
Fluid bulk modulus Ks 2.00x 10° Pa
depending on densitp(x) and body forced(x). To de- Pore fluid viscosity n 15 Ns m—2
scribe the problem completely, the constitutive laws of the | Frame material density ps 1960 kgm—3
fluid and solid phase still need to be stated precisely. Regar tE:]U”( T_?jdurl]us of | KR | 204x10° | Pa
ing the bone material, a linear analysis is typical so that fo € solid phase (real)
. . . . Shear modulus of LR 0.833x 10° | pa
the solid part a linear relation b_et\/\_/een stresses and_ strain | he solid phase (real) | -
(6) and for the marrow the constitutive law of barotropic flu- Young's modulus of | £r 2 2% 1010 Pa
ids (8) are assumed. The state of deformations in the solid | the solid phase (real) | —°
Poisson’s ratio % 0.32

part Qs can now be described by the system

—w?psu—DO-0s= psh(x), ()




3.2 Modeling of the solid phase Note that the described element (Taylor, 1998; Zienkiewicz
and Taylor, 2000) is also adapted to structures with small
Due to the geometric properties, we are going to model theurvature by introducing correction factors in which cdse t
solid phase by using the shell elements (see i.e. Hackl {199 Formulation, in contrast to (17), becomes coupled. The weak
but as the shell elements already implemented in the prderm of the problem (16) finally results in the discretized
gram FEAP (Zienkiewicz and Taylor, 2000) are not appli-equilibrium equation of an element dependent on the stiff-
cable for simulations in the complex domain, further adapness matrix € and the vector of nodal forcé%
tion has been necessary. In particular we focused on the ex-
tension of an element convenient for simulation of flat and<®-a8" = f°. (18)
shallow shells. The formulation of this element is based o
the superposition of the linear theory for a plate loadetsin i
plane and a plate loaded by bending, whose potentials are

r?:urthermore the application of the element in the dynamic
case requires the minimization of the Lagrangian

i 1/ 5/(Ek—n)dt20 (19)
I'IS: ng.lnt+n§,ext: é/ uT-Lg'Cp-Lp-Uda—F I—,;)e,ext’ t
7 where integration of the timeis considered/T is the to-

12
(12) tal potential including (12) and (13), arkk represents the
kinetic energy
i 1
e_ meint eext _ + T, T. . eext 1
I'lb—l'lb —H_lb —2[Wee Lb Cb Lb Gda-i-l_lb . Esz/‘ pUTUdV (20)
(13)

with the first variation in the form
Hereafter subscript p is taken to denote the plate loaded in
its plane and subscript b for the bending of plate, e ind&cated Ek u)dt = w // pu’-udvdt. (21)
that a single element is considerdd, andLy are linear
operators andCp, and Cp, material tensors whose precise AS this expression only depends on the acceleration and in-
definition can be found in the literature (Batoz and Tahardirectly on the displacements, a simplified FE approxima-
1982; llic, 2008; Taylor, 1998; Wanji and Cheung, 1997;tion is introduced here:
Zienkiewicz and Taylor, 2000). The integration is carried o Ame
over the middle area of the element®. As expression (12) u=N-a"% (22)
depends on the displacements= {uv}T and (13) onthe u= {u VW}T, an=1{aG O Wi By éy. }T. (23)
rotationsd = {6, 6,} T, a FE approximation

Substitution of (22) in (21) and using (18) and (19) now

m—=N™.aMe (14) leads to the discretized equation of motion including the
L LA oA AT mass matrixvi €
M={uve 8}, a"={GY%6;W6 6} (15

leads after substitution into the first variation of (12) and
(13) to the weak form of the problem

(~wPM®4 KE).ame = fe, Me:/ pNT-Ndv  (24)
Qe

where the integral over the time could be left out due to the

5 — periodicity of the load and deformations.
The final extension from the real to the complex do-
= (5ame)T. (/ (Nm)T.LT.C.L.dea) ame . yryeext main includes steps similar to those previously described.
Jl® As here the displacements and the rotations poses the imag-

N (ﬁme)T. (/ (Bm)T'C'Bmda> Ay 5reet  (16) inary _counterparts, the following approximations havedo b
o/® used instead of (14) and (22)

In expressions (14) and (13Y;" represents the matrix of the m _ (umR)T i(um')T }T’ Ug = { (uR)T i(u')T }T

shape functions, and superscript m indicates that a mod|f|edC

approximation is used%, andw; are used in the approxima- are = { (aeR)T i(éel)T }T’

tion of the vectow), the symboB™® relates to the vector of

the element DOFs ar@" to the vector of the nodal DOFs. n  \m 4 N [Nm 0 1
C c bl

)

.ame
The matrices appearing in (16) are composed as follows U’ =Ne-ac™ 0 NM (25)

Lo | ® BM—L.N™ C= Co 0 (17)  Uc=Nga"  Nc= N0 (26)
_OLb’ = ) —ch c=Nc¢ag, C_ON.



Here the real and imaginary DOFs of an element are groupduhs to be approximated in the following way:
separately, which is convenient for further derivationse T

index ¢ denotes the complex quantities. Due to the compledc = N¢-&g, (34)
material parameters (11) the elasticity tensor also has com

plex form with the real and imaginary submatrices depen- ART - melTAT N O

dent on the real and imaginary part of Young’s modulus andc =1 @) (@) } ; c= [O N] (35)

Poisson’s number
f={F F W) d={d ¢ W} (3

and N represents the matrix consisting of the shape func-
(27)  tions typical for the standard 8-node element of the pro-
gram FEAP (Bathe, 1996; Zienkiewicz and Taylor, 2000).

Equation (11) and standard relations between material pay using approximation (34) and the complex elasticity ten-

imaginary part of Poisson'’s ratio (for this particular daise

equal to zero. The implementation of (25)-(27) into complex 5 _.o. 1 T e
counterparts of (16) and (21) now gives the complex form of (98) " /erNC'NCdV Aot
the equation of motion

R ;: Al
C.= li%, 'gR], CR=C([ERv), C'=C(E"v).

(533)? (/ N-(I:-'L-cr'CC'Lc'chV>~ég+5ﬂe7e)‘t:0
Jqe

(~w’ME+KE)-80C =18 (28)
dependent on the following quantities yielding the equation of motion
e__ T _ M€ 0 2N\ € e\ ame __ e
ME = erNC.chv_ 0 me| (29) (-wW?ME+KE)-ale=1S (37)
- KeR jKel Although the same notation is used as in the case of shell
Ke= /Q/e (B -C-B'da= LKa KeR:| ; (30)  element (28), all the quantities appearing here are defimed i

a different manner, corresponding to the solid element.

- [Bmo0 Lo
Bl =L NI = 5 B’ Le= oLl (31)

Note that in the present model the imaginary parts of th%irirercgary of the equations defining the BVP on the
elasticity tensor are used to introduce the attenuati@tesf

while, in the engineering practice, Rayleigh damping is AP et us for convenience summarize the description of the
plied for it. According to this approach an additive decom—RV

position of the damping matrix into two parts proportional

to the mass matrix and stiffness matrix is assumed (Ba’[h?,fszSJrKS)%15 —f4(2) in Qs (38)
1996; Zienkiewicz and Taylor, 2000).

0s=C:g in Qs (39)

3.3 Modeling of the fluid phase . .

g P (—w’Mi+Kp) & =fi(g) in (40)
An extension to the complex domain is also necessary for . . .
the 8-node cubic element chosen to simulate the marrow' = /' Hul+2ene+iodtul in Oy, (41)
part. _As in this case th_e derlvat!on procedure is much sim =0 on I =QUQ;, (42)
pler, it can be started directly using the complex form of the
potential characteristic for this element gt=0"- on 90. (43)

L — }/ pul-Ucdv— }/ e Co-gcdv— M (32) Here again the indices s and f are used for different phases.
2/ 2/ In the equations of motion (38) and (40) the volume forces

Here the vector of the complex displacements are neglected but the influence of macrodeformation is in-
T troduced. On opposite faces of the RVE, microfluctuations
Uc = {(UR)T i(u')T} must be periodic due to the Hill-Mandel macrohomogeneity

R o T condition (43). As defined in Chap. 3.1, equations (39), (41)
= {0 W id iV W (33)  are constitutive laws and (42) is coupling condition.



3.5 Effective elasticity tensor - output from the microscal
6000

The final results of the microscale calculations is the effec datilny

tive elasticity tensor. In the theory of linear hypereleisyi
this tensor is defined as the second derivative of the patenti
functional (€) with respect to the infinitesimal strain ten-
sor or equivalently, the first derivative of the Cauchy sres
tensor with respect to the same tensor

1

2

o
=3
=]
o

4000 |

3000 [

2000

Term of material tensor [N/mm

G 9WE) _ g @) B . —

o 052 - 05 1000 —=— 11-term
In our case, due to the heterogeneity of the material, an ana: 0 . . . e
lytic expression for the stress is not available so that the n 068 07 072 074 076 078 0.8
merical interpretation of (44) is necessary. Bearing indnin Porosity

the vector notation for stresses and strains typical for FEM 4500

_ —R\T L —INTA T 4000 [
o={(o i(o

{(e7) (@)} 3500 | ‘\'\'\‘\<
(ER)T:{Eﬁ 552 553 5?2 5?3 5?3 ) 3000 r

—I\T = = = — = = 2500 ¢
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2T =l = =l = = = 0 ' ' '

(') ={e11 €2 €33 2€31, 2&,3 2¢&33} 08 0.82 0.84 0.86 0.88 09

Porosity

the numerical interpretation of (44) can be written as

_ 1 _ Fig. 3 Change in the real components; and Ci» of the elasticity
Gj~ ,[Ei(g_el) — Ei(g)] (45)  tensor with increasing porosity. The solid wall thicknestakes the
& values 0.1 and 0.05 mm.

whereg ¢ is the perturbated strain tensor so tBdt' = &

fori#j andEiEJ =g +efori=j. Theindices andj relate  excitation frequency 100 kHz. The change of teit@g and

to the vector (and not to the tensor notation) for the strains Cig belonging to the imaginary part are shown in Fig. 4.

i,j=1,..12. ¢ represents a small perturbation. The whole  Since experimental investigations have shown that the

elasticity tensorC is now of the dimension 12x12 and it disappearing of the complete solid walls has the strongest

consists of two real and two imaginary submatrices (formnfluence on the decrease in material strength, such a pro-

analogous to (27)). cess was simulated, too. According to the results presented
Repeating calculations based on (45) for different gein the work of McKelvie and Palmer (1991), osteoporosis

ometries of the RVE, itis possible to study the change of maeauses an increase of the spacings of the solid walls from

terial strength caused by the process of osteoporosiseThr@.471 to 2.2 mm which is simulated by increasing the side

groups of tests can be performed as three parameters detlngth of the cube-shaped RVE, thereby the wall thickness is

mine the RVE geometry defined in Chap. 3.1 (Fig. 2). Inkept atd=0.05 mm and wall width &i=a/6. The results are

each of the groups one of the geometry parameters is varigaesented in Fig. 5 where the abscissas are side length and

while the other ones are kept constant. The diagrams in Figporosity respectively. The latter diagram shows that with i

3 show the change of two terms of the elasticity tensGrs, creasing porosity both terms of the elasticity tensor tend t

and Cyo, with respect to the porosity. The increasing porosthe value 2000 N/mf which corresponds to the limiting

ity is simulated by changing the wall widthin the range case of pure marrow.

from 0.2 to 0.125 mm, whereby the thickness of the solid

wall d amounts to 0.1 mm as a first case and 0.05 mm as a

second one. Side lenghis 1 mm in both cases. Except the 3.6 Effective material parameters

parameters given in Table 1 the remaining values used are

logarithmic decrement corresponding to the sound motiohe calculated effective elasticity tensors further pethe

through the bon& = 0.1, viscosity coefficien€ = 0, and evaluation of the effective material parameters, whicHh wil
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Fig. 4 Change in the imaginary components of the elasticity te@spr  Fig. 5 Change in components; 1 andCi» with increasing sparsand
and Cg; with increasing porosity for different thicknesses of the solid corresponding porosity. Width of solid wéll= a/6.
wall d.

mm andd=0.05 mm are considered. The side leng#il

mm is kept constant. Dependence of Young’s modulus and
shear modulus on porosity is a smooth, monotonically de-
’_Ereasing function while Poisson’s ratio shows opposite be-

be presented in the following example. For the RVE deter
mined by the parametees=1 mm,d=0.05 mm,b=0.25 mm
(Fig. 2), the real part of the elasticity tensor is given b§)(4
and it corresponds to the cubic material symmetry in whic
case the compliance tensor has a form shown in (47) with th
shear modulu&. Obviously, calculating the inverse matrix
of (46), the material parameters can be directly evaluated.

avior: it increases with increasing porosity. Young'’s mod
lus takes the values in the interval 1417.17-4163.74 Nfmm
the shear modulus 32.55-477.82 N/famd Poisson’s ratio
0.266-0.392 for the density 1067-1263 kg/m

39279 19595 19595 0 0 0
19595 39279 19595 0 0 0 N
R 19595 19595 39279 0 0 0
C"= 0 0 02729 0 0O {E} (46)
0 0 0 0 2729 0 .
0 0 0 0 027® 3.7 Analysis of the dry skeleton
,\%E 7‘1;5 :5?5 O As the standard literature (Ashman et al, 1984, 1987; Ash-
S— —v/% —v/% 1/E0 ]/g g 8 (47) man and Rho, 1988; Hoffler et al, 2000; Rho et al, 1993;
O 0 0 0YG 0 Williams and Johnson, 1989; Zysset et al, 1999; Zysset, 003
. 0 o0 0 o0yG mostly investigates the effective elasticity parametétb®

A further topic of interest is to follow the influence of os- pure solid phase, for the purpose of comparison, the calcula
teoporosis on effective material behavior. To this end, theéions described in Chap. 3.4 are repeated for the RVE with-
effective material parameters are calculated for the #ffec  out marrow core (Fig. 2). In this case, in the system (38)-
elasticity tensors explained in the previous section (3tb) (43), equations related to the solid phase and Hill macroho-
Fig. 6, the results corresponding to the RVEs with wall widthmogeneity condition stay active while the equations relate

b in the interval 0.125-0.25 mm and wall thickne$s0.1  to the liquid phase and coupling condition have to be left
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Fig. 6 Change in the real part of effective material parameters versus
Fig. 7 Change in effective material parameters over porosity for the

porosity for the biphasic material.

dry skeleton.

out. The final results at the microlevel are again effective
elasticity tensors and material parameters.

Figure 7 shows that in the case of wall thickness of 0.Isults obtained by an analysis of the biphasic material §fig.
mm, the effective Young's modulus takes the values 1883.44hows that the presence of the liquid phase does not signif-
3576.42 N/mr while for a wall thickness of 0.05 mm, the icantly influence the values of this material parametersThi
values are between 1050.60 and 2114.80 Ninifhese re-  of course can be justified by the fact that the shear resistanc
sults agree well with the results obtained by Ashman an@f the fluid can be neglected. The situation in the case of
Rho (1988), who found using ultrasonic tests, that the strucPoisson’s ratio is quite opposite. This parameter takesegal
tural elasticity modulus of cancellous bone has the values iin the range 0.045-0.102 for the dry skeleton. The values are
the interval 985-2110 N/mfn falling with increasing porosity while for the biphasic ma-

The shear modulus takes values in the range 81.17-4681@¥ial they are increasing. The great influence of marrow on
N/mm? in the first cased=0.1 mm) and 31.93-263.34 N/nfm Poisson’s ratio can be explained by the nearly incompress-
in the second casel£0.05 mm). A comparison with the re- ible nature of this material.
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4 Macroscale: Simulation of the ultrasonic test 4.2 FEM model of the ultrasonic test

4.1 Ultrasonic attenuation test In the FE modeling of the described test, we start from the
fact the applied sound excitation is given by a harmonic

While the previous discussion concentrates on the modelinuinction in time p(x,t) = p(x)é“t, causing periodic dis-

of the RVE as well as on the calculation of the effective maplacementsi(x,t) = t(x)€“*. The problem which has to be

terial parameters, the main topic of the following part will solved is than summarized as it follows:

be the application of the method developed to the simula- B

tion of the behavior of the whole bone or of its parts. This—w?pu(x) — 0-0(x) = 0, (50)

task belongs to the domain of macroscale calculations and a

simulation of the ultrasonic attenuation test is choserafor o(x)=C:£(x), _ (51)
illustration. U(x) =U*(x) on 0%, (52)
a(x)-A(x) =p(x) on 9%, (53)

Here in the equation of motion (50) volume forces are ne-
glected, and the only external load is due to the sound pres-
sure acting on the boundary pat,, u*(x) are displace-
ments given on the Dirichlet boundary par#,. The con-
stitutive law (51) depends on the effective elasticity tens
| Transmitter | | Hydrophone | Filter C obtained from the microscale. As stated at the beginning,
the overbar denotes quantities related to the macrolevel.
Concerning the geometrical properties of the FE model,

Power Amplifier Preamplifier

1

1 the following remarks are necessary. First, as the water in
@ the original test is used only as a transmitter whose attenu-
ation can be neglected, in the FE model, consideration has

to be given only to the behavior of the sample. Second, as
the sound wave is longitudinal, the whole simulation may
be considered as a 2D problem of wave propagation through
Hwe thin slice of the sample (Fig. 9). Moreover, the displace

The set-up of such a test carried out by Hosokawa an ) o >
Otani (1997) is shown in Fig. 8. Here a transmitter and hy-ments inx; direction at all points have to be suppressed,

drophone are submerged in distilled water at-ZB5°C and while the results will show that displacementsxindirec-

the bone specimen is placed between them. The chosen fl%gn are of an order smaller than thosexrdirection, which
quency bandwidth of excitation waves is 0.5-5 MHz. Theflts in W'th the nlature of sound waves. ) )
test uses samples measuring 20-30 mm, with two different The dimension of the sample transversal to the direction
thicknessesl;=9 mm andd,=7 mm. The samples are cho- of wave propagation is assumed to be 50 mm, yvhiph in any
sen to represent the different types of cancellous boneevho§aS€ IS greater than the wavelength of the excitation sound
densities vary in the range of 1120 - 1200 k&/Before pro- waves (see Chap. 4.3). Two kinds of boundary cqnd|t|ons are
ceeding to the experiments, the samples are saturated Wﬂ.[nulated f’]‘t_the top and the bottom of the specimen. In_the
water in order to remove air bubbles formed in the process dfrst case, itis presumed that all dlsplacements at all point
preparation. Using such a test, wave speadd attenuation on these two boundaries are constrained. In the second case,

a can be calculated according to the standard expressiof§ly the middie points on the top and bottom boundary are

Fig. 8 Laboratory test of Hosokawa and Otani (1997).

(Hosokawa and Otani, 1997); §upported. The results shovy that the typg of boundary condi-
tions on these two boundaries does not influence the results.

Ve Advg ) mm (48) The size of the specimen in the direction of wave propa-
Ad— (A@/w)Vvo s’ gation is chosen as 30 mm. The discretization of the sample
and applied load are shown in Fig. 9. Here the number of

a— InAvV (=) Np (49) elements is 100x50. The thickness in the direction "2 is 0.5

Ad mm mm. The sound pressupe=8 kPa acts on the left boundary

whereAd represents the difference in thicknedd =d; —  of the sample. The diameter of the pulser is assumed to be

dz, Vp is the propagation speed in watérp is the phase 10 mm. The last few parameters (thickness of the specimen,
difference,w the frequency of initial signals anflV is the  pressure and diameter of the transmitter) are chosen arbi-
ratio of amplitude spectra for two different thickne®g =  trarily as they do not have any significant influence on the

Vi simulation.
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Fig. 10 Wave propagation through cancellous bone with an RVE ge-

7

0.1 mmb=0.25 mm.

bone can be calculated and used as a check of the FEM

simulations. This is illustrated by an example where con-
sideration is given to the wave propagation through the ho-

The velocity of wave propagation through the solid bodiesnogenized bone with an RVE geometry determined by the

ometry determined by the parametard mm,d
is dependent on the material properties but also on the shapgrametera=1 mm,d

Assumed excitation frequency 0.6MHz.

Fig. 9 Model for FEM simulation of wave propagation through can-

cellous bone.
4.3 Test example

0.1 mm and=0.25 mm. The model

0.6 MHz, the expected wavelength is 3.37 mm. The re-

”

of the body and especially on its dimensions. In particulashown in Fig. 9 corresponds to the case of an unbounded
medium €u). Here, the term "bounded” means that cross-gyits of the FEM simulation shown in Fig. 10 endorse such
sectional dimensions of the sample, transverse to the-diregypectations as the resulting wavelendtis approximately

wave velocity through the bounded medium, also known a$02169 m/s. For an arbitrarily chosen excitation frequency

the bar velocity §,) and the velocity through the unbounded ¢

tion of wave motion, have to be smaller than the wavelengths 24 mm (9.25 wavelengths on the length of sample which
The mentioned velocities are defined by the following ex-gmounts to 30 mm). The wavelength is connected to veloc-

check looks at the amplitude of particle oscillatianzlated

to wave pressurp by using expression

1988; Marsden and Hughegy ¢ and frequencyf by the relatiom = ¢/ f. An additional
(54)

E
p7

whereA andyu are the Lard parameters. Observation is that

pressions (Ashman and Rho,

1983)
Cph

p
2mnfcp’

(56)

(55)

the velocity in unbounded medium becomes greater than iihis relation can be derived using the definition of the wave

the bounded one. In scope of biomechanics, equation (5%npedance and belongs to the basics of acoustic theory, (Hall

1993). By using (56), it can be shown that the approximate

= pc2 whereby Cy; repre-
sents the 11-component of the elasticity tensor (Williamgarticle amplitude for the example discussed in this sactio

appears often in the forn®y

has the value.82-10~7

Using the results from Chap. 3.6 and the expressionment values shown in Fig. 10 where the mean value of the
(54) and (55) the wave velocities through the cancellouslightly attenuated amplitudes amounts t835- 10~ 'mm.

mm

which agrees with the displace-

and Johnson, 1989).
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4.4 Wave attenuation time, an idea for a possible improvement of the model in the
future work.
The last group of simulations considers the analysis of wave The final question to be considered here is the distinction
attenuation. Here the propagation of waves of different freof the fast and the slow wave. The existence of these two
quencies through samples with different material pararsete kinds of waves was predicted by Biot (Biot, 1956a,b) and
is simulated in order to check the experimentally obtainedxperimentally observed by Hosokawa and Otani (1997).
result that increasing excitation frequency and mategatd But the question if and when these two waves appear still
sity cause increasing attenuation. is an open issue and in some experimental studies only a
Firstly, consideration is given to the influence of increas-single wave is observed (Nicholson et al, 1996; Strelitzki
ing excitation frequency on bone behavior. To this end theind Evans, 1996; Droin et al, 1998; Wear, 2000). In their
type of material microstructure in the simulations is fixed,work Hosokawa and Otani (1998) show that the appearance
and sound excitation at different frequencies is applied.  of a second wave is dependent on the inclination of the in-
As the influence of attenuation is more noticeable in thecident wave to the trabeculae alignment. If the wave propa-
case of higher frequencies, excitation is simulated in thie d gates perpendicularly to the direction of the trabeculae, t
main 0.9-1.7 MHz. The microstructure is chosen accordinglow and the fast wave overlap completely in time and the
to the geometry of the RVE (Fig. 2) determined by the pasecond wave cannot be observed. In the case that the prop-
rametersa=1 mm, b=0.25 mm andd=0.05 mm p=1136 agation direction of the wave coincides with the longitu-
kg/m®). The results of the simulations are shown in Fig.dinal direction of trabeculae, the second wave will appear.
11 where the stronger attenuation obviously corresponds t@nother approach document the existence of mixed-modes
higher frequencies. were both waves overlap in time (Bauer et al, 2008; Ander-
The study of the relationship between attenuation an@on et al, 2008; Padilla and Laugier, 2000; Hughes et al,
density is more complicated than of the influence of exci-1999). The results presented in this chapter show that at the
tation frequency. This can be expected, because the RVEurrent stage the homogenization technique allows simula-
geometry presented in Chap. 3.1 is determined by three p&ion solely of a single longitudinal wave which can be re-
rameters (wall thickness, wall width b and side lengtl?).  garded as mixed-mode wave. The reason for this shortcom-
Correspondingly, three different types of tests can be caling could be the fact that our model still does not include the
ried out. In each group of tests, two of the geometrical pascattering effects which may be an important factor influenc
rameters have to be kept constant and the remaining oneiisg the separation of waves as well as the high attenuation
varied. For illustration, the results obtained by chandh®  (Padilla et al, 2008; Bas et al, 2004; Liépet al, 2002; Hiat
wall width are shown in Fig. 12. The results are obtained byet al, 2008b,a).
investigating materials with RVE such thet1 mm,d=0.05
mm and the width of walb takes the values 0.25-0.125 mm.
Figure 12 shows that decreasing density causes decreasif
attenuation. Similar results are obtained for the decngasi

gConclusions

density caused by the decreasing wall thickness or increag—-hIS contribution is concemed with the muIUscglg model_—
ing of cancellous bone. The assumed RVE consisting of thin

ing side length (llic, 2008). . .
From Figs. 11 and 12, the conclusion can be drawn tha\4[valls and the marrow core is described and the process of

the numerical simulations endorse experimental restiés: t OSIeOpOrosis is Sif““""?ted by varying the geometrical param
greater excitation frequency and sample density corredsponeters'-rhe results in this pha§e show that' Youn’g S ?”‘?' shear
to the greater attenuation. The numerical values attevuati modulus decrease monotonically and Poisson's ratio isesea

. . . monotonically with increasing porosity. For the tests with
are obtained by using expression the constant unit side length of the RVE, the values of Yosing’
a— InAV’ (57) modulus are in the interval 1417.17-4163.74 N/mand

Ad’ of the shear modulus 32.55-477.82 N/ArPoisson’s ra-
where, in the contrast to (49V’ represents the ratio of the tio amounts to 0.266-0.392. The calculations are repeated
amplitudes at two points of the same sample, laying at thalso for the pure skeleton, and these results are compared
same horizontal level, but with the distand’ amounting  with those experimentally obtained, showing an excellent
to the integer number of the wave lengths. The obtained vahgreement. The Young’s modulus in this case amounts to
ues amount on average to 0.115-0.225 Np/cm, which is ap050.60-2114.80 N/mffor d=0.05 mm.A further com-
proximately the same as if they would be obtained by supelparison with results obtained when considering cancellous
position of the attenuation due to the solid frame and fluicbone as a biphasic material shows that the marrow phase has
core separately. However the values are smaller than thosegreat influence on Poisson’s ratio and a small influence on
obtained experimentally. This can be explained by the misshe shear modulus, which is justified by the small shear re-
ing traction term at the phase interface which is at the samsistance and the high Poisson’s ratio of the fluid phase.
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The later part of the paper concentrates on macroscal®atoz JL, Tahar MB (1982) Evaluation of new quadrilateral
calculations and particularly on the simulation of the ul- thin plate bending element. Int J Num Meth Eng 18:1655—
trasonic attenuation test. To this end the wave propagation 1677
through the two-dimensional FE model of the sample is simBauer AQ, Marutyan KR, Holland MR, Miller JG (2008)
ulated. In the different tests, the excitation frequencyels Negative dispersion in bone: The role of interference
as the geometrical properties of the RVE are varied. The re- in measurements of the apparent phase velocity of
sults obtained in this phase endorse the experimental find- two temporally overlapping signals. J Acoust Soc Am
ings that increasing density and excitation frequency €aus 123(4):2407-2414
an increasing attenuation coefficient, but the numerichl va Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong
ues show deviation from values obtained experimentally. EK, Keaveny TM (2004) Comparison of the elastic and
This, of course, provides a motivation for further improve- vyield properties of human femoral trabecular and cortical
ment of the RVE and an idea is to change the coupling con- bone tissue. J Biomechanics 37(1):27-35
dition on the phase interface and to introduce the contaddiot MA (1956a) Theory of propagation of elastic waves in
friction. As the solid frame has a great specific surfaces, thi  fluid-saturated porous solid. |I. Low-frequency range. Jour
contribution may have an important influen&ewrthermore, Acoust Soc Am 28(2):168-178
an implementation of scattering effects and alternative co Biot MA (1956b) Theory of propagation of elastic waves in
stitutive laws for the phases could also lead to more réalist  fluid-saturated porous solid. Il. Higher frequency range.
values for the attenuation coefficient. Jour Acoust Soc Am 28(2):179-191

Although an improvement of the RVE is contemplated,Bossy E, Talmant M, Laugier P (2004) Three-dimensional
the results have shown that the multiscale FEM is a method simulations of ultrasonic axial transmission velocity mea
very convenient to study this type of material. Some of its surement on cortical bone models. J Acoust Soc Am
useful properties are the short calculation time and thewid 115:2314-2324
spectrum of application regarding micro- and macroscopi®ossy E, Talmant M, Laugier P (2004a) Bi-directional ax-
problems. Moreover the simulations at the microlevel allow ial transmission can improve accuracy and precision of
the comparison with experimental results and thus a reliabl ultrasonic velocity measurement in cortical bone: a val-
analysis yielding optimal geometrical parameters. Begaus idation on test material. IEEE TransUltrason Ferroelectr
of this, the method is also a good starting point for solving Freq Control 51:71-79
inverse problems. Bossy E, Padilla F, Peyrin F, Laugier P (2005) Three-
dimensional simulation of ultrasound propagation
through trabecular bone structures measured by syn-
chrotron microtomography. Phys Med Biol 50:5545—

: 5556
And CC, M KR, Holland M, Wear KA, Mill . N
naerson arutyan oflan ear ner Buchanan JL, Gilbert RP (2006) Determination of the pa-

JG (2008) Interference between wave modes may con- . .

) . : : . rameters of cancellous bone using high frequency acous-
tribute to the negative dispersion observed in cancellous tic measurements. Math Computer Model 45(3-4):281—
bone. J Acoust Soc Am 124(3):1781-1789 308 ' P '

Ashman RB, Rho JY (1988) Elastic modulus of trabecular .
bone material. J Biomechanics 21(3):979-986 Buchanan JL, Gilbert RP, Khashanah K (2002) Recovery

Ashman RB, Corin JD, Buskirk WCV, Rice JC (1984) of the poroelastic parameters of _cancellou_s pone using
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nigue. J Biomechanics 20(10):979-986 12(2)'9(19—126}/ ’ b

Barkmann E, Kantorovich E, Singal C, Hans D, Genant H . . . . .
g .. Droin P, Berger G, Laugier P (1998) Velocity dispersion of
Heller M, Gluer C (2000a) A new method for quantitative . :
acoustic waves in cancellous bone. IEEE Trans Ultrason

ultrasound measurement at multiple skeletal sites. J Clin
P Ferroelectr Freq Control 45:581-592

Densitometry 3:1-7 . .
Bas PYL, Lupie F, Conoir JM, Franklin H (2004) N-shell F2Nd M, Gilbert RP, Panachenko A, Vasilic A (2007) Ho-
mogenizing the time harmonic acoustics of bone. Mat

cluster in watter: multiple scattering and splitting ofaes
P 9 b g Comput Model

nances. J Acoust Soc Am 115(4):1460-1467 . . . .
Bathe KJ (1996) Finite element(p)rocedures Prentice—HafI;”bertRP’ Lin ZY, Hackl K (1998) Acoustic Green function
' approximations. J Comput Acoust 6(4):435-452

International

References



16

Hackl K (1997) A framework for nonlinear shells based onllic S, Hackl K (2004) Homogenisation of random com-
generalized stress and strain measures. Int J Solids Structposites via the multiscale finite-element method. PAMM
34(13):1609-1632 4:326-327

Hackl K (1998) Asymptotic methods in underwater acousdlic S, Hackl K (2007) Application of the multiscale fem
tics. In: Florian K, Hackl K, Schnitzer F, Tutschke W  to the modeling of heterogeneous materials. Proceedings
(eds) Generalized analytic functions - Theory and Appli- of the first seminar on The Mechanics of Multifunctional
cation to Mechanics, Kluwer Academic, pp 229-240 Materials: pp 47-51

Haiat G, Padilla F, Peyrin F, Laugier P (2007) Variation Laugier P, Berger G, Giat P, Bonnin-Fayet P, Laval-Jeantet
of ultrasonic parameters with microstructure and material M (1994a) Ultrasound attenuation imaging in the os cal-
properties of trabecular bone: A three-dimensional model cis: an improved method. Ultrason Imaging 16:65—76
simulation. J Bone Miner Res 22:665-674 Luo G, Kaufman JJ, Chiabrera A, Bianco B, Kinney JH,

Haiat G, Llemery A, Renaud F, Padilla F, Laugier P, NailiS Haupt D, Ryaby JT, Siffert RS (1999) Computational
(2008a) Velocity dispersion in trabecular bone : influence methods for ultrasonic bone assessment. Ultrasound Med
of multiple scattering and of absorption. J Acoust Soc Am Biol 25:823—-830
124(6):4047-4058 Luppé F, Conoir JM, Franklin H (2002) Scattering by fluid

Haiat G, Padilla F, Peyrin F, Laugier P (2008b) Fast wave ul- cylinder in a porous medium: Application to trabecular
trasonic propagation in trabecular bone: numerical study bone. J Acoust Soc Am 111(6):2573—-2582
of the influence of porosity and structural anisotropy. JMarsden JE, Hughes TJR (1983) Mathematical foundations

Acoust Soc Am 123(3):1694-1705 of elasticity. Dover Publications
Hall DE (1993) Basic Acoustics. Krieger Publishing Com- McKelvie ML, Palmer SB (1991) The interaction of ultra-
pany, Malabar Florida sound with cancellous bone. Phys Med Biol 10:1331—

Hazanov S, Amieur M (1995) On overall properties of elas- 1340

tic heterogeneous bodies smaller than representative vdldiehe C, Schotte J, Lambrecht M (2002) Homogenisation

ume. Int J Eng Sci 33(9):1289-1301 of inelastic solid materials at finite strains based on in-
Hildebrand T, Riegsegger P (1997) Qualification of bone cremental minimization principles. J Mech Phys Solids

microarchitecture with the structure model index. Comp 50:2123-2167

Meth Biomech Biomed Eng 1:15-23 Mura T (1993) Micromechanics: overall properties of het-
Hill R (1963) Elastic properties of reinforced solids: some erogeneous solids. Kluwer Academic Publishers

theoretical principles. J Mech Phys Solids 11:357-372 Nemat-Nasser S, Hori M (1993) Micromechanics: overall
Hill R (1972) On constitutive macro-variables for heteroge  properties of heterogeneous materials. Nord-Holland Se-

neous solids at finite strain. Proc R Soc Lond A 326:131- ries in: Applied Mathematics and Mechanics 37

147 Nicholson PHF, Lowet G, Langton CM, Dequeker J, der
Hoffler CE, Moore KE, Kozloff K, Zysset PK, Brown MB, Perre GV (1996) A comparison of time-domain and fre-

Goldstein SA (2000) Heterogeneity of bone lamellar- quency domain approaches to ultrasonic velocity mea-

level elastic moduli. Bone 26:603—609 surement in trabecular bone. Phys Med Biol 41:2421—
Hollister SJ, Kikuchi N (1994) Homogenization theory 2435

and digital imaging: a basis for studying the mechanicdNiebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM

and design principles of bone tissue. Biotechnol Bioeng (2000) High-resolution finite element models with tissue

43(7):586-596 strength asymmetry accurately predict failure of trabecu-
Hosokawa A (2006) Ultrasonic pulse waves in cancellous lar bone. J Biomech 33(12):1575-1583

bone analyzed by finite-difference time-domain methodsOstoja-Starzewski M (2006) Material spatial randomness:

Ultrasonics 44:227-231 from statistical to representative volume element. Probab
Hosokawa A, Otani T (1997) Ultrasonic wave propagation Eng Mech 21(2):112-132

in bovine cancellous bone. Jour Acoust Soc Am 101:558Padilla F, Laugier P (2000) Phase and group velocities of

562 fast and slow compressional waves in trabecular bone. J
Hosokawa A, Otani T (1998) Acoustic anisotropy in bovine  Acoust Soc Am 108:1949-1952

cancellous bone. J Acoust Soc Am 103:2718-1722 Padilla F, Jenson F, Bousson V, Peyrin F, Laugier P (2008)
Hughes ER, Leighton TG, Petley GW, White PR (1999) Ul- Relationship of trabecular bone structure with quantita-

trasonic propagation in cancellous bone: a new stratified tive ultrasound parameters: In vitro study of human prox-

model. Ultrasound Med Biol 25:811-821 imal femur using transmission and backscatter measure-
Ilic S (2008) Application of the multiscale FEM to the mod- ments. bone 42:1193-1202

eling of composite materials. Ph.D. Thesis, Ruhr UniverPahr DH, Zysset PK (2008) Influence of boundary condi-

sity Bochum, Germany tions on computed apparent elastic properties of cancel-



17

lous bone. Biomechan Model Mechanobiol 7:463-476

Rho JY, Ashman RB, Turner CH (1993) Young’s modulus
of trabecular and cortical bone material: Ultrasonic and
microtensile measurements. J Biomechanics 26(2):111—
119

Rietbergen BV, Odgaard A, Kabel J, Huiskes R (1996)
Direct mechanics assessment of elastic symmetries and
properties of trabecular bone architecture. J Biomech
29(12):1653-1657

Schibder J (2000) Homogenisierungsmethoden der nicht-
linearen Kontinuumsmechanik unter Beachtung von
Stabilitats Problemen. Habilitationsshrift, Univegit
Stuttgart, Deutschland

Strelitzki R, Evans JA (1996) On the measurement of the
velocity of ultrasound in the os calcis using short pulses.
Eur J Ultrasound 4:205-213

Taylor RL (1998) Finite element analysis of linear shell
problems. In: Whiteman J (ed) The Mathematics of finite
element and Applications, VI, Academic Press, London

Torquato S (2002) Random heterogeneous materials: mi-
crostructure and macroscopic properties. Springer Verlag
New York

Wanji C, Cheung YK (1997) Refined quadrilateral discrete
kirchhoff thin plate bending element. Int J Num Meth Eng
40:3937-3953

Wear KA (2000) Measurement of phase velocity and
group velocity in human calcaneus. Ultrasound Med Biol
26:641-646

Williams JL, Johnson WJH (1989) Elastic constants
of composites formed from pmma bone cement and
anisotropic bovine tibial cancellous bone. J Biomechan-
ics 22(6/7):673—682

Willis JR (1981) Variational and related methods for the
overall properties of composites. Adv Appl Mech 21:1—
78

Willis JR (1982) Elasticity theory of composites. Mechamnic
of Solids, the Rodney Hill 60th Anniversary Volume pp
653-686

Zienkiewicz OC, Taylor RL (2000) The finite element
method. Butterworth-Heinemann

Zohdi TI, Wriggers P (2005) Introduction to Computational
Micromechanics. Springer Series in: Lecture Notes in
Applied and Computational Mechanics, 20

Zysset P (2003) A review of morphology-elasticity relation
ships in human trabecular bone: theories and experiments.
J Biomechanics 36:1469-1485

Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA
(1999) Elastic modulus and hardness of cortical and tra-
becular bone lamellae measured by nanoindentation in the
human femur. J Biomechanics 32:1005-1012



