@ \ddagger ELAWERTTYof

Dean Tom Apple and the College of Arts and Sciences cordially invite you to the Inaugural Lecture of George C. Hsiao as Carl J. Rees Professor in Mathematics

"Stokes Paradox and Its Consequences"

4:00p.m., Tuesday, November 29, 2005 004 Kirkbride

Reception immediately following the lecture Blue and Gold Club, 44 Kent Way

Please respond by November 22 to (302)831-2793
or rssp@art-sci.udel.edu

Born in Shanghai, China, Dr. Hsiao is an engineering graduate of the National Taiwan University. He received his master's degree in civil engineering from Carnegie Institute of Technology and his doctorate in Mathematics from Carnegie-Mellon University. In 1969, Dr. Hsiao joined the Department of Mathematical Sciences at the University of Delaware, where he has been a full professor since 1977. He was named the Carl J. Rees Chair Professor in Mathematics at the University in 2005.

Dr. Hsiao's education in dual disciplines has influenced his research interests, which include integral equations, partial differential equations, singular perturbation theory, elasticity and fluid dynamics, wavelets, and direct and inverse problems in acoustic and electromagnetic scattering. He is one of the leading experts and authorities on variational and boundary element methods for integral equations. The author of more than 150 papers on mathematics, applied mechanics, oceanic environment, rheology and biomedical engineering, Dr. Hsiao has given invited lectures all over the world. He is the co-author of Maple Projects for Differential Equations; Water Waved and Ship Hyдroдynamics: An Introduction, and Boundary-field Equation Methods for a Class of Nonlinear Problems.

Dr. Hsiao was an Alexander von Humboldt-Stiftung senior Fellow and has been awarded three time research Humboldt fellowships in Germany. Recognized for his excellence as an educator, Dr. Hsiao was the recipient of the 1996 College of Arts and Science Outstanding Teacher Award and the 2000 winner of the Francis Alison Medal, the highest faculty honor at the University of Delaware, in recognition of his scholarship, professional achievement and dedication.

DEPARTMENT OF MATHEMATICAL SCIENCES

CARL J. REES PROFESSOR INAUGURAL LECTURE

Dr. George C. Hsiao
Department of Mathematics
University of Delaware

Stokes Paradox and its Consequences

Tuesday, November 29, 2005
Kirkbride 004
4:00-5:00

In this lecture, I would like to share my research experience of 30 years in applied mathematics with the audience. I began my research by solving a simple boundary-value problem for the Stokes equation. Over the years, this problem has taken me in many unexpected directions, and this journey has proved to be an extremely rewarding experience.

Carl J. Rees Professor Inaugural Lecture

 November 29, 2005
Stokes Paradox and its Consequences

George C. Hsiao
www.math.udel.edu /~hsiao
Department of Mathematical Sciences

UNIVERSITY OF DELAWARE

Prologue

CNN-Poll

CNN.com - UD

N.com.

MATH, BOTH LOVED AND HATED

While almost four in 10 adults polled said they hated math during their school years, it also ranked highest as a favorite subject.

- What was your favorite subject?

E What was your most hated?

[^0]The Most Notorious Statement in the History of Mathematics

I have discovered

 a truly marvelous proof of this which, however, this margin is too narrow to hold.- Fermat in Paris, 1621

From: Newsletter Vol. 2, No.1, 1994, Dept. of Math Sciences, University of Delarware edited by T. S. Angell and Ivar Stakgold

Fermat's Last Theorem

Fermat's Last Theorem (FLT) asserts that there are no positive integers X, Y, and Z such that

$$
X^{n}+Y^{n}=Z^{n}
$$

in which n is a natural number greater than 2 .

- Andrew John Wiles proved Fermat's Last Theorem in 1994 (with the help from Richard Taylor). It had taken mathematicians only 329 years since Fermat's death in 1665 to settle the problem.
- Theorem of Pythagoras: $X^{2}+Y^{2}=Z^{2}$

Andrewo John Wiles (1953 --)

- Andrew John Wiles: (born April 11, 1953) is a British mathematician living in the United States. In 1974, he received his bachelor's degree from the University of Oxford. He then completed his PhD. at the University of Cambridge in 1979 and is currently a Professor at Princeton University.
- Wiles received the 1995 1996 Wolf Prize for spectacular contributions to number theory and related fields, for major advances to number theory on fundamental conjectures and for

Settling
Fermat's Last Theorem.

Outline

- Stokes Paradox
- Boundary Element Methods
- Some Numerical Experiments
- Ongoing Research: $\psi \mathrm{dOs}$
- Concluding Remarks

- Stokes Paradox

Wednesday, April 22 1:30 P.M.

105 Colburn

Prof. George Hsiao Mathematics Department University of Delaware
"Stokes Paradox"

Professor Hsiao is an applied mathematician with a masters degree in civil engineering, specializing in twophase (solid liquid) flow. His more recent interests, growing out of the earlier work, are concerned with singular perturbations of the Navier-Stokes equations. All members of chemical engineering with fluid mechanics interests will wish to get to know him. The seminar will start promptly at $1: 30$ since Prof. Hsiao has a 2:30 class.

1970 Fluid Mechanics

 Seminar in Chemical EngineeringDepartment of Chemical Engineering Fluid Mechanics Seminar Wednesday, April 22 1:30 P.M. 105 Colburn

Prof. George Hsiao Mathematics Department University of Delaware
"Stokes Paradox"
Professor Hsiao is an applied mathematician with a masters degree in civil engineering, specializing in two- phase (solid liquid) flow. His more recent interests, growing out of the earlier work, are concerned with singular perturbations of the Navier-Stokes equations. All member of chemical engineering with fluid mechanics interests will wish to get know him. This seminar will start promptly at 1:30 since Prof. Hsiao has a 2:30 class.

Apparatus for Blood Flow

The Profile Viscosity and Other Characteristics of Blood Flow in a Non-uniform Shear Field

Fisessise

TEST NO.5-A HEMATOCRIT $\mathrm{H}=29.5 \%$ AVERAGE VELOCITY UM $=4.9 \mathrm{~mm} / \mathrm{sec}$. I TIME UNIT $=1.33 \mathrm{M} \mathrm{Sec}$.

GEORGE BUGLIARELLO, ${ }^{*}$ CHANDRA KAPUR, and GEORGE HSIAO, Civil Engineering Department, Carnegie Institute of Technology, Pittsburgh, Pennsylvania

Velocity and viscosity profiles for representative tests at higher concentrations in the 40-m tube.

Blood Flow in Vitro

1974 ASCE Meeting

- George Bugliarello: University Professor, Chancellor and former President (1973-94) of Polytechnic University in Brooklyn, NY.
- My mentor, collaborator and dear friend.

Metzner: Flow of Non-Newotonian Fluids

HANDBOOK OF FLUID DYNAMICS

VICTOR L. STREETER, Editor-in-Chief

Professor of Hydraulics
University of Michigan

FIRST EDITION

McGRAW-HILL BOOK COMPANY, INC. NEW YORK TORONTO LONDON

1961

Section 7

FLOW OF NON-NEWTONIAN FLUIDS

By
A. B. METZNER, University of Delaware, Newark, Delaware
INTRODUCTION AND PERSPECTIVE 7-2
7.1. Notation. $7-2$
7.2. General Position of Non-Newtonian Materials within the Spectrum
of Known Types of Fluid Behaviorof Known Types of Fluid Behavior7-3
7.3. Effects of Temperature Behavior 7-9
MEASUREMENT OF FLOW PROPERTIES 7-9
7.5. Viscometry 7-9
7.6. Rheogoniometry-
LAMINAR FLOW THROUGH ROUND TUBES7.7. Purely Viscous Fluids.
7.8. Category II (Time-dependent) Fluids
7.9. Viscoelastic Systems.7.9. Viscoelastic Systems.7-15
-NEWTONIAN FLUIDS 7-20
.10. Purely Viscous Fluids. $7-20$
$7-23$
12. Viscoelastic Systems 7-23
MISCELLANEOUS FLOW PROBLEMS7-24
7.13. Flow through Annuli $7-24$
$7-26$14. Flow through Fitting
7.15. Flow between Parallel Flat Plates
7.16. Flow over Flat Plates (Boundary-layer Development)
7.17. Extrusion and Molding
7-26(Boundary-

18. Elliptical and Rectangular Ducta
. 7-28
REFERENCES 7-29

Viscous Fluid Flow

Photograph by Sadatoshi Taneda in
"An Album of Fluid Motion", assembled by Milton van Dyke

Viscous Fluid Flow

Boundary Value Problem $\left(P_{R e}\right)$

(in dimensionless form) $\Omega^{c}:=\mathbb{R}^{2} \backslash \bar{\Omega}$

$$
\begin{gathered}
-\Delta \mathbf{u}+\operatorname{Re}(\mathbf{u} \cdot \nabla \mathbf{u})+\nabla p=\mathbf{0} ; \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \quad \Omega^{c}, \\
\left.\mathbf{u}\right|_{\Gamma}=\mathbf{0} \quad \text { on } \quad \Gamma=\partial \Omega \\
\mathbf{u} \rightarrow \mathbf{u}_{\infty}:=\mathbf{Q} /|\mathbf{Q}|, \quad p \rightarrow 0 \quad \text { as } \quad|\mathbf{x}| \rightarrow \infty .
\end{gathered}
$$

Reynolds number. $R e:=\frac{D|\mathbf{Q}|}{\mu / \rho} \ll 1$.
Force. $\mathbf{F}=\int_{\Gamma} \underline{\underline{\sigma}}[\mathbf{n}] d s, \quad \underline{\underline{\sigma}}=-p \underline{\underline{I}}+\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)$.

Boundary Value Problem $\left(P_{R e}\right)$

(in dimensionless form) $\Omega^{c}:=\mathbb{R}^{2} \backslash \bar{\Omega}$

$$
\begin{gathered}
-\Delta \mathbf{u}+\operatorname{Re}(\mathbf{u} \cdot \nabla \mathbf{u})+\nabla p=\mathbf{0} ; \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \quad \Omega^{c}, \\
\left.\mathbf{u}\right|_{\Gamma}=\mathbf{0} \quad \text { on } \quad \Gamma=\partial \Omega \\
\mathbf{u} \rightarrow \mathbf{u}_{\infty}:=\mathbf{Q} /|\mathbf{Q}|, \quad p \rightarrow 0 \quad \text { as } \quad|\mathbf{x}| \rightarrow \infty .
\end{gathered}
$$

Reynolds number. $R e:=\frac{D|\mathbf{Q}|}{\mu / \rho} \ll 1$.
Force. $\mathbf{F}=\int_{\Gamma} \underline{\underline{\sigma}}[\mathbf{n}] d s, \quad \underline{\underline{\sigma}}=-p \underline{\underline{I}}+\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)$.

- Stokes Paradox. The reduced problem $\left(P_{0}\right)$ has no solution.

Main Results

Theorem (Hsiao and MacCamy 1982).

- For any given constant vector A, there exists a unique "solution" pair (\mathbf{u}, p) of the modified Stokes problem:

$$
\begin{gathered}
-\Delta \mathbf{u}+\nabla p=\mathbf{0} ; \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \quad \Omega^{c}, \\
\left.\mathbf{u}\right|_{\Gamma}=\mathbf{0} \quad \text { on } \quad \Gamma, \\
\mathbf{u}-\mathbf{A} \log |\mathbf{x}|=O(1), \quad p=o(1) \quad \text { as } \quad|\mathbf{x}| \rightarrow \infty .
\end{gathered}
$$

- The force F admits the asymptotic expansion

$$
\mathbf{F}=4 \pi\left\{\frac{\mathbf{A}_{1}}{(\log R e)}+\frac{\mathbf{A}_{2}}{(\log R e)^{2}}\right\}+O\left((\log R e)^{-3}\right)
$$

as $R e \rightarrow 0^{+}$,
where the constant vectors A_{1} and A_{2} are coincided with those obtained by the singular perturbation procedure developed by Hsiao and MacCamy in [1973].
Moreover, the constant vector \mathbf{A}_{1} is independent of the shape of the obstacle.

Lecture Notes in Mathematics

Edited by A. Dold and B. Eckmann

942

Theory and Applications of Singular Perturbations

Proceedings, Oberwolfach 1981

Edited by W. Eckhaus and E.M. de Jager

Springer-Verlag Berlin Heidelberg New York

SINGULAR PERTURBATIONS FOR THE TWO-DIMENSIONAL
VISCOUS FLOW PROBLEM

George C. Hsiao*
University of Delaware Newark, Delaware 19711 U.S.A.
and Richard C. MacCamy** Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 U.S.A.

ABSTRACT

This paper is concerned with the validity of the method of matched inner and outer expansions for treating the two-dimensional steady flow. of a viscous, incompressible fluid past an arbitrary obstacle. In particular, it is shown that the force exerted on the obstacle by the fluid admits the asymptotic representation:

$$
E=4 \pi\left\{A_{1}(\log R)^{-1}+A_{2}(\log R)^{-2}\right\}+0\left((\log R)^{-3}\right)
$$

as the Reynolds number $R \rightarrow 0^{+}$, where A_{i} 's are constant vectors which are the same as those obtained by the matching procedure formulated previously by the authors. This asymptotic representation formula agrees also, up to terms of $O\left((\log R)^{-2}\right)$, with the expression from the solution of the complete Oseen boundary-value problem; in fact, it is seen that these calculations are as accurate as those from the oseen solution, since the Oseen solution is no longer a valid approximation to the solution of the viscous flow problem for terms of order higher than $(\log R)^{-2}$. Proofs involve simple layer potentials and asymptotic estimates for solutions of various linearized Navier-Stokes equations.

1. Introduction

In recent years, there has been an increasing effort to establish the validity of formal expansions constructed by the method of matched asymptotic expansions for treating the problem of the two-dimensional viscous flow past a cylinder as indicated from a number of investigations on the Lagerstrom model as well as its variants $[1,2,11,13,21,24]$, to name a few. The purpose of this paper is to show that the conclusions on the validity of formal expansions for the model problems in [11] and [13] remain also true for the viscous flow problem. That is, we shall show that the formal expansions based on the matching procedure previously formulated by Hsiao and MacCamy [12] for the Navier-Stokes
*The work of this author was supported in part by the Alexander von Humboldt Foundation, Germany.
**The work of this author was supported in part by the National Science Foundation under Grant MCS-800-1944.

Mathematical Ingredients

- Asymptotic Analysis/Singular Perturbation Theory
- Boundary Integral Equations (of first kind) /Boundary Element Methods

An Historical Paper

SIAM Review
Vol. 15, No. 4, October 1973

SOLUTION OF BOUNDARY VALUE PROBLEMS BY INTEGRAL EQUATIONS OF THE FIRST KIND*

GEORGE HSIAO \dagger AND R. C. MACCAMY \ddagger

Abstract. This paper discusses an integral equation procedure for the solution of boundary value problems. The method derives from work of Fichera and differs from the more usual one by the use of integral equations of the first kind. The method here extends to equations of higher order than second. Its connection with singular perturbation theory and thin-body theory are indicated by examples. Some numerical experiments are included to indicate how the method operated in specific situations.

Bellman's Letter (February 1, 1974)

MATHEMATICS IN SCIENCE AND ENGINEERING
A Series of Monographs and Textbooks

I read your paper entitled "Singular Perturbations for a Nonlinear Differential Equation with a small parameter," with great interest. Haroe you given any thought to extend these results and collecting them in book form? If so, I would be glad to consider it for my Academic Press series.
-Richard Bellman

TH Darmstadt (1975-76)

FACHBEREICH MATHEMATIK DER TECHNISCHEN HOCHSCHULE DARMSTADT

61 Darmstadt, den 27.4.1976

EINLADUNG

2 um
Kolloquium über Mathematik

Am Donnerstag, dem 6. Mai 1.976, um 17.15 Uhr, in Raum 11/23 wird

Herr Professor G.C. Hsiao (Universität of Delaware, z.Zt. Darmstadt)
uber das Thema
Boundary value problems for quasilinear elliptic equations sprechen.
Tee: 16.30 Uhr, in Raum 2d/406

Der Vortrag von Herrn Hsiao

- Boundary Element Methods

A Schematic Procedure for BEM

Two Fundamental Papers

Wolfgang L. Wendland

Technische Hochschule Darmstadt, Darmstadt, Germany
Submitted by J. L. Lions

This paper discusses a finite element approximation for a class of singular integral equations of the first kind. These integral equations are deduced from Dirichlet problems for strongly elliptic differential equations in two independent variables. By a variation of technique due to Aubin, it is shown that the Galerkin method with finite elements as trial functions leads to an optimal rate of convergence.

Offprint from "Archive for Rational Mechanics and Analysis", Volume 94, Number 2, 1986, pp. 179-192
(C) Springer-Verlag 1986

Printed in Germany

On the Stability of Integral Equations of the First Kind with Logarithmic Kernels the First Kind with Logarithmic Kernels

George C. Hsiao
Communicated by G. Fichera

This paper discusses the stability of the Galerkin method for a class of boundary integral equations of the first kind. These integral equations arise in acoustics, elasticity, and hydrodynamics, and the kernels of the principal parts of the corresponding integral operators all have logarithmic singularities. It is shown that an optimal choice of the mesh size can be made in the numerical computation so that one will obtain an optimal rate of convergence of the approximate solutions. The results here are consistent with those obtained by the Tikhonov regularization procedure.

Fundamental Concepts

- Weak solutions for the boundary integral equations and their intimated relations with those of the corresponding PDE's
- Stability of the boundary integral equations and its dependance on the order of the BIO's.

Encyclopedia of Computational Mechanics

Volume 1

Volume 2
Volume 3

Fundamentals

Solids and Structures
Fluids
(3)WILEY

Green's $2^{\text {nd }}$ Formula

A Pleasant Surprise

Professor David L. Russell is the former Ph.D. thesis adviser of the first author (G.C) at the University of Wisconsin-Madison. His work and personality have had a profound influence in shaping both authors' career interests and in developing their professionalism.

Professor George C. Hsiao is a founder of the mathematical theory of boundary element methods. We have benefitted greatly from reading his papers. He also generously consulted with us and provided assistance on numerous occasions.

We have tremendous admiration for both individuals. To them we delicate this monograph.

Dedication

BOUNDARY ELEMENT METHODS

Goong Chen

Professor of Mathematics and Aerospace Engineering
Texas A \＆M University
College Station，Texas 77843，USA

Jianxin Zhou

Assistant Professor of Mathematics
Texas A \＆M University
College Station，Texas 77843，USA

Dedicated to

Professor David L．Russell on the occasion of his 50th birthday
and
Protessor George C．Hsiao
on the occasion of his 55th birthday

$$
\begin{aligned}
& \text { 歯絡我们的艺的: } \\
& \text { 萧家的教投 } \\
& \text { 及 } \\
& \text { 大徫•羅盅教投 }
\end{aligned}
$$

Professor David L．Russell is the former Ph．D．thesis advisor of the first author（G．C．）at the University of Wisconsin－Madison．His work and per－ sonality have had a profound influence in shaping both authors＇career interests and in developing their professionalism．

Professor George C．Hsiao is a founder of the mathematical theory of boundary element methods．We have benefitted greatly from reading his papers．He also generously consulted with us and provided assistance on numerous occasions

We have tremendous admiration for both individuals．To them we ded－ icate this monograph．

A Thoughtful Thank You

Market Dining Rooms
Established Before You
Were © Bonn
340 Faneuil Hall
Marketplace
Boston, Massachusetts 02109

No 1155

The Beaver of this Certificate is entitled to Spirits and Victuals in the amount of
 S

Th: George Hsiao
Tram: Peter Levin and Andrew Hansen

- Some Numerical Experiments

Flow Pattern

Hsiao, G. C., Kopp, P., and Wendland, W. L., Some applications of a Galerkin - Collocation method for boundary integral equations of the first kind, Math. Method. Appl. Sci. 6 (1984) 280--325.

Viscous Flow Past an Obstacle \& Absolute Error Estimate

High Stress Gradients

G.C. Hsiao, E. Schnack, and W.L.Wendland, Hybride coupled finite-boundary element methods for Elliptic systems of second order,
Comput. Methods Appl. Mech. Engrg. 190 (2000) 431-485

Radar Cross Section

G.C. Hsiao, R.E. Kleinman and D.Q. Wang, Applications of boundary integral methods in 3D electromagnetic scattering,
J. Comp. Appl. Math., 104 (1999) 89-110.

- Ongoing Research: Pseudo-differential Operators ($\psi \mathbf{d O s}$)

Basic Approaches

- Recast boundary integral operators as ψd Os.
- Analyse boundary integral equations by employing appropriate mathematical tools in ψ dOs.

The Standard $\psi \mathbf{d O}$

- Symbol Class $\mathrm{S}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$

Def: for $m \in \mathbb{R}$, the symbol class $\mathbf{S}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$ is defined to consist of the set of functions $a \in C^{\infty}\left(\Omega \times \mathbb{R}^{n}\right)$ with the property that, for any compact set $K \subset \subset \Omega \subset \mathbb{R}^{n}$ and multiple-index α, β there exist positive constants $c(K, \alpha, \beta)$ such that

$$
\left|\left(\frac{\partial}{\partial x}\right)^{\beta}\left(\frac{\partial}{\partial x}\right)^{\alpha} a(x, \xi)\right| \leq c(K, \alpha, \beta)(1+|\xi|)^{m-|\alpha|}
$$

for all $x \in K$ and $\xi \in \mathbb{R}^{n}$.

- Standard $\psi \mathbf{d O}$ Class $O P S^{m}\left(\Omega \times \mathbb{R}^{n}\right)$

Def: For $a \in O P S^{m}\left(\Omega \times \mathbb{R}^{n}\right)$, the set of all standard ψ dO's $A(x, D)$ of order m is denoted by $O P S^{m}\left(\Omega \times \mathbb{R}^{n}\right)$,

$$
\begin{aligned}
A(x, D) u & :=\mathcal{F}_{\xi \mapsto x}^{-1}\left(a(x, \xi) \mathcal{F}_{y \mapsto \xi} u(y)\right) \\
& =2(\pi)^{-n} \int_{\mathbb{R}^{n}} \int_{\Omega} e^{i(x-y) \cdot \xi} a(x, \xi) u(y) d y d \xi
\end{aligned}
$$

for $u \in C_{0}^{\infty}(\Omega)$ and $x \in \Omega$.

Theorem 1 The operator $A \in \operatorname{OPS}^{m}\left(\Omega \times \mathbb{R}^{n}\right)$ is a continuous operator

$$
A: C_{0}^{\infty}(\Omega) \rightarrow C^{\infty}(\Omega)
$$

The operator A can be extended to a continuous linear mapping from $\widetilde{H}^{s}(K)$ into $H_{l o c}^{s-m}(\Omega)$ for any compact subset $K \subset \subset \Omega$. Furthermore, in the framework of distributions, A can also be extended to a continuous linear operator

$$
A: \mathcal{E}^{\prime}(\Omega) \rightarrow \mathcal{D}^{\prime}(\Omega)
$$

George C. Hsiao and Wolfgang L. Wendland

Boundary Integral Equations

Mathematics - Monograph

August 31, 2005

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

George C. Hsiao and Wolfgang L. Wendland

Boundary Integral Equations

Mathematics - Monograph

August 31, 2005

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest
6.2.2 Parametrix and Fundamental Solution 293
6.2.3 Levi functions for scalar elliptic equations 298
305
6.2.5 Strong ellipticity and Gärding's ine 305
307
6.2.6 Review on Fundamental Solutions 307
308
7. Pseudodifferential Operators as Integral Operators 309
7.1 Pseudohomogeneous Kernels7.1.1 Integral operators as pssudodifferential operators of
Non-negative o finite part integral operators
7.1.4 A summary of the relations between kernels and symbols 347
7.2 Coordinate changes and pseudohomogeneous kernels 349
7.2.1 The transformation of general Hadamard finite part352

integral operators under change of coordinates
7.2.2 The class of invariant Hadamard finite part integraloperators under change of coordinates................ 3
8. Pseudodifferential and Boundary Integral Operators 8.1 Pseudodifferential Operators on Boundary Manifolds 8.1.1 Ellipticity on boundary manifolds 8.1. Schwartz kernels on boundary manifolds. .
Boundary operators generated by domain pseudodifferential
operator
8.5 Surface Potentials on the Boundary Manifold I.............
8.6 Volume Potentials
9. Integral Equations Recast as Pseudodifferential Equations 429 9.1 Newton Potential Operators with Symbols of Rational Type . 433
9.1.1 Generalized Newton potentials for the Helmholtz equa tion
9.1.2 The Newton potential for the Lamé system
9.2 Surface Potentials for Second Order Equations 440 9.2.1 Strongly elliptic differential equations 443
9.2.2 Surface potentials for the Helmholtz equation 446
9.2.3 Surface potentials for the Lamé system.
9.3 Invariance of boundary pseudodifferential operators 45
9.3.1 The hypersingular boundary integral operator for the Helmholtz equation.
9.3.2 The hypersingular operator for the Lamé system 458
464
9.4 Strong Ellipticity and Fredholm Properties

- Concluding Remarks

Carl J. Rees

Carl J. Rees
SERVANT OF UNIVERSITY
1920-1962
Professor of Mathematics Graduate Dean, Provost

- Carl Rees had a distinguished career at the University of Delaware from 1920 until his retirement in 1967. He advanced through the professorial ranks to Professor of Mathematics and served as Chair of the Department of Mathematics for ten years. He was appointed Dean of the College of graduate Studies as well as Provost of the University, serving simultaneously in these important posts for a number of years.
- He served his country in both World War I and World War II and was awarded the Medal of Freedom by General H. H. (Hap) Arnold for his work as an operations analyst.

Rees Hall in 80^{\prime} s (Applied Math Institute)

Our Friend Ralph

Rees Hall

Mathematischen Forschungsinstitut Oberwolfach

Professor Richard C. MacCamy (Carnegie-Mellon University)
Professor Wolfgang L. Wendland (Stuttgart University)

Three Generations

Prof. Manil Suri (UMBC), the author of the novel "The Death of Vishnu" Prof. Gabriel Gatica, Chair of Numerical Math., Univ. de Concepcion

Three Generations

Prof. Manil Suri (UMBC), the author of the novel "The Death of Vishnu" Prof. Gabriel Gatica, Chair of Numerical Math., Univ. de Concepcion

My Birthday Gift

Artificial Boundary Conditions for the Two-dimensional Wave Equation R.C. MacCamy*

1. Introduction

This paper represents a talk given by the author at the Conference on Boundary Elements at Oberwohlfach. It is based on joint work with T. Hagstrom and S. Hariharan, [6]. The paper is dedicated to George Hsiao in honor of his sixtieth birthday. Many years ago George was my student. Now he is the teacher.

My Collaborators and My Bosses

 in Math- Thomas S. Angell
- Fiorallba Cakoni
- Robert P. Gilbert
- Peter B. Monk
- Richard J. Weinacht
- Shangyou Zhang
- Ralph E. Kleinman
- Russell Remage, Jr.
- Willard E. Baxter
- L.P. Cook-Ioannidis
- Ivar Stakgold
- Philip Broadbridge

Collaborators in Engineering Tsu-Wei Chou, Morton M. Denn, C.Y. Yang

Theoretical Analysis of Wave Propagation in Woven Fabric Composites

```
BaORNo Chev* AND TSU-We Chol
    Center for Composite Materials and
    Department of Mechanical Engineering
        Unversity of Delaware
        George C. Hstao
Department of Mathematical Sctences
        University of Delaware
            *)
```

Creeping Flow of a Viscoelastic Liquid Through a Contraction: A Numerical Perturbation Solution

Jesse R. Black, Morton M. Denn and George C. Hslao

ABSTRACT

Creeping planar flow of a viscoelastic liquid through a contraction between upstream and downstream regions of fully developed lamina flow has been studied by combining a numerical solution with a perturba tion in Weissenberg number. Computations were carried out for contrac-
tion ratios of $2: 1$ and $5: 1$ and entry half-angles of $30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90° tion ratios of $2:$ and $5: 1$ and entry halion -angles of 30, singular integral equations for a density function along the flow boundary, and the stream function and all its derivatives are computed by weighted integration of the numerical density function. The region of convergence of the pertur-
bation series is estimated to include most of the range of practical bation series is est
processing interest.
processing interest.
A recirculating cormer eddy is observed for the 90° entry, but not for smaller entry angles. The velocity is more than 90% developed at the
downstream entrance for all cases. The entry pressure drop and entry downstream entrance for all cases. The entry pressure drop and entry
power requirement are weak functions of entry angle for angles of greate than 45°. The first elastic correction to the entry power requirement is obtained analytically and is shown to be small and negative.
1.1. INTRODUCTION

The behaviour of polymeric liquids has been studied extensively in viscometric shear flows, and the relationship between rheological properties and flow behaviour is well understood (e.g. Pipkin and Tanner, 1972). Many of the flows of practical interest in polymeric processing are not viscometric flows, however, nor can they be considered to be small perturbations about viscometric flows. The manner in which fluid properties influence the kinematics and stress field is poorly understood in a number of such

ASCE National Structural Engineering Meeting April 24-28, 1972 • Cleveland, Ohio $\$ 0.50$

SOME MATHEMATICAL CONCEPTS RELATED TO STOCHASTIC SPECTRUM ANALYSIS

G. C. Hsiao, M. A. Tayfun, and
C. Y. Yang, A. M. ASCE

Sea Grant College

$\$$ ea (Crant $\mathfrak{C a n l l e g g e}$

Ill is offictiallg ìeclared that George e.gtiao
is herehyg recognized ant highly commentèn for
assistance in achicefing sustaintè excellence in research, education,
 as a \&ea (brant College. Thor sperial serfices to the 伹niforsity, the State of diplafuare, ant the AJation therefore this certifieate is granted

This lecture is dedicated to

the new generation of

 mathematicians ...

Seminar-2005
... and future generations

[^0]: * Includes literature and writing, ** Other, none, not sure oombined, poll of 1,000 adults taken between Aug. 9-11, margin of error ± 3 percentage points

