Time domain thermoreflectance: From Fundamentals to Operational Details

Joseph P. Feser
University of Delaware
Department of Mechanical Engineering

What you will learn: Course Map

Overview of Time Domain Thermoreflectance

- Use a laser pulse as both "pump" and "probe"
- Pump injects heat, raises temperature
- Probe measures reflectivity, which is a (slight) function of temperature
- Use path length to control arrival times
- Fit thermal model to experimental data by varying thermal property. When model fits, we're done!

$$c = 3x10^8 \text{ m/s} ->$$

$$dx/c = dt$$

$$c = 3x10^8 \text{ m/s} \rightarrow dx / c = dt$$
, $(30x10^{-6} \text{ m})/(3x10^8 \text{ m/s}) = 100x10^{-15} \text{ s}$

Pro's and Con's of Using TDTR

Pro's

- ✓ It's non-contact, non-destructive
- ✓ Measures only near top surface (~50nm 2 um)
- ✓ Can measure Kapitza/Interface resistance
- ✓ Fast/simple sample preparation
- √ Fast experiments (10 samples/hr)
- ✓ Bonus Acoustic Information

Con's

- Sample must be smooth/optically reflective (>90% specular typically)
- Many thermal/geometric properties of sample are required to be known (heat capacity, thickness)
- Measures only near top surface
- ☐ Capital Expenses are fairly high (~200k\$)
- Analysis/Instrumentation is more involved than for some competing methods.

Open Questions:

- How do we set up the hardware/software to measure change in reflectivity as a function of delay time?
- ...accurately enough see parts per million changes in reflectivity?!
 - $dR/dT \sim 1x10^{-4} / K$
 - So for dT \sim 1K \rightarrow dR \sim 1x10⁻⁴
 - But I don't just want to be able to detect it, I need to measure with it!
 - actually need to detect dR ~ 1x10⁻⁴ / 100 ~ 1x10⁻⁶ !!!
- How do we model thermal problem? What physical properties does transport depend on?
- How accurate are the thermal properties extracted from this method?

