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ABSTRACT

Let V(G) be the set of vertices of a simple undirected graph G and S be a
subset of V(G). S is an independent set in G if no two vertices of S are
Joined by and edge of G. S is a maximal independent set (m.i.s.)in G if S is
independent and is not a subset of any other independent set. Let u(G) denote
the number of m.is. of a graph G, and u(v, e) = max {W(G) | G has v
vertices and e edges}. For 0 <e <v, new bounds for u(v.e) are found. For
some subranges of the parameters, (v, e) is determined and extremal graphs are
described. The results refine some known theorems from extremal graph theory
and an upper bound for the running time of an algorithm of E. L. Lawler for
determining the chromatic number of a graph.

1. Introduction

The definitions in this paper are based on [Bo76]. All graphs we consider are
undirected labelled graphs without loops and multiple edges. V(G) and E(G) denote
sets of vertices and edges of G respectively. The number of elements of a finite set A
is denoted by Al We write v = v(G) =IV(G)l and e =e(G) =IE(G)l andcall G a
(v, e)—graph. Let {x;y} be an edge of G. Then by G - {x;y} we mean the graph
obtained from G by deleting {x;y}. By Ky, K\, Ty and Ky n we denote
correspondingly the complete graph on v vertices (any two vertices are joined by an
edge), the completely disconnected graph on v vertices (no edges at all), a tree on v
vertices, and the complete bipartite graph whose vertex classes contain m and n
vertices. By G + H we denote the disjoint union of graphs G and H. For a given x
€ V(G), by Ng(x) we denote the set of all neighbors of x in G, i.e.thesetofall y €

1 This paper is based on a part of a Ph. D. Thesis written by the author under the supervision of Prof.
H. S. Wilf at the University of Pennsylvania.
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V(G) such that {x;y} € E(G). Aset S, S < V(G), is an independent setin G if no
two vertices of S are joined by an edge of G. S is a maximal independent set (m.i.s.)
in G if S isindependent and is not a subset of any other independent set of G. Let
M(G) denote the set of all m.i.s. of vertices in G, W(G) = IM(G)I, u(v) = max{p(G):
IV(G)I = v}, u(v, ) = max{p(G): Gis a (v, e)-graph}. Obviously, for any (v, €)—
graph G, W(G) < p(v,e) Sp(v). A clique in G is a maximal complete subgraph of G.
Let cl(G) denote the number of cliques of graph G. Let cl(v) = max{cl(G): IV(G)| =
v}, cl(v,e) =max{cl(G): G isa (v,e)-graph}. Let G¢ denote the complcmcrit of
graph G. Itis easy to see that (G) = cl(GF), u(v) = c(v) and p(v, e) =cl (v, v(v-1)/2
—e). The following problem was formulated by H. S. Wilf:

For the given pair of positive integers (v,e), find p(v, €) or give a non—trivial
upper bound of (v, €).

In this paper we present some partial results. Problems similar to this, but for different
families of graphs, were considered by several authors. The value of cl(v) was
determined by Miller and Muller [MiMu60] and independently by a different method by
Moon and Mosser [MoMo65] in which they characterized the extremal graphs. The
found that

3 if v=3t23;
uv)=ci(v)={ 4.3-1 ifv=3t+124; (1.1
5.3t ifv=3+222

and that the extremal graphs (for the number of cliques) are Turan graphs Ty(v).

It turned out that the problem of finding cl(v) can be shown to be equivalent (Yao
[Y76] attributes this result to D. E. Muller) to the problem of Katona on minimal
separating systems:

Given the set [n] = (1, 2, ..., n}. Find the smallest number f(n) for which there
exists a family of subsets of [n] {A}, Ay, ..., Afn)} with the following property: given
any two elements x,y € [n] (x #Yy), there exist k, ¢ such that Ax " A¢=D, and x €
Ak, ye Ag

Katona's problem was solved by Yao [Y76] and independently by a similar method
by Cai [Ca83].

There were several papers in which the authors restricted their attention to a subset F
of all the graphs on v vertices and determined either cl(v, ) =max {cl(G): Ge F}

or wiv, F)=max {L(G): Ge F}.
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Hedman [He85,He] found the maximal number of cliques for the family ¥ of all
graphs on v vertices with the given clique number ® (the clique number @ of a graph
G is the greatest number of vertices in a clique of G among all cliques of G).

Wilf [W86] found the larges number of m.i.s. vertices that any tree of v vertices can
have. The same results were obtained by Cohen [Co84] and Sagan [Sa88] by different

methods. Sagan's paper completely describes all extremal graphs. If we denoted this
number by p(v, Tree), then the result is

’2t_1 +1fy=2t>0;
Hv, Tree) = 2t ifv=2t+1; (1.2)
; ifv=0

Furedi [Fu87] gave a new proof of (1.1) and established an exact upper bound for
p(G) for a non—extremal graph G. In the same paper he found p(v, Conn) = the
maximum number of m.i.s. that a connected graph on v vertices can have (for v > 50)
and described all extremal graphs. Independently, Griggs, Grinstead and Guichard
[GGG88] determined (v, Conn) for all v 26 and described all the extremal graphs.
Their result is

2.31—1 + 21-1 lf v =3t>6:
H(v, Conn) = 3t 4 2t ifv=3t+1>6; (1.3)
ifv=3t+2>6

4.3!—1 + 32 =2

Harary and Lempel [HL74] studied the extremal graphs for the family of all graphs
on v vertices with e edges. They developed some standard forms for such graphs and
suggested a transformation which brings an extremal graph into this form. Similar
results were obtained independently by the author. Unfortunately they have not helped
much in finding p(v, e).

Another motivation for the present work was an article by E. Lawler [La76] in which
an algorithm for determining the chromatic number of a graph is discussed, and it is
shown that its run time, in the worst case, is O[ev(1+31/3)V] for graphs of e edges and
v vertices. The appearance of 313 derives from (1.1) because of the fact that a graph
on v vertices has at most 3V/3 maximal independent sets. The fact that the graph has e
edges is not used when the greatest number of maximal independent sets is estimated.

In Section 2 we give new bounds for p(v, ¢) and determine p(v,e) exactly for
some ranges of v and e. The main results are in Theorems 2.1, 2.6 and
Corollary 2.3.
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2. Results

In this section we determine explicitly or find bounds for (v, e), for 0 <e <v.
We start with the following.

Theorem 2.1 Ler v, e be non-negative integers, 0 <e <v, and m(v, e) = 2v-¢ .
3(2e~v)I3. Then

_ uv, e) <m(v, e) (2.1)
The equality in (2.1) occurs if and only if vi2 <e <v and 2e — v = 3t for some non-
negative integer t. The only graph G, for which 1(G) = (v, e)=m(v,e) is G=(v—
e)K7 + 1K3.

Proof We notice that for € > v, our upper bound m(e, v) is worse than p(v) given
by (1.1). This explains the restriction 0 <e<v. If v=e =0, then () =m(, 0) =
1. If v=1, e=0, then p(l, 0) = (K1) =1 <m(l, 0) = 2/(31/3). Let G be an
extremal graph and Gj, Gy, ..., G, be connected components of G. Suppose G;j is a
(vi, ei)—graph, 1 <i<n. Then Zvj=v and Ze; =e. Since W(v, e) = p(G) = ITU(Gy)
and m(v, e) = IIu(vi, j), Then in order to prove the theorem it is sufficient to show that
forall i, 1 <i<n, u(Gj) < m(vj, ejp).

Lemma 2.2 For any connected (v, e)-graph G, u(G) <m(v,e). W(G)=m(v, e) if
andonlyif G=2, G=K; orG=K3.

Proof It is enough to show that
wv) £ m(v, e). (2.3)
Then the first statement will be proved. Let € =v +p. Then
m(v, v+p) = 2P - 3(v+2p)3 = (9/8)P/33V/3,

and (2.3) can be easily checked by using the table from Figure 1. Entries in the p(v)
column come from (1.1) and (1.2) (the only connected (v, e)-graphs with e<v -1
are trees, and e=v — 1.
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e Vv u{v) m(v,e)
v=3t t»l 3t (9/8)P/33t
e =v+p,p20 v =3t t 2l 4-3t-1 3173 (9/8)P/33t
y = 3t+2, t 20 2-3t 32/3 (g78)P/33t
e =v-1 V=2t t21 2149 (8/9)1/332t/3
v=2t+ 1,120 2t (2/31/3)32/3
Figure 1

Comparing the entries in the table on Figure 1, we conclude that equality occurs if
andonly if v=3t, p=0 or v=2, p=~1. For v=3t, p=0, we have e =3¢, u(3t)
=3t As it follows from [MiMu60} and [MoMo65], the only extremal graph in this
case is tK3. This graph is connected for t = 1. Therefore G =K3. For v=2,p=-1,
we have e=1 and G =Kj. This proves the lemma. O

Thus (2.2) is true for each connected component of G and the bound (2.1) is

proved. In order to get an equality in (2.1), each connected component of G has to be
either K3 or K;. Suppose G =tK3 + sKp, for some non—negative integers t, s. then

3t+2s=v and 3t+s=e 2.4)

The only solution of (2.4) is s=v—e, t=(2e—v)/3, and this concludes the proof of
the theorem.

Corollary 2.3 Ler v, e be non—negative integers, vi2 <e <v. If 2e—v =3t + 1,
then 3-13m(v, e) < u(v, e) < m(v,e). If 2e —v = 3t + 2, then U(v, €) =
(112)(313)m(v, e) for v=4,6; (5/353)m(v, e) Spu(v,e) <m(v,e) forv=5,v2=>7.

Proof The upper bounds follow from Theorem 2.1. In the case 2e —v =3t + 1, the
lower bound comes from the graph tK3 + (v —e — 1)K3 + P9, where Pj is a path with
two edges. If 2e —v =3t + 2, then for v =4, the only possible value of e is 4. In
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both cases W(v, €) = (1/2)(31/3)m(v, ). For v=5 or =7, the lower bound comes
from the graph (t — 1)K3 + (v —e)K2 + H, where H is (5, 5)-graph shown on
Figure 2. The lower bounds seem to be the best possible, but the author has been

/N

Figure 2

unable to prove it.

It turns out that for e, 0 <e <v/2, the result of Theorem 2.1 can be substantially
improved. The following lemma is the main step in this direction. It is also interesting

on its own.
Lemma 24 Let G be agraphand {x;y} be an edge of G. Then

H(G) £21(G — {x; y}). (2.5)
The equality in (2.5) occurs if and only if {x;y} isa connected component of G.

Proof The idea of the proof is to partition both M(G) and M(G-{x;y}) into several
classes and to compare numbers of elements in the corresponding classes. The
description of the partitions is rather long, but the comparison will be easy. Figure 3
illustrates both stages of the proof. We divide M(G) into the following 7 classes some
of which can be empty (& stands for the disjoint union of sets):

My 1(G)={Me MG): M= {x} OM, M # 3, M N Ng(y) =J};
My1(G) = (Me MG): M= (x}) OM, M =3, M N Ngkx) =D};
My 2(G) = (M e M(G): M= {x} M, M N Ng(y) # D};

M, 2(G) i, (Me MG): M= {x} OM, M n Ng(x) = D};
M3(G)={Me MG): M2D, xe M,ye M};

M(G) = | {x}, if {x} € M(G)

&, otherwise
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M,(G) = O3, if () € M(G)
O, otherwise

It is easy to check that M(G) is the disjoint union of these classes. Similarily we divide
MG - {x; y}) into the following 5 classes:

My 1(G={x;y))=(Me MG-(x;y}): M={x}) O {y} OM, M =T},
Mx20G - {x;¥))={Me MG-(x;¥)): xe M\, MNNg_{x;y} (v) #T};
My2G-{xy))={Me MG-{x;y}): ye M,MN Ng_(x;y} X) #D};
MG - {x;y})={Me MG-{xy}): M2D,xe M,y ¢ M};

MeyG -5y =] fx3) i {xy € MG- {xy)
1 O, otherwise

It is easy to check that M(G—{x;y}) is the disjoint union of these classes.
The following bijections between some of these classes are obvious:
fx1 @ Mx1G) = Myy1(G-{xy)), fx1({x} OM) = {x,y} O M;
fy1 @ My1G) = Mxy1G-{xy)), fy1({y) OM) = {x,y} OM;

fx2 @ Mx2(G) - Mx2G-{x;y}), fx2M)=M;

fy2 @ My2(G) - Mya(G-{x;y})), fyaM)=M;

f3 : M3G) - M3G-{x;y)), HxM) =M,

fx 1 MxG) - Mxy(G-{x;y}), fx({x}) = {x,y}, if {x} is m.i.s;
fx({@}) = D, if {x} is not m.i.s.;

fy  MyG) - Mxy(G-{xyy)), fyly}) = {x,y}, if {y} is m.is;
fy({D)) = D, if {y} is not m.is.

(Notice that for each of these mappings the domain and the range are non—empty
simultaneously.)
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Finally we denote 1M x 1(G)! = lﬁMy,l(G)I = IMx,y,l(G—{x;y})l =1y,

IM x 2(G) = 1M x 2(G-{x; ) = ix2, [My2G) =M y2(G-{x;y])] =y,

IM 3(G) = 1M 3(G-{x;y)) =i3, IMx(G)l =ix (=1 o0r0),

1M (Gl =iy (= 1 or 0), 1M xy(G—{x;y})l =ixy (= 10r0).

Then

2u(G-{x;y}) = 201 +ix2 +iy2 +i3 +ixy),

Hence, W(G) =2W(G—{x;y}) — (ix,2 + iy2 + i3) — (2ix,y —ix —iy). Obviously ix2 +iy2
+1320. If atleastone of ix or iy =1, then ixy=1,and 2ixy—ix—iy20. Ifix =iy

=0, then again 2ixy —ix —iy 2 0. Therefore we get

K(G) < 2u(G-{x;y})

(2.6)

The equality sign in (2.6) occurs if and only if ix2 +iy2 +i3 =0 and 2iyy —ix—-

iy = 0. The first of the equalities implies ix2 =iy2=i3=0. If ix2 =iy2 =0, then
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vertices x and y have the same set of neighbors in G (each independent set of a graph
is a subset of at least one m.i.s.). But i3 =0 implies that this set of neighbors is empty.
Therefore the edge {x;y)} is aconnected component in G. If this is the only connected
component of G, i.e. G=Ky, then ixy=ix=iy=1 and 2ixy—ix—iy=0. £ G
has more than one connected component, then ixy =ix =iy =0 and again 2ix y —ix —iy
=(. The lemma is proved. U

Corollary 2.5 If an extremal (v, e)—graph G has two isolated vertices, then it is a
disjoint union of edges and isolated vertices.

Proof Let G have a connected component H with 2 or more edges and two
isolated vertices a and b. By deleting and edge {x;y} in H and joining vertices a
and b we obtaina (v, e)-graph G'. Since p(H + {a} + {b}) =pu@H) and p({a;b} +
(H - {x;y}) =2u(H - {x;y}), and by Lemma 2.4, p(H) < 2u(H - {x;y}), then u(H +
{a} + {b}) <p({a;b} + (H— {x;y})). All other connected components (with the vertices
in V(G) - {a,b} —VH)) of G and G' are the same. Therefore u(G) < pu(G"),
which contradicts the extremality of G. O

The following theorem gives the exact value of p(v,e) and describes the extremal
graphs for 0 <e < v/2.

Theorem 2.6 Let 0<e <v/2. Then p(v,e) =28, and the only extremal graph is
eKs + (v —2e)Kj.

Proof The greatest number of vertices in a graph which are incident to e edges is 2e
and this happens only if the graph is eKj. Therefore if v —2e =1, then the statement
of the theorem follows from Corollary 2.5. so we assume that v = 2e. Let G be
extremal graph and Gj, G, ..., Gy be connected components of G. Suppose v(Gj) =
vi and e(Gp =ej, 1 £i<n. Sinceforall i, 1 <ej<vj—1,then

Zei=e2v-nand n2v-e=2e—-e=e.

If G had two isolated vertices, then, due to Corollary 2.5, it would have at least 2e +
2 vertices and this is not the case.

Suppose G has no isolated vertices. Then each component must have at least one
edgeand n<e. So n=¢e, G =¢Kj and the theorem is proved.

The only case left is when G has only one isolated vertex. Then each of the
remaining n - 1 components has at least one edge. If each of them has exactly one edge,
then G =eKp + K; and v(G) = 2e + 1, but the latter is false. So there should be a
component with at least two edges. It cannot have three edges, since in this case e(G) 2
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3+(n-2)=n+1>e. Thus G =P + (¢ -2)K» +Kj (P is a path with two edges),
and W(G) =2 -2¢-2 =2¢-1. But this is less than 2¢ = p(eK2) which contradicts the
extremality of G. Therefore the theorem is proved.
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