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On a bound for the maximum number of Cys
in a 4-cycle free bipartite graph
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Abstract. Let G be a 4—cycle free bipartite graph on 2n vertices with partitions of
equal cardinality n having e edges. Let cs(G) denote the number of cycles of length
8in G. We prove that for n > 4, ¢s(G) <3 [(:) - ﬁf(ﬁ)], where f(t) = t(t—-1)(t -
2)(4n -3-3t). fGis extremal with respect to the number of 8-cycles, then r, -2 <
£ < rp, where rp = — + E This implies that ¢s(G) < 3 [( ) ~ 5if(ra — 2)]

Furthermore, if G, is the 1nc1dence pomt-hne gra.ph of a finite pro,)ectxve plane of

order ¢, and ny = ¢* + ¢ +1, then c(G,) =3((%) - 3 f(ra,)] . and G,
“close” to being extrema.l in this sense.

Section 1: Introduction.

Let G = G, denote a family of simple graphs of order n. For a simple graph H
and G € G, let (G H) denote the number of subgraphs of G isomorphic to H. Let
h(n) = h(G,H,n) = ma.x{(G H)|G € G} and G(H,n) = {G € G|(G,H) = h(n)}.
We will refer to graphs of G(H,n) as eziremal. The problem of ﬁndmg h(g. H n)
and G(H,n), for fixed G, H,n, has been studied extensively and is considered as
central in extremal graph theory. Though it is hopeless in whole generality, some
of its instances have been solved. Often the results are concerned with bounds on
hn and partial description of the extremal graphs. For example, if ', denotes the
complete graph of order m, H = I3, and § is the family of all graphs of order n
which contain no Ky, as a subgraph 3 < m < n, then the solution is given by the
famous Turan Theorem. For the same “H, if K, denotes the complete bipartite
graph with partition class sizes s, t and G is the family of all (m, n)-bipartite graphs
with no K, we have the, so ca.lled, Zarankiewicz problem. These and many other
examples can be found in [2]. For some later results see [4,5,6].

All missing definitions can be found in [2]. Let V(G) and E(G) denote the set of
vertices and edges of a graph G, e = ¢(G) = |E(G)|. The neighborhood of a vertex
v € V(G) is denoted by N(v) (v ¢ N(v)). and the degree of vertex v in G by degg(v).
For S C V(G), define N(S) by N(S)= |J N(v). If G contains a cycle, the girth of
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G is the length of a shortest cycle in G. For a positive integern, n > 2, let Gg(n.n) be
the class of bipartite graph on 2n vertices with partitions of equal cardinality n and
girth at least 6 ( i.e. 4-cycle free). Let G € Gs(n,n) have partition (V1(G), V2(G))
such that Vi(G) = {u1,...,un}, V2(G) = {v1,...,va}. Let z; —degc(u,), T =
1,...,n, and y; =degg(v), ¢ = 1....,n. A subset {uiyy.-oyui}, 2< k< n, of
VA(G) (or {viys-..,vi, } of V2(G)) is sald to be intersecting if N(u;, )N.. .ﬂN(u.—,,) #0
(or N(v;,) N ... n N(vi,) # 0). Let a projective plane 7, of order ¢ exist and
ng=g¢?+q+1. Let P={py,...,pn} and L = {I;....,l,} be the point set and the
line set of x4, respectively. A bipartite graph G4 with partition (P, L) is said to be
the incidence point-line graph of the projective plane my if for all i,5 € {1,...,n},
{pi,1;} is an edge-of G if and only if p; € ;.

Let ¢3(G) denote the number of 8-cycles in G. The main goal of this paper
is to find a nontrivial upper bound for ¢3(G), where G € G¢(n,n). The results are
summarized below.
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Theorem 1. Let G € Gg(n,n) be a §-cycle free bipartite graph on 2n vertices with .

partition classes of size n. Then

(i) cas(G) < 3[(3) = 2 f(rn = 2)], where f(t) =#(t —1)(t - 2)(4n ~3=3t). rp =
% + 'EZ:._E; and n 2 4.

(i) If G has e edges and is eztremal with respect to the number of 8-cycles. then
rn—2< £ <1, with r, as in (1) above.

Using the terminology of finite geometries (see [1]), Theorem 1 provides an
upper bound for the number of quadrilaterals in near-linear spaces with n points
and n lines. To prove Theorem 1 we will rely on the following additional facts. The
first fact, Lemma A below, was motivated by the statement Lemma 3 from [7]. Its
proof is immediate and we omit it.

Lemma A. Let G be a connected graph and H be a subgraph of G. Then |V(G)\
V(H)| < |E(G)\ E(H)I. u

Theorem B.([2]) Suppose G is a §-cycle free bipartite greph with partition classes
of cardinalityn, n > 2. Let e = ¢(G) be the size of G. Thene < §+3v4n — 3 with

equality if and only if n = ng = ¢* + ¢+ 1 and G = G, - the point-line incidence
graph of e finite projective piane of order q. |

Thus G, has the greatest number of edges among all graphs in Gs(ng.ny). In
[3] we also showed that G, has greatest number of 6-cycles among all graphs in
Gs(ng,ng). Theorem 1 above grew out of our attempts to prove that G, also has
the greatest number of 8-cycles among all graphs in Gg(n,, ng).

Section 2: Proof of Theorem 1.

Let G € Gg(n, n) with partition classes Vi(G) = {u;,...un}, Va(G) = {v1,.
To count the number of 8-cycles in G note that each 8-cycle in G determines a 4-
set of vertices {vi,, Vi, Viy, iy} C© V2(G) such that no three of the vertices form
an intersecting 3-set. Furthermore, each 8-cycle identifies two distinct partitions
of {vi,,vi,,vi;,vi,} into pairs of intersecting 2-sets. That is, if an 8-cycle is iden-
tified by the sequence v;, u;, vi,ui,vi3uiyvi, Ui, vi,, then {{v.'l,v,-,},iv,-,,v,-‘}}. and
{{viy vig}. {viy, vig }} are two distinct partitions of {vi,,vi,,vi,,vi,} into pairs of
intersecting 2-sets of vertices.

Conversely, it is obvious that each 4-set of vertices {v;,,vi,,vis,vi,} € V2(G)
can be partitioned in at most three ways into pairs of intersecting 2-sets. This
implies that the set {v;,,vi,,vi,,vi,} C V2(G) can be contained in the vertex sets
of at most (3) = 3 cycles of length eight in G.

Clearly, the number of intersecting 4-sets in V2(G) is ) (deg(‘; (..,-)) - ): (,4)

i=1 =

1= =
Also, the number of 4-sets in V2(G) such that exactly three of the four vertices

form an intersecting 3-set of vertices is 3° (48 ) (n — degg(u,)) = 3 (5)(n -
&=l =1
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z;). Therefore, the number of 4-sets in V3(G) such that no three vertices form an
T/ L]

intersecting 3-set is

(2) _Z": [(14> + (?')(n _ xi)] - (’D _% gzi(:c,- —1)(zi - 2)(4n—3-32) .
=1

Hence, we have proved the following

Lemma 2.1. Forn 22, let G € Ge(n,n) with Vi(G) = {ury---2tn} and ; =

degg(ui), t=1,...,m Then

(G) 3 KZ) iy f(zi)}

=1
i Ids if every §-set of
=t - —9)(4n — 3 — 3t). Moreover, equality holds
gh(cc'?) {‘a(atr) w_hztc(z n(} )s(f;b.sct)gf three vertices is intersecting determines ezactly thrc;
2
8-cycles of G.

Since every pair of vertices in V2(G,) is an intersecting pa.ir of }'e:,tlxl?:}s], fi;cr 11:
easy to see that every 4-set of vertices in V2(Gg) no tfh&ee Yl?{xtelrceefsoroe e Y
an zrntersecting set determines exactly three 8-cycles of Gq. \

implies that

aea=s|() 2] - () - (1O

bound on the max cs(G),

(2.2)

Equation (2.2) provides us with a lower estimate of the upper
G € Go(ng,nq)-

we find an upper bound on cs(G) in terms of e = ¢(G) and

In our next step, L
..zn) € R", by F(x) = Y. f(zi), where
! =1

n. Define the function F(x), x = (21,--

f(t) = t(t = 1)(t = 2)(4n = 3 - 3t),t € [1,n].

Theorem 2.2. Let G € Ga(nn),n 2 4. Then es(G) < 3{(0) — & (£)], where

£

X=(%,..-»n)

1t1 —_ G) -—

P G G artition classes Vi(G) = {ur,.-. ,un}y Val =

{vr o Jd e}t It ig ea:)((nt)o Eﬁ::v lt?hal:‘for all n > 2, there exist real values a = a(n),
1r---1Vnj- 2

B=Bn),0<a<l n ¢ f§ < Il suchthat '@ty = 6(—6t2+(4n+6)t+1—4n_)d>
0 f—c;r te ’(a B). This i:nplies f(t) is concave up on the interval (a, ). We consider

two cases:

Case I: a<zi<Pforalli=1,...,n
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Since f is concav . ;
f eupon(a,f)anda < z; < B,i=1,...,n, Jensen’s inequality

implies F(x) = .'éx flzi)>n- f (% i J:i) = nf(%) = F(X). Therefore

w0 [ () -do] w3 -312]

Case 2: z; > f3 for some i € {1,...,n}.

Suppose G has a vertex u of de ing i
; gree at least 3 and, relabeling if nec ;
éashsum;:vu = un. If there exists u; € Vi(G), i # n, such that dgeg (u‘)esgar‘:;.
g en |N(u,)N N(ui)] > 1, which means that G contains a 4-cycle cogtraldic? -
herefor_e, Case 2 is equivalent to Th>fanda<z; < Bfori= 1, e
will consider two subcases: ITp=nandz, <n-1 ' e

First, suppose z,, = n. Since G is 4-cycle free degs(un) = n impli
lhfor all u; € Vi(G), : =1,...,n—1. Therefore cs(é' (="3 mﬁ,ﬂ?&iﬁlﬁ?ﬁ%ﬁé
that cg(G)=0<3 [(4) - -E,f(ﬁ)] and the resplt is proved.

So, suppose 8 <z, <n—-1. Forall n > 2, there exi
Szn < . > 2, e exist real values n =
and ( =((n),l<n<?2 n—1< (¢ < n, such that f/( PPN
_ 3 <y 3 1 U t) = 2("6t3 + 6 9 2
fﬁ .12n)t +4n-3) >0 fc;:; t € (7,¢). This implies f is strictly ix(lc:e:sih); o:
e interval (7n,¢). Hence, 3 < B £ z, < n implies flzn) > f(%—"), therefore

n n-1
F(x) = .~‘=‘:1 flzi) > .§1 f(zi) + £ (). However, f(1) = (2) = 0 and f(t) > 0 for

2 <t < f. Therefore f(z;) > 0 for i = 1,...,n—~1 and so nz—:]f(r,-) > 0. Hence
=1

F(x) > f (%) and so we have,

wos[() -] s[()-4(Z)] e

ot =2t Vi3 Theorem B implies £ < r; thus f(2) < f(r,) and

50 nf(£) = F(R) < F(r) = nf(ra) where © = (rg,... 1), Hom 2

n) = < - =By o s 5 P5) ever, f(22) —
n;f(rn) =2n2—.,(54n(n - 1)V4n =3 - 16n® — 147n? + 306n — 135) > 0, whi(cﬁ ?m—
plies f(?) > F(X) = nf(£). Therefore, inequality (2.3) becomes cs(G) <

3 [(:) - inf (ﬁ)] and the result is proved. =

Clearly, F(X) = nf(¢) depends on e = ¢(G). Si i i i

: 1 54 I == . Olince f is strictly increasin
on1 the interval (n.(), this implies that the bound in Theorem 2.2 holds for smaﬁ
va 1;es of e which would produce a trivial upper bound for ¢s(G). This problem
tco‘i! d be resolved by giving a lower bound on e in terms of n. Indeed, we would like
o ete‘:r.mlne a bound on cs(G) that depends only on n, the number of vertices in
a partition class of G. When ng = ¢ + ¢ + 1, equation (2.2) and inequality (2.3)
imply that any bound ") (™, wi i
feapl y bound on cea‘ﬂ‘.‘.’f.,.,f”(c) must be at least ("7)("™4™")". With this
in mind we can determine an appropriate range for e.
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. Proof: Theorem B implies £ < r,. Here we show that £ >r, — 2

Lemma 2.3. For n 2> 2, suppose G € Gs(n.n) satisfies cs(G) > (;)("‘;1)2

—%+%@. Thenrpn—2< £ <rp.

Tn =

. where

‘).

It is sufficient to prove the result for connected graphs of girth at least six
and partition classes of equal cardinality. Indeed, suppose G is disconnected. By
inducting on the number of components of G it is easy to see that G can be embedded
in a connected graph G € Gg¢(n,n) such that ¢3(G) < c3(G*). Thus. suppose
G* € Gg(n,n) is connected.

Let P(G) represent the set of all paths of length three in G. Define the function
g by g(z) = z(n — z). Since G is a bipartite graph. the distance between v € N(u;)
and v’ € V2(G) \ N(u;) is at least 2. If the distance is exactly 2. since G has girth
at least six, the path of length 2 joining v to v’ is unique. Therefore. the path from
v’ to u; through v is unique and of length 3. This implies there are z;(n — z;) paths

of length 3 with u; as one end vertex of those paths. Therefore |P(G)| < Z g(z;),

and since ¢ is convex on the interval (—>c. ). by Jensen's inequality. we have

‘ €
< = ;
PG <Y gir) Sngl=) . (2.4)

=1

n
where ¢ = Y r,. Since g is increasing on [l%] and £ < r, <
=1

inequality (2.4) implies

[P(G)| < ng(ra) = 2ra —n(f;) . (2.5)

Figure 2.1 .
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Let a = u'vur’ € P(G). Let S = N(u')\ {v}. T = N(2")\ {u}. At this poi
) = . T = . is
we make use of a construction (see Figure 2.1) similar to one \\\h{icg appears xg(::l}?ct-
proof of Lemma 3 in (7] and which allows us to estimate the number of S-cvcles
passing through a. We describe it presently. ’

Let 15, = V(" )UN (2" )UN(S)UN(T). Define G, = G[V,] to be t} t
G induced by the vertex set V. Let g, = |E(G)\ E(G, )| a[n?i]p: =e"}fC§‘)l\)%F(anhﬁf
Lemma A implies g4 — pa > 0. ' o

'Let Ao = {{ui.v;} € E(G) | u; € T and v; € S} and B, = {{urv,} €
EG) | u, € N(T) and v, € N(S)}. Define G, — (4, U B,) as the graph obtained
from Cfo by removing the edees of 4,UB,. Note that the graph G, - (A, UB,)isa
tree with 2n — p, vertices, where |4,] is the number of 6-cycles through a and |B,|
is the number of 8-cycles through a. Therefore ¢ = |E(G)\ E(Go)| + IE(GQK z
ga +2n — po — 1+ |Aa| + | Bal, which implies for each a € 'P(GS,

e—2n+1>|B.| . (2.6)

Now, summing both sides of (2.6) over all paths of length three, the left hand side
expression becomes

Z (e=2n4+1)=|P(G)lle-2n+1) < é(e -2n+4+1)(r, — 1)(:) , (2.7a)
a€P(G) =

and the right hand side expression becomes

3" IBal = 8cs(G) > 8(;) (’”" 2‘ 1)2 . (2.7b)

a€EP(G)
Therefore, combining both expressions we have 2(e—2n+1)(r..—1)(;) >8(3) (r"2-1)2-
Solving this inequality for-e we see that ¢ > r3 =3ri+6r,—3> 1~ 3ra+3ra-2=
(ra —2)(r2 = ry + 1), which implies £ > r, — 2. .

We are now ready to prove the first statement of Theorem 1.

Proof of Theorem 1, part (i): If c(G) < (;)('"2'1)2, then clearly (;’)("'2'1)2 <

:'3 [(;') — §f(ra = 2)] and the result is proved. If cs(G) > (;')("';1)2, Theorem 2.2
implies that ¢3(G) < 3 [(:) -3 (ﬁ)]. Since f is strictly increasing on the interval
(n,¢), where 1 < np < 2and n—-1< ¢ < n, Lemma 2.3 implies f(£) > f(r, —2) and

socg(G) < 3 [(;') - aflra - 2)] and the result is proved. n

We make a final comment on the lower bound on £ appearing in Lemma 2.3.
Central to the proof of Lemma 2.3 is the calculation of |P( G)|, the number of paths
of length three in G € Gs(n). Clearly, there exists @ € P(G) for which da —Pa >0
and |A,| > 0. Hence, it would seem that if we could find functions ¢ and ¥ such
that 3 (ge —pa) > é(n) and 2. |Aal > ¥(n), then ¢(n) and ¥(n) could
. a€P(G) : a€P(G) 8

e inserted into the inequalities (2.6), (2.72) and (2.7b) to produce a tighter bound
on cs(G). Howe.ver_, we have been unable to find such funclt)ions S0 far.gTheiI; \::)l:llid
imply that the incidence point-line graph of order q indeed is the best candidate
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for the extremal graphs for those values of n for which it exists. However, such a
proof would require another technique.
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