Two Birds with One Stone:
Female Labor Supply, Fertility, and Market Childcare *

Jisoo Hwang† Seonyoung Park‡ Donggyun Shin§

December 2015

Abstract

The correlation between female labor force participation rate (FPR) and total fertility rate (TFR) across developed countries has switched from negative to positive. This paper provides a structural explanation of the historical pattern via changes in substitutability between mother’s direct childcare and indirect market care. Analysis of a life-cycle model of married women’s labor supply and fertility shows that FPR increases, whereas TFR is U-shaped with regards to substitutability. The dynamic relationship between FPR and TFR depends on the relative strength of behavioral and composition effects: greater childcare substitutability allows working women to have more children but it also attracts less productive women to enter the labor force, who trade childbirths for labor supply. The findings imply that raising substitutability to a sufficiently high level can achieve two seemingly conflicting goals—increasing female labor supply and fertility rate.

JEL Codes: J11, J13, J22, D10
Keywords: female labor supply, total fertility rate, childcare substitutability

*Hwang thanks Hankuk University of Foreign Studies for research grant. Park is grateful for support from a General University Research Program grant funded by the University of Delaware. Shin acknowledges the National Research Foundation of Korea grant funded by the Korean government (NRF-2014S1A5A2A03065052).

†Department of International Economics and Law, Hankuk University of Foreign Studies. Email: jhwang@hufs.ac.kr.

‡Corresponding author. Department of Economics, Alfred Lerner College of Business & Economics, University of Delaware, 421 Purnell Hall, Newark, DE 19716, U.S.A. Email: ypark@udel.edu. Tel: 302-831-1909. Fax: 302-831-6968.

§Department of Economics, Kyung Hee University. Email: dgshin@khu.ac.kr.
1 Introduction

Work and family have always been difficult to reconcile for married women with children. The long-run trend of rising female labor force participation rates (FPR) accompanied by falling total fertility rates (TFR) observed in most countries is an evident demonstration of the difficulty of achieving both, at the individual as well as the national level.

Thus it comes as a surprise that recent studies report a switch in the sign of the cross-country correlation between TFR and FPR among developed countries (e.g., Ahn & Mira, 2002; Bettio & Villa, 1998; Brewster & Rindfuss, 2000; Castles, 2003). Using data on OECD countries from 1970 to 1995, Ahn & Mira (2002) find that the correlation, which was about -0.5 during the 1970s, turns positive in the mid-1980s, and reaches 0.5 in the 1990s (see Fig. 1). That is, in some developed countries, women work more and have more children than in others. Understanding this historical pattern is key to finding the “one stone” that could achieve two seemingly conflicting goals—raising female labor supply while maintaining a population growth above the replacement level.

*** Fig. 1 here ***

In this paper, we present a structural explanation of the change in the TFR-FPR correlation via increasing substitutability between mother’s direct childcare and indirect market care (henceforth, substitutability). To be more specific, the paper estimates a life-cycle model of married couples who get utility from consumption, disutility from work, and also care about childbirths and the human capital of their children. The childcare production function is specified in a way that allows not only the quantity-quality trade-off of children but also substitutability between direct and indirect childcare. Following exogenous changes in the degree of substitutability, married women adjust both their labor supply (intensive and extensive margins) and fertility behaviors (timing and number of births) in the process of optimizing a household’s expected life-cycle utility.

The model is estimated for the 1960s cohort in South Korea (hereafter, Korea). Korea is a particularly interesting case to study because it has one of the lowest fertility rate and female labor force participation rate among OECD countries, and is hence desperately seeking for ways to enhance these measures.1 We primarily focus on the 1960s cohort because it is the

1 According to OECD data, Korea’s FPR is 55.6 percent and TFR is 1.19 child per woman in 2013. In addition to paid parental leave, the Korean government introduced subsidized childcare to all households with children ages 0–2 in 2012, and expanded the program to all households with children ages 0–5 in 2013. The usage rate of paternity leave is still very low, however, at only 4.5 percent of all male employees in 2014 (source: Ministry of Employment and Labor). The sustainability of the childcare subsidy program also remains highly controversial due to high costs.
most recent cohort that completed the fertile stages of the life-cycle, but we find similar
results for other samples as well (e.g., the 1970s cohort in Korea and the 1950s cohort in the
US).

Simulations of the estimated model reveal that women’s labor supply increases with
substitutability whereas TFR is U-shaped with regards to substitutability. Thus when sub-
stitutability improves over time, the dynamic TFR-FPR relationship evolves from negative
in the decreasing phase of TFR to positive in the increasing phase of TFR. Moreover, it is
found that raising substitutability further beyond a certain level makes both FPR and TFR
increase at an increasing rate.

The nonlinear relationships among FPR, TFR, and substitutability are explained by a
combination of behavioral and composition effects. For those who are currently working,
an increase in substitutability gives incentive to supply more working hours, raise per-child
expenditure on market care, and have more births (behavioral effects). Enhanced sub-
stitutability, however, attracts additional women from the non-market sector as well—those
who are lower-wage and less productive, compared to existing workers (composition effects).
While higher substitutability allows this group to supply more labor at both extensive and
intensive margins, they trade childbirths for labor supply.

Because the relative size of behavioral effects grows with current female employment,
composition effects dominate at low levels of substitutability. Only a small portion of pro-
ductive women are working and hence, the number of new births among them is smaller
than the number of reduced births among less productive women joining the labor force.
As the degree of childcare substitutability exceeds some threshold level, however, behavioral
effects of working women begin to dominate composition effects, so that TFR increases with
substitutability.

Our findings have some important implications. First, policies aimed to raise childcare
substitutability to a sufficiently high level can help countries alleviate labor shortage prob-
lems due to population aging in both short- and long-run horizons. Greater FPR would
increase the size of the labor force and greater TFR would slow down the speed of popula-
tion aging altogether. Second, due to composition effects, changes in substitutability affects
not only the total number but also the distribution of children across households. Even in
the phase of decreasing TFR, new births are concentrated among relatively more produc-
tive women. It is worth noting that substitutability here, however, is not confined to the
availability of market childcare services but encompasses its quality as well as social norms
regarding childcare.

The paper contributes to the extensive literature on trends in female labor supply and
fertility. Goldin (2004) traces out the transition of US college graduate women’s demo-
graphic and labor force experiences over the twentieth century, from “family or career” to “career and family.” Feyrer et al. (2008) explain that the gap between women’s status in the workforce and the household can generate U-shaped TFR across developed countries. In the sociology literature, Brewster & Rindfuss (2000), argue that changes in institutional context which reduces the incompatibility between childrearing and female employment accounts for the reversal in TFR-FPR correlation. On the other hand, some papers focus on the role of technology. For example, Greenwood et al. (2005) analyze how the development of household appliances increases married women’s labor force participation in a Beckerian framework, whereas Galor & Weil (1996) and Martínez & Iza (2004) examine the link between increases in capital per worker and the demographic transition in a general equilibrium overlapping generations model. Although similar in spirit, these papers cannot show using data, however, how work and fertility behaviors would simultaneously respond to changes in a policy variable.

Thus we borrow from studies that employ structural methods. For example, Olivetti (2006) uses PSID data to demonstrate that the increase in women’s marginal returns to experience accounts for most of the variation in married women’s hours of work between the 1970s and 1990s. Attanasio et al. (2008) calibrate a life-cycle model to explain the increase in labor supply of mothers between the 1940s and 1950s cohorts in the US; they find that a combination of reduction in the cost of children and the gender wage gap are needed. To the best of our knowledge, however, little research has been conducted to date that presents a model-based structural explanation of the changing TFR-FPR correlation pattern. Kim et al. (2015)’s study is closely related to this paper in that they use Korean data to estimate the effects of substitutability on female labor supply and fertility behaviors. They do not, however, test the robustness of their results nor explain why or how such patterns arise.

Lastly, our work complements recent research that exploits quasi-natural experiments in childcare policy. Baker et al. (2008), for example, find that the introduction of universal childcare in Quebec increased childcare use and female labor supply. Similarly, Berlinski & Galiani (2007) show that large-scale construction of pre-primary school facilities in Argentina increased mothers’ employment. Havnes & Mogstad (2011) and Lundin et al. (2008), on the other hand, reveal little causal effects of subsidized childcare on maternal employment in Norway and Sweden, respectively.

The organization of the paper is as follows. Section 2 introduces our analytical framework. Section 3 presents model estimation results. Using these results, Section 4 shows and explains how married women adjust their labor supply and fertility over the life-cycle with regards to changes in substitutability. Section 5 discusses implications of our findings.
2 The Model

2.1 Economic environment

The economy consists of married couples, with or without children. Both a husband and a wife live j_T periods. Let $j \in \{j_1, j_2, ..., j_T\}$ denote a period (or “age”) of the life-cycle, which includes five years of actual ages. Adults in the household start economic activity at j_1, and retire at j_R. In each period, the household makes decisions on wife’s labor supply and fertility, along with household consumption and savings. The husband always works with a fixed amount of (full time) hours. When the wife works, her human capital is endogenously accumulated depending on her job experience, while she loses human capital in a nonlinear fashion during nonworking period.

The household also chooses the number of new children in each period until the wife gets to j_I, after which she is considered to be infertile. Newborn children are attached to the household until they reach a certain age, after which they leave the household permanently. Because the husband works full time, the wife is the one who takes care of children. Key ingredients of the model are as follows.

2.1.1 Childcare costs

When the wife works, the household pays for childcare costs, which depend on the number of children, ages of children, and the wife’s labor income.

2.1.2 Wages and human capital

Both the husband’s and wife’s wages consist of deterministic and stochastic components. The stochastic components are subject to permanent shocks. Since the husband always works, his deterministic wages depend on age. The wife’s deterministic wages, however, depend on endogenously accumulated tenure at the current (or most recent job), overall experience, and most recent non-working periods. The husband’s and the wife’s deterministic wages are also affected by business cycle conditions, as represented by unemployment rates.

2.1.3 Preferences

Household gets utility from consumption and children, and disutility from work. Each married couple also cares about not only the number of children but also their human capital in a way that allows a quantity-quality trade-off in childcare production.
A typical household’s utility function is as follows:

\[U(c, n^w, k, m) = u(c, n^w) + x(k, n^w, M)\mathbb{I}(k > 0), \]

(1)

where \(u(\cdot) \) is the utility from consumption and disutility of work and \(x(\cdot) \) represents utility from children. \(c \) denotes household size-adjusted (adult-equivalent) consumption, \(n^w \) wife’s working hours, \(k \) the number of children, \(M \) total expenditure on market childcare, and \(\mathbb{I}(\cdot) \) denotes the indicator function.\(^2\)

Following Park (2014), \(u(\cdot) \) and \(x(\cdot) \) are specified, respectively, by

\[u(c, n^w) = \frac{c^{1-\gamma}}{1-\gamma} + \eta n^w, \]

(2)

\[x(k, n^w, M) = \delta \frac{k^{1-\theta} \left[\sum_{j_c \in \{1,2,3,4\}} (g^{j_c} (1-n^w)^{1-k}) + (1-g^{j_c}) (M/k)^{\phi} \right]^{1/(1-\lambda)}}{1-\lambda}, \]

(3)

where \(\gamma \) is a coefficient of relative risk aversion of consumption and \(\eta \) the marginal disutility of work. Utility from children depends on the number \((k) \) and age \((j_c) \) of children, wife’s childcare hours \((1-n^w) \), and market goods for childcare \((M) \). \(\delta \) is the weight on childcare production. \(\theta \) and \(\lambda \) concern utility from quantity and quality of children, respectively. \(\phi \) governs the elasticity of substitution between mother’s childcare time \(((1-n^w)/k) \) and expenditure on market childcare \((M/k) \). Finally, \(g^{j_c} \) is the relative weight placed on mother’s childcare time against market childcare. Note that the relative weight is allowed to vary depending on children’s ages. For example, mother’s direct care time becomes less important as children grow older (Olivetti, 2006).\(^3\)

2.2 Household’s Decision Problem

In each period, a household makes decisions on consumption and savings, wife’s labor supply, and fertility. Specifically, the household faces six mutually exclusive alternatives depending on the fertility choice (represented by the number of new childbirths, 0 through 5) before the wife reaches the age of \(j_I \), and are denoted by \(i \in \{1,2,\ldots,6\} \): \(i=1 \) if 0 children, \(i=2 \) if 1 child, ... , \(i=6 \) if 5 children. Once the wife reaches \(j_I \), the fertility choice is excluded.

\(^2\)We use the OECD-modified scale that assigns a value of 1 to the husband, .5 to the wife, and .3 to each child.

\(^3\)Park (2014) extends Caucutt et al. (2002)’s specification of the childcare function by using a constant elasticity of substitution function instead of a Cobb-Douglas function for childcare quality. This is essential for the current model that aims at explaining women’s labor supply and fertility behavior via substitutability between mother’s direct care and market care.
from the decision problem. When the household reaches the age of \(j_R \), wife’s labor supply is eliminated from the choice set as well.

Let \(\Omega = \{a, j, \xi^h, \xi^w, k^1, k^2, k^3, k^4, T, NX, t\} \) be a set of state variables for the household’s decision problem, where \(\xi^h \) and \(\xi^w \) represent the husband’s and wife’s permanent wage shocks, respectively. \(k^1, k^2, k^3, \) and \(k^4 \) represent the number of children in the prior period, with \(k^1 \) denoting the number of children between ages 0 to 4, \(k^2 \) ages 5 to 9, \(k^3 \) ages 10 to 14, and \(k^4 \) ages 15 to 19; \(T \) and \(NX \) are tenure and most recent non-employment period, respectively. \(t \) is the calendar year.

Each household maximizes expected utility, and its decision problem is given by

\[
V(\Omega) = \begin{cases}
\max\{V^1(\Omega), V^2(\Omega), \ldots, V^6(\Omega)\} & \text{if } j_1 \leq j < j_T \\
V^1(\Omega) & \text{if } j_I \leq j \leq j_T,
\end{cases}
\tag{4}
\]

and the value function of each case is defined by

\[
V^i(\Omega) = \begin{cases}
\max_{c, a'} \{U^i(c, n^w, k, M) + \beta EV(\Omega'|\Omega, i)\} & \text{if } j_1 \leq j \leq j_{T-1} \\
\max_{c} U^i(c) & \text{if } j = j_T
\end{cases}
\tag{5}
\]

subject to

\[
C + a' = a(1 + r) + w^h + w^w n^w - M,
\]

\[
0 \leq n^w \leq 1, \quad C \geq 0,
\]

\[
a = 0 \text{ if } j = j_1 \text{ or } j = j_T, \quad a' \geq a,
\]

where \(\beta \) is the discount factor, and \(a \) is a natural borrowing constraint.

Since the household can have up to five new children in each period, \(k^1 = \{0, 1, 2, \ldots, 5\} \), \(k^2 = \{0, 1, 2, \ldots, 5\} \), \(k^3 = \{0, 1, 2, \ldots, 5\} \), and \(k^4 = \{0, 1, 2, \ldots, 5\} \). The total number of children of each age group evolves as follows:

\[
k^j = k^{j-1} + d^e - d^l,
\]

where \(d^e \) and \(d^l \) represent the number of children entering and leaving the children’s age group, respectively, such that \(d^e = 0, 1, 2, \ldots, 5 \) and \(d^l = 0, 1, 2, \ldots, 5 \).

The model is solved numerically. A numerical solution requires calculating \(EV(\Omega' | \Omega, i) \) by a typical backward recursion for all \(i \) and elements of \(\Omega \). In solving the model, a potential nonconcavity problem arises because of the nature of the discrete choice associated with changes in the new number of children in the future period. With enough uncertainty,
however, it will be smoothed out, leaving the expected value function concave (Attanasio et al., 2008).

3 Model Estimation

3.1 Externally Determined Parameters

3.1.1 Basic model setup

Individuals live ten periods \((j_T=10)\), starting their lives at age \(j_1\) as adults and ending at age \(j_{T+1}\). Each period (or “age”) consists of five years of actual ages, with \(j_1\) representing actual ages of 25–29, ..., and \(j_T\) representing 70–74. Wives become infertile from \(j_I\) (40–44). Both husbands and wives retire at \(j_R\) (65–69). Newborn children are assumed to be attached to the household for four periods.

3.1.2 Childcare costs

Using the Korean Labor Income Panel Survey (KLIPS), we estimate the childcare cost function, as specified by Park (2014).

\[
m_{i,t} = c_0 + c_1k_{i,t}^1 + c_2k_{i,t}^2 + c_3k_{i,t}^3 + c_4k_{i,t}^4 + \epsilon_{i,t},
\]

where the dependent variable, \(m_{i,t}\), is annual expenditure on market childcare services divided by labor income of wife \(i\) in year \(t\). The total household childcare expenditure is computed by the product of the predicted \(m_{i,t}\) and wife’s labor income \((w^w n^w)\): \(M = m w^w n^w\).

*** Table 1 here ***

Table 1 reports estimation results of the childcare cost function. For brevity, only estimated coefficients are reported along with their standard error estimates. Estimates show that childcare becomes more costly as children grow older in Korea \((c_1 < c_2 < c_3 < c_4)\).\(^4\)

\(^4\)The KLIPS is a longitudinal survey of the labor and income activities of households and individuals residing in urban areas. Since the first wave (approximately 5,000 households) was launched in 1998, annual surveys have been conducted by the Korea Labor Institute. Our analysis is based on the first seventeen waves from 1998 through 2014. In each survey, the KLIPS releases information about each household’s average monthly expenditure on private and public childcare services. The private childcare expenditure is defined by the total expenditure on all kinds of childcare-related services except for formal education. The expenditure on public childcare is the amount spent on formal education of children in elementary to high school, including tuition and related expenses. Total childcare expenditure is computed as the sum of the two.

\(^5\)The relationship between child’s age and childcare cost need not be the same across countries. For example, Park (2014) finds that childcare becomes less costly over the age of children in the US.
3.1.3 Wages and wage shocks

As in most existing studies (e.g., Attanasio et al., 2008; Olivetti, 2006), husbands are assumed to work all the time so that their wage depends only on age:

\[\ln w^h_{i,t} = \alpha_0 + \alpha_1 j_{i,t} + \alpha_2 j^2_{i,t} + \alpha_3 u_t + \nu^h_{i,t}, \]

(7)

where \(w^h_{i,t} \) represents the real monthly earnings of husband \(i \) in year \(t \), \(j_{i,t} \) his age, \(u_t \) unemployment rate in year \(t \), and \(\nu^h_{i,t} \) is the error term in the husband’s wage equation.

The wife’s wage function is specified as follows:

\[\ln w^w_{i,t} = \beta_0 + \beta_1 X_{i,t} + \beta_2 X^2_{i,t} + \beta_3 T_{i,t} + \beta_4 T^2_{i,t} + \beta_5 N X^n_{i,t} + \beta_6 (N X^n_{i,t})^2 + \beta_7 u_t + \nu^w_{i,t}, \]

(8)

where \(w^w_{i,t} \) represents the real monthly pay of wife \(i \) in year \(t \), \(X_{i,t} \) overall experience, \(T_{i,t} \) tenure at the current (or most recent) job, \(N X^n_{i,t} \) the most recent non-employment duration, and \(\nu^w_{i,t} \) is the error term. Married women experience wage losses during a non-working period caused by childbearing or rearing among others, and labor market conditions, as measured by unemployment rates, affect labor supply through wage changes.

*** Table 2 here ***

On the basis of the KLIPS data, Table 2 reports estimation results of the husband’s and the wife’s wage functions.\(^7\) Estimated coefficients are generally significant, and their signs

\(^6\)In the current model, hours adjustment represents changes in the number of employment months over a five-year period. First, the wage setting system in Korea makes the monthly pay more appropriate as the measurement of price of labor than the hourly wage rate, as many establishments adopt the “comprehensive pay system.” Under the system, both the monthly pay and “average” monthly hours are set through collective bargaining over a certain period of time. Second, the labor force share of hourly workers is much lower in Korea, relative to, say, the US. The KLIPS data shows that the proportion of hourly workers among the entire wage and salary workers is far less than ten percent in the 2000s. Our analysis of the Current Population Survey data over a similar period produces a comparable figure of over 40 percent in the US. Third, and perhaps more importantly, the average hourly earnings variable (commonly used in previous studies as a measure of the hourly wage rate) suffers from measurement errors associated with monthly hours collected from surveys. That said, little change is made to the findings of this paper even when the average hourly earnings variable is used instead of monthly pay.

\(^7\)In estimating Eq. (8), we correct for the sample selectivity that often features observed wages of working women, using the conventional two-step estimation method suggested by Heckman (1979). Following prior studies in the literature, we use the number of children and husband’s income as the excluded variables from the wage equation (e.g., Olivetti, 2006). In estimating Eq. (7) and (8), we also correct for the potential downward bias in the estimated standard error of the estimated coefficient of the unemployment rate that arises from neglecting the cross-sectional correlation of individuals’ error terms by conducting White’s standard error estimation that is robust with respect to within-year clustering. Although test results support endogenous selection of working wives, current findings remain valid even when the OLS results are used for estimating the model without correcting for selection.
coincide with conventional ones.\footnote{Results show that real wages are more procyclical for men than women. Although this finding is in contrast to women’s experience of greater real wage reduction in the US during the Great Recession (Elsby et al., forthcoming), several studies (e.g., Blank, 1989; Solon et al., 1994; Tremblay, 1990) report men’s greater wage procyclality in the US during the 1970s and 1980s.}

Lastly, residuals from estimated Eq. (7) and (8) are used to estimate stochastic components of couple’s wages. Following Attanasio et al. (2008), we allow only the permanent component in the error term, which follows an AR(1) process with permanent wage shocks. A couple’s permanent shocks have the following joint distribution:

\[
\begin{align*}
\nu^w &= \rho^w \nu^w_0 + \xi^w, \\
\nu^h &= \rho^h \nu^h_0 + \xi^h,
\end{align*}
\]

where \(\xi = (\xi^w, \xi^h) \sim N(\mu_\xi, \sigma_\xi^2) \),

\[
\mu_\xi = \left(-\frac{\sigma_{\xi^w}^2}{2}, -\frac{\sigma_{\xi^h}^2}{2} \right), \quad \text{and} \quad \sigma_\xi^2 = \begin{pmatrix}
\sigma_{\xi^w}^2 & \rho_{\xi^w, \xi^h} \sigma_{\xi^w} \sigma_{\xi^h} \\
\rho_{\xi^w, \xi^h} \sigma_{\xi^w} \sigma_{\xi^h} & \sigma_{\xi^h}^2
\end{pmatrix}.
\]

Table 3 reports the estimation results of couple’s wage process, based on the KLIPS. The husband’s and wife’s permanent wage shocks appear to be almost uncorrelated. While Hyslop (2001) finds positive correlations between couple’s permanent wage shocks based on the Panel Study of Income Dynamics data, the estimated correlation becomes smaller in the 2000s (0.15) than in 1970s (0.57). Compared to U.S evidence (e.g., Heathcote et al., 2010; Park & Shin, 2015), permanent wage shocks are much less persistent in the Korean labor market.

*** Table 3 here ***

3.1.4 Other externally determined parameters

We set the per-period interest rate to 0.07, which corresponds to 0.014 of the annual interest rate. The annual interest rate equals the average real return on annual T-bills in Korea from 2000 to 2013. The per-period discount factor is set to 0.935, which corresponds to an annual discount rate of 0.987. It implies that the discount rate is the same as the interest rate so that households save only to smooth consumption against wage uncertainty.
3.2 Internally Determined Parameters

The remaining set of model parameters are internally determined to match a set of population characteristics described by data (henceforth, target values) with the population characteristics generated by the model. The set of the structural parameters to be estimated includes the relative risk aversion of household consumption (λ), marginal disutility of wife’s work (η), and a set of parameters governing childcare production ($\delta, \theta, \phi, \lambda, g_1^1 - g_4^4$). Since the model does not have any closed-form solutions for the moments, these ten structural parameters are jointly estimated by the Simulated Methods of Moments (SMM) estimation, which effectively minimizes the distance between the parameter values and the fifteen target moments (empirical moments) presented in Table 4.

*** Table 4 here ***

Formally, let $\beta \equiv \{\gamma, \eta, \delta, \theta, \phi, \lambda, g_1^1 - g_4^4\}$. Given externally determined parameters, we obtain 100,000 households for the 1960s cohort, use the model to simulate their life-cycle profiles, and generate the moments which are denoted by $M_m(\beta)$. Define $g(\beta) = M_d - M_m(\beta)$, where M_d and $M_m(\beta)$ are the empirical and the simulated moments, respectively. The SMM minimizes the following function:

$$\hat{\beta}_{smm} = \arg \min_{\beta} g(\beta)' W g(\beta),$$

where W is the optimal weighting matrix. The variance-covariance estimator is calculated by

$$\Sigma_{\hat{\beta}} = (\hat{G}' W \hat{G})^{-1} \hat{G}' W \Omega W \hat{G} (\hat{G}' W \hat{G})^{-1},$$

where $\hat{G} = \frac{\partial}{\partial \beta} g(\beta)_{\beta=\hat{\beta}}$, and Ω is the variance matrix of the empirical moments. (See Appendix A for the computation algorithm.)

Results in Table 4 show that the target values are generally well-matched with corresponding model-generated moments, implying that the current model explains not only life-cycle labor supply but also fertility-related behaviors of the 1960s cohort to a reasonable degree.

Various tests are conducted to check robustness of the estimated model. First, we examine how the estimated model performs in dimensions not directly targeted in the estimation. In particular, we examine how the estimated model explains employment dynamics before and after first childbirth. The results, though not reported for brevity, show that the model-generated employment dynamics and observed dynamics from the KLIPS data are well-matched. Second, we re-estimate the current life-cycle model for the 1970s cohort, and find
that the current life-cycle model also matches observed labor supply and fertility behaviors of the 1970s cohort very well. Lastly, we expand the current model by dividing the entire workers between wage or salary workers and the self-employed, and find that all the following analytical results still survive the new exercise.⁹

*** Table 5 here ***

Table 5 summarizes estimated structural parameters for the 1960s cohort. Numbers in parentheses are estimated standard errors, suggesting that all the estimated parameters are statistically significant. The relative weight placed on mother’s direct care against market care decreases in children’s ages. The estimated substitution parameter \(\phi\), which plays a central role in explaining the changing TFR-FPR correlation, is about 0.13, which is much smaller than the corresponding figure of 0.7 for the 1960s cohort in the US, suggested by Park (2014).

4 Explaining the Effect of Substitutability on Female Labor Supply and Fertility

4.1 Baseline Simulations

How do female labor supply and fertility rates respond to changes in childcare substitutability? Figure 2 plots the average age at first birth and total fertility rate by the substitutability parameter, \(\phi\), at values \(-\infty\) and in increments of 0.2 from \(-1\) to 1. Age at first birth is inverted U-shaped and TFR is U-shaped.¹⁰ As \(\phi\) increases from minus infinity to 0.4, a typical married woman delays the timing of childbearing to a later stage of the life-cycle and reduces the total number of childbirths at a decreasing rate. Once \(\phi\) becomes greater than 0.4, TFR (age at first birth) increases (decreases) at an increasing rate. Note that because the fertile period is fixed and both the number of children and the timing of births are determined endogenously within the model, age at first birth follows the opposite pattern from TFR. In order to have more children, one’s first childbirth would have to occur at a younger age.

*** Fig. 2 here ***

Figures 3 and 4 depict how a typical married woman adjusts her life-cycle labor supply to childcare substitutability in the extensive and intensive margins, respectively. In each stage

⁹All these results are available from authors upon request. The population share of the self-employed is particularly large in Korea among OECD countries, at about 25 percent in the 2000s.

¹⁰This general relationship is also mentioned in Kim et al. (2015).
of the life-cycle, per capita employment increases monotonically as ϕ goes up from minus infinity to one. As in the fertility-substitution profile, however, labor supply responds to ϕ in a nonlinear fashion. Roughly speaking, labor supply appears to be a convex function of ϕ over the range of 0 and 1. A careful examination of Fig. 3 also indicates that labor supply responses to increased substitutability are particularly large at earlier stages of the life-cycle, the period of childbearing. Hours of work also increases with ϕ, except among women in their twenties and early thirties. Because of the increase in number of children and the direct care that young children require, women cannot increase their labor hours monotonically with ϕ at this stage.

*** Fig. 3 here ***

*** Fig. 4 here ***

Put together, Fig. 2–4 reveal an interesting labor supply-fertility dynamics over the values of ϕ. When ϕ increases from negative infinity to about 0.4, women on average choose to supply more labor, delay childbearing, and reduce the number of childbirths. As ϕ becomes greater than 0.4, however, additional increase in substitutability between direct and indirect childcare makes women increase both labor supply and fertility at an increasing rate, while giving births at earlier stages of the life-cycle. The finding is observationally equivalent to the change in correlation between female labor force participation and fertility rates observed across countries (refer to Fig. 1).

To check for robustness, we re-estimate the current model for the 1970s cohort in Korea and examine whether the changing dynamic correlation of TFR and FPR over substitutability remains valid. The results are virtually identical to those for the 1960s cohort: the TFR-FPR correlation switches from negative to positive as the estimated substitution parameter exceeds 0.4 (see Appendix B). We confirm this pattern again, using an earlier cohort (1950s) by reproducing Park (2014)’s estimated model for the US sample (Appendix C). A minor difference is that the TFR-FPR correlation turns from negative to positive at a slightly higher level of substitution parameter (ϕ), 0.6, in the US. It is also interesting to note that ϕ is estimated to be 0.13, 0.26, and 0.7, for the 1960s cohort in Korea, 1970s in Korea, and the 1950s cohort in the US, respectively. These estimates suggest that the measured degree

11Park (2014)’s model is slightly different from the current one in that her model divides the entire paid market into full-time and part-time sectors. As previously stated, however, we also extend the current model by dividing the paid market to wage workers and the self-employed, and find little difference in the results.

12Estimation results of the model for the 1970s cohort in Korea and the 1950s cohort in the US are available from authors upon request.
of substitutability has increased from the 1960s to 1970s cohort, with the change being statistically significant, and that the US has already entered the phase of positive TFR-FPR relationship, whereas Korea is approaching the threshold level.

4.2 Decomposition

The increase in female employment with substitutability is quite intuitive. With the option of using market childcare, more of mother’s time would be freed up for work in the labor market. How TFR evolves with substitutability, however, is not as straightforward. Why do women decrease then increase the number of children as substitutability improves? Do all women respond in this way, or is there selection? And if there is selection, which group is driving the results?

In this section, we provide a structural explanation of the patterns generated by the model by teasing out composition effects from behavioral effects. For simplicity, we choose to divide women into two groups according to ability—more productive and less productive. More productive women are defined as those who work from their twenties even when \(\phi \) is negative infinity and comprise about 20 percent of the sample, whereas less productive women include all others. We emphasize that the categorization of women into these two groups is for analytical purpose only, and does not imply that there are two different “types” of women.

*** Fig. 5 here ***

Let us first understand the characteristics of the two groups by observing their average wage (see Fig. 5). By construction, average wage of more productive women is the same across all values of \(\phi \) (panel B). Because this group consists of a fixed group of women who choose to work even in the most unfavorable condition (\(\phi = -\infty \)), there is no change in its composition by \(\phi \)—they continue to work. Hence, this group allows us to observe behavioral effects absent composition effects. On the other hand, panel C indicates that the average wage of less productive women decreases with \(\phi \). That is, there is selection into the labor market. Lower-ability women who used to stay out of the labor force newly enter as substitutability increases, depressing the average wage of the group.\(^\text{13}\) Thus when all women are considered in panel A, we again observe a negative relationship between substitutability and average wage. As more women decide to work, the average quality of the female labor force inevitably falls.

*** Fig. 6 here ***

\(^\text{13}\)Note that average wage is calculated for working women only.
Keeping this in mind, we study how each group’s fertility decision is affected by substitutability. Figure 6 plots age at first childbirth and TFR by ϕ, separately for more and less productive women (panels A and B, respectively). TFR increases with ϕ in all ranges for the more productive group but is U-shaped with ϕ for the less productive group. Age at first childbirth, again, has the mirror image of TFR.

To distinguish the role of behavioral and composition effects, it is convenient to focus on the difference in TFR between $\phi = -\infty$ and $\phi = -1$. The difference between these two points is solely due to behavioral effects among the more productive group and solely due to composition effects among the less productive group. All women continue to work in the former whereas some women newly enter the labor market in the latter from an initial pool of housewives.

The behavioral effect, as presented in Fig. 6 panel A, is positive. Simply put, more productive, working women have more children now that they no longer need to quit their careers with childbirth. The composition effect, on the other hand, is negative (Fig. 6 panel B). At $\phi = -\infty$, no woman in the less productive group participate in the labor market. At $\phi = -1$, a subgroup of less productive women—let us call them “compliers”—newly enter the labor force. Because housewives are assumed to use only direct childcare and are thus unaffected by changes in substitutability, the sharp decline in TFR from $\phi = -\infty$ to $\phi = -1$ in panel B is attributable to these compliers who trade childbirths for labor supply.

Once ϕ exceeds -1, however, both behavioral and composition effects coexist within the less productive group, and the shape of TFR is determined by the relative strength of the two effects. Obviously, the significance of behavioral effects depends on the size of the female workforce. As more women participate in the labor market with increasing substitutability, the behavior of working women becomes more important than the effects from changes in composition between working and non-working women. Consequently, at low levels of ϕ where most women are not working, composition effects dominate and hence, TFR falls with substitutability. At higher levels of ϕ where most women are already working, behavioral effects begin to dominate and hence, TFR increase with substitutability. Thus, TFR among less productive women is U-shaped with regards to substitutability.

The same logic applies when we combine more and less productive women. Behavioral effects among more productive women help alleviate the rapid fall in TFR at low levels of substitutability while raising TFR further up at high levels of substitutability, but the overall U-shaped pattern remains. In fact, regardless of how we define more or less productive women, the basic intuition is the same. Greater substitutability decreases TFR of women selecting into the labor force, increases TFR of women already in the labor force, and increases female labor supply, which in turn amplifies behavioral effects further on. In short,
TFR falls then rises as the size of the female labor supply expands with substitutability.

*** Fig. 7 here ***

To examine the specific trade-offs that accompany fertility decisions, we now depict the two inputs required for child quality—time and money. We normalize both measures by the number of children to capture parental inputs per child. Figure 7 panel B shows that mother’s time per child decreases continuously with ϕ at all stages of the life-cycle. That is, when market care becomes substitutable with mother’s direct care, mothers with high productivity choose to pay the costs of market care instead of giving up their time in the labor market. The difference in mother’s time by ϕ is particularly salient among women in their twenties (i.e., mothers of young children). Panel C shows that for ϕ larger than 0, less productive women also decrease per-child mother’s time with ϕ. For lower levels of ϕ, however, an increase in substitutability actually increases mother’s time per child. This is related to the fact that at lower levels of ϕ, less productive women decrease their number of children with ϕ.

*** Fig. 8 here ***

Figure 8 is the other side of the coin—market care expenditure per child. As mentioned in Section 3, market care expenditure rises with women’s age in Korea. How market care expenditure changes with ϕ, however, depends on women’s productivity. It increases with ϕ for more productive women (Fig. 8 panel B) but decreases with ϕ for less productive women (Fig. 8 panel C). As childcare becomes increasingly substitutable, productive mothers trade money for work time. In the less productive group, there is again, selection. Recall that market care is used only by working women. Thus, as lower-ability women enter into the labor force, their relatively lower market care expenditure dampens the average of this group. That is, even if the behavioral effect of increasing the use of market care when it becomes more substitutable is the same across all women, the composition of women who use market care in the first place changes by ϕ. As a result, we observe the seemingly counterintuitive result of decreasing per-child market care expenditures at greater levels of childcare substitutability (Fig. 8 panel A).

5 Implications

There are several important implications that we can draw from the findings. First and foremost, a sufficiently high level of substitutability between direct and indirect childcare can
be the “one stone” that kills two birds—TFR and FPR. With population aging and slower economic growth, many developed countries are seeking for measures that can help increase both female labor force participation and fertility rates. The limitation of many existing policy schemes, however, is perhaps in that these two goals are considered separately when household’s work and fertility decisions are not. Once it becomes clear that childbirth need not accompany substantial reallocation of time away from the labor market, married women would pursue both family and career.

Second, enhancing substitutability may have positive effects on marriage rates. Although we only analyze married couples in this paper, a significant portion of the decline in TFR in developed Asian countries is known to be due to the decline in marriage rates (e.g., Jones, 2007). Particularly in Korea, marriage and fertility decisions are difficult to separate out because cohabitation is rare and out-of-wedlock childbirths comprise less than 2 percent of all childbirths. The (career) costs of childbirth being one of the reasons for avoiding and delaying marriage, increasing substitutability would then help raise TFR through both the intensive (among married couples) and extensive (increasing the number of married couples) margins.\(^\text{14}\)

Lastly, notice that the evolution of TFR is not just an increase in the number of children in an average household, but a change in the composition of households that have children. When the elasticity of substitution is low, most productive women do not have children. Increases in substitutability raises the relative portion of children that are born into more productive mothers. If we are concerned about not only the number but also the distribution of children across households, such shifts in composition may be desirable. The fall in women’s age at first childbirth at higher levels of ϕ also suggests better health for both mothers and children.

It is thus crucial to understand what the substitutability parameter entails and how it can be increased. As defined in Section 2, ϕ governs the elasticity of substitution between mother’s childcare time and expenditure on market childcare in the household utility function. This means that having many daycare centers is only one component of high ϕ. Because households need to actually perceive indirect childcare as being substitutable with mother’s time, both quantity and quality of market care matters. Compliance to hygiene and safety standards, qualifications and training of childcare workers, design of early education curriculum, are all examples of the aspects of quality of childcare services.

Furthermore, norms regarding childcare would affect whether mother’s time is replaceable

\(^{14}\)Korea’s marriage rate has been declining, particularly among highly educated women. Hwang (2015) explains that traditional norms, including placing almost all of the burden of childcare and housework on women, is partly attributable for such phenomenon in developed Asian countries.
with other inputs. According to the most recent 2010–2014 wave of the World Value Survey, more than 55 percent of Koreans agreed to the statement “When a mother works for pay, the children suffer.” The statistic is similar in Hong Kong (65 percent) and Singapore (43 percent) and considerably lower in the US (25 percent) and Sweden (33 percent).15 Of course, such responses may simply reflect the lack of market childcare per se, but it is also true that most societies still consider the mother to be responsible for childcare. Such family norms invoking mother’s guilt constrain households from exploiting market childcare even when it is available.

In this context, policies designed to promote gender equity at home and at work may have positive spillovers on childcare substitutability, and hence, FPR and TFR. Although not in the current model, recall that there is another potential provider of childcare—fathers. Family-friendly policies that are more gender-neutral would help alleviate the disproportionate burden of childcare on women by increasing substitutability between mother’s and father’s time in addition to that with market care. Paid parental leave systems (rather than maternity leave) would be one such example. Even in the case in which an increase in mother’s working hours is offset by a reduction in father’s working hours, the result would not be zero-sum for both the household and the society: work-family balance would improve and fertility rates would increase.

15Possible responses are: “Agree strongly,” “Agree,” “Disagree,” “Strongly disagree,” “No answer,” and “Don’t know.” We combine “Agree strongly” and “Agree,” while excluding “No answer” and “Don’t know.” The number of observations are: Korea (1,200), Hong Kong (1,000), Singapore (1,972), US (2,232), Sweden (1,206).
References

Table 1: Estimated Childcare Cost Function

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Estimate</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.2178</td>
<td>(0.0055)</td>
</tr>
<tr>
<td>Number of children between ages 0 to 4</td>
<td>-0.0117</td>
<td>(0.0069)</td>
</tr>
<tr>
<td>Number of children between ages 5 to 9</td>
<td>-0.0102</td>
<td>(0.0052)</td>
</tr>
<tr>
<td>Number of children between ages 10 to 14</td>
<td>0.0146</td>
<td>(0.0049)</td>
</tr>
<tr>
<td>Number of children between ages 15 to 19</td>
<td>0.0466</td>
<td>(0.0054)</td>
</tr>
<tr>
<td>N of obs</td>
<td>5,066</td>
<td></td>
</tr>
</tbody>
</table>

Notes. Sample criteria: working mothers who spend between 5% and 100% of their labor income on market childcare.
Table 2: Estimated Wage Function: Deterministic Component

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Husband</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>5.3173</td>
<td>(0.0586)</td>
</tr>
<tr>
<td>Age</td>
<td>0.0553</td>
<td>(0.0049)</td>
</tr>
<tr>
<td>Age squared</td>
<td>-0.0014</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>-0.0871</td>
<td>(0.0049)</td>
</tr>
<tr>
<td>N of obs</td>
<td>12,886</td>
<td></td>
</tr>
<tr>
<td>Panel B: Wife</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>4.6750</td>
<td>(0.0231)</td>
</tr>
<tr>
<td>Experience</td>
<td>0.0102</td>
<td>(0.0036)</td>
</tr>
<tr>
<td>Experience squared</td>
<td>-0.0002</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Tenure</td>
<td>0.0432</td>
<td>(0.0034)</td>
</tr>
<tr>
<td>Tenure squared</td>
<td>-0.0007</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Non-employment duration</td>
<td>-0.0220</td>
<td>(0.0046)</td>
</tr>
<tr>
<td>Non-employment duration squared</td>
<td>0.0003</td>
<td>(0.0003)</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>-0.0364</td>
<td>(0.0057)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.0336</td>
<td>(0.0122)</td>
</tr>
<tr>
<td>N of obs</td>
<td>7,002</td>
<td></td>
</tr>
</tbody>
</table>

Notes. Data source: KLIPS (1998-2012) work history file. White’s robust standard error estimates are in parentheses. Males are included in the sample if their ages are greater than or equal to 25 years and their monthly earnings are between 0.3 million won (about 300 dollars) and 20 million (about 20,000 dollars).
Table 3: Estimated Joint Stochastic Wage Processes of Husbands and Wives

<table>
<thead>
<tr>
<th></th>
<th>Husband</th>
<th>Wife</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ^π (persistency of permanent wages)</td>
<td>0.7652</td>
<td>0.7455</td>
</tr>
<tr>
<td>σ^2_{ξ} (variance of wage shocks)</td>
<td>0.1218</td>
<td>0.1776</td>
</tr>
<tr>
<td>$\rho_{\xi^w\xi^h}$ (correlation b/w husband’s and wife’s wages)</td>
<td>0.0734</td>
<td></td>
</tr>
</tbody>
</table>

Notes. See notes to Table 2.
Table 4: Model-Generated Moments vs Empirical Moments

<table>
<thead>
<tr>
<th>1960s cohort</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per capita employment for women whose ages are b/w<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25–29</td>
<td>0.3716</td>
<td>0.3534</td>
</tr>
<tr>
<td>30–34</td>
<td>0.4379</td>
<td>0.4213</td>
</tr>
<tr>
<td>35–39</td>
<td>0.5637</td>
<td>0.5591</td>
</tr>
<tr>
<td>40–44</td>
<td>0.6192</td>
<td>0.6022</td>
</tr>
<tr>
<td>45–49</td>
<td>0.6320</td>
<td>0.6193</td>
</tr>
<tr>
<td>50–54</td>
<td>0.5892</td>
<td>0.6004</td>
</tr>
<tr>
<td>Per capita employment for women whose children’s ages are b/w<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–4</td>
<td>0.2811</td>
<td>0.2998</td>
</tr>
<tr>
<td>5–9</td>
<td>0.3864</td>
<td>0.4007</td>
</tr>
<tr>
<td>10–14</td>
<td>0.4937</td>
<td>0.4957</td>
</tr>
<tr>
<td>15–19</td>
<td>0.5411</td>
<td>0.5506</td>
</tr>
<tr>
<td>Number of lifetime childbirths<sup>b</sup></td>
<td>2.07</td>
<td>1.94</td>
</tr>
<tr>
<td>Share of non-mothers<sup>b</sup></td>
<td>0.0607</td>
<td>0.0437</td>
</tr>
<tr>
<td>Share of mothers who have their first birth before age 30<sup>b</sup></td>
<td>0.8214</td>
<td>0.8697</td>
</tr>
<tr>
<td>Share of mothers who have their first birth after age 34<sup>b</sup></td>
<td>0.0617</td>
<td>0.0464</td>
</tr>
<tr>
<td>Ratio of male to female labor income<sup>c</sup></td>
<td>0.5728</td>
<td>0.5918</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative risk aversion of consumption</td>
<td>γ</td>
<td>0.621</td>
</tr>
<tr>
<td>Disutility of wife’s work</td>
<td>η</td>
<td>0.563</td>
</tr>
<tr>
<td>Weight on childcare production</td>
<td>δ</td>
<td>0.254</td>
</tr>
<tr>
<td>Relative risk aversion of number of children</td>
<td>θ</td>
<td>0.406</td>
</tr>
<tr>
<td>Relative risk aversion of quality of children</td>
<td>λ</td>
<td>0.290</td>
</tr>
<tr>
<td>Substitutability b/w mother’s time and market care</td>
<td>ϕ</td>
<td>0.134</td>
</tr>
<tr>
<td>Relative share of mother’s time on childcare when children’s ages are b/w</td>
<td>g^1, g^2, g^3, g^4</td>
<td>0.563, 0.376, 0.283, 0.234</td>
</tr>
</tbody>
</table>

Notes. Numbers in parentheses are standard error estimates obtained by the Simulated Method of Moments estimation (100,000 households).
Figure 1: Cross-country Correlation between TFR and FPR

Source: Ahn & Mira (2002) Fig. 2.

Figure 2: Fertility Behavior by Substitutability, All Women
Figure 3: Employment Over the Life-cycle by Substitutability, All Women

Figure 4: Hours of Work Over the Life-cycle by Substitutability, All Women
Figure 5: Average Wage Over the Life-cycle by Substitutability

(a) All women

(b) More productive women

(c) Less productive women
Figure 6: Fertility Behavior by Substitutability

(a) More productive women

(b) Less productive women
Figure 7: Mother’s Childcare Hours Over the Life-cycle by Substitutability

(a) All women

(b) More productive women

(c) Less productive women
Figure 8: Market Care Expenditure Over the Life-cycle by Substitutability
Appendix

Appendix A Computation

Given a set of model parameters, $\beta \equiv \{\gamma, \eta, \delta, \theta, \phi, \lambda, g^1-g^4\}$,

1. Generate a discrete grid over the state space.

2. Solve the households' problem to obtain optimal decision rules by backward recursion.
 the choice of the number of newborn children in j is determined by the maximum of
 the conditional value functions.

3. Generate the permanent shocks for 100,000 couples using the joint distribution of
 the couple's shocks; and simulate their decision rules and choice for the fertility by
 approximating the solutions on a grid.

4. Compare the empirical moments with the model generated moments as in Table 4.
 Update the set of parameters of β and go back to (1). A minimization routine is
 constructed through the Nelder-Mead simplex algorithm.
Appendix B Baseline Simulations for the 1970s Cohort in Korea

Figure B.01: Fertility Behavior by Substitutability, All Women

Figure B.02: Employment by Substitutability, All Women
Appendix C Baseline Simulations for the 1950s Cohort in the US

Figure C.03: Fertility Behavior by Substitutability, All Women

Figure C.04: Employment by Substitutability, All Women