Today’s Instructor:
- Matheu J. Carter, P.E.
 - Municipal Engineering Circuit Rider

Restrooms, safety exits, smoking policies, etc.

Standard Reminders:
- Cell phones, pagers, beepers, walkie-talkies
- Sidebar conversations
The T² Center Winter Maintenance Program

What we cover:

- Module 1 – Introduction to snow and ice control
- Module 2 – Planning/program development
- Module 3 – Pre-season activities
- Module 4 – Operations/in-season activities
- Module 5 – Post storm activities
- Module 6 – Post season activities
Acknowledgements

Primary references:

- AASHTO Guide for Snow and Ice Control
- APWA, New England Chapter
 - “Plow Power” and “White Gold”
- Salt Institute
- National Local Technical Assistance Program (LTAP)
- Iowa Department of Transportation
- NCHRP
 - Report 526 - Snow and Ice Control: Guidelines for Materials and Methods
 - Report 577 - Guidelines for the Selection of Snow and Ice Control Materials to Mitigate Environmental Impacts
Acknowledgements

Our collaborators and counselors (with our thanks):

- Brian Urbanek, Alastair Probert, Edwin Tennefoss – Delaware Department of Transportation
- Brad Dennehy – Town of Milford, Delaware
- Roger Bowman – University of Delaware Facilities Management
- Daniel Webber – Roads Division, Cecil County, Maryland
- The national LTAP/T² community
Introduction

In this module:
- General objectives of snow and ice control
- Weather basics
- Importance of training
- Innovation and evolution
- Safety, risk management, liability
Where Are You in the Game?

- Professional snow fighters
- An important part of the community safety team
Where Are You in the Game?

Regardless of where are you now:

- We hope you’ll have a greater command when we’re done
- Don’t imagine this workshop will make you an expert (unless you already are one) – practice will do that
- As we go, share your challenges, experiences, and solutions – let’s all learn from each other
Objectives of Snow and Ice Removal

- Safety
 - Movement of emergency responders
 - Public safety
 - Safety of snowfighters

- Performance
 - Define levels of service and achieve them

- Cost effectiveness

- Environmental protection

- Accessibility, mobility, connectivity

- Economic vitality, tourism
Winter Weather Impacts

- Traffic crashes
 - Fatal
 - Non-fatal
 - Vehicles
 - Pedestrians

- Increased travel time, fuel costs
- Increased insurance premiums
- Decreased mobility
- Decreased productivity
Winter Weather Impacts

Video

from the Salt Institute

Winter Maintenance Training – Delaware T Center
Winter Operations

- Winter operations entail many “uncontrollable factors”
- Particularly when compared to other public works projects or programs
- What are these uncontrollable factors?
Weather Elements

- Amount of Snow
- Rate of Snow
- Duration of Snowfall
- Timing of Storm
- Temperature
- Wind Conditions
- Type of snow (wet/dry)
Road & Site Conditions

- Topography / Site Conditions

- Bridges
- Sharp curves
- Cul-de-sacs
Traffic: Type, Speed, Volume

Truck Traffic

High-speed Expressway

Heavy Volume

Low Volume
Drivers & Vehicles

- Driver Attitudes

- Stalled or Abandoned Vehicles
Elements of a Snow and Ice Control Program

- Goals and expectations, including levels of service
- Priorities for resource allocations and maintenance activities
- Fiscal accountability
- Recognition of legal responsibilities and constraints
- Environmental protection
- Public education/outreach
- Flexibility to react to changing conditions
- Opportunity to innovate and experiment
Levels of Service (LOS)

- **Balance** – must satisfy the public but be attainable
- **Defines conditions at one or more stages**
 - End of storm
 - Intermediate stages
 - Acceptable condition without action
- **Requires many considerations**
 - Local policy or ordinance limits
 - Road classifications and traffic volumes
 - Available equipment and materials and location of facilities
 - Personnel rules
Levels of Service (LOS)

(Just) Examples

<table>
<thead>
<tr>
<th>Classification</th>
<th>Traffic Volume (AADT)</th>
<th>Hours per Day of Response Activity</th>
<th>Level of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Commuter</td>
<td>10,000-30,000</td>
<td>24</td>
<td>All lanes substantially bare pavement before coverage time reduced</td>
</tr>
<tr>
<td>Urban Collector</td>
<td>500-5,000</td>
<td>18</td>
<td>75% bare pavement</td>
</tr>
<tr>
<td>Urban Residential</td>
<td>200-500</td>
<td>12</td>
<td>75% bare pavement</td>
</tr>
<tr>
<td>Secondary Street</td>
<td><800</td>
<td>12</td>
<td>One wheel path in each lane will have intermittent bare pavement with treated hills/curves before coverage time reduced</td>
</tr>
</tbody>
</table>
Levels of Service (LOS)
Levels of Service (LOS)
Levels of Service (LOS)
Environmental Considerations

Things to think about

- Controlling runoff from roadway operations
 - Streams
 - Groundwater
 - Vegetation
 - Habitat
 - Bridges, pavement, appurtenances
- Storage of abrasives and chemicals
- Protecting employees from chemical and abrasives dangers
- Minimizing air quality impacts
Weather Basics

- **Snow**
 - Ice crystals form gangs way up high and float down innocently
 - Sustained snowfall requires constant inflow of moisture

- **Ice**
 - Moisture gets on stuff that’s cold – nobody likes that

- **Black ice**
 - Forms when the air temp is below freezing but warmer than the pavement temp (e.g., air at 30˚F and pavement at 26˚F)
 - Look for when the dew point and air temp converge - air can no longer hold the moisture – condenses on the pavement

- **Sleet**
 - Cold, deep layer of air at surface cause ice pellets as they descend

- **Freezing rain**
 - Water droplets fall from above-freezing layer to below-freezing layer
Weather Basics

• Recognizing what has happened, what is happening, and what is likely to happen...
 ○ Snow
 ○ Ice
 ○ Black ice
 ○ Sleet
 ○ Freezing rain

• Helps guide us what to do at any given point in the storm
 ○ Start treatment
 ○ Change treatments
 ○ Stop
 ○ Pause
Weather Basics

- **Weather information to watch**
 - Temperatures
 - Air
 - Pavement
 - Subsurface
 - Dew point
 - Wind
 - Speed
 - Direction

- **Where do we find it**
 - Weather Channel/weather.com
 - NOAA
 - DelDOT
 - On-site weather station
 - Finger in the air?
Importance of Training

- Improve our snow fighting forces
 - Efficiency
 - Consistency
 - Effectiveness
- Minimize damage to snow/ice fighting equipment
- Minimize damage to roadways, curbs, signs, sidewalks, mailboxes...
- Increase safety for
 - The snowfighter
 - The pedestrian
 - The motorists
 - The kids
 - The ATVer ...
Importance of Training

- New equipment
- Crews
 - Personal protective equipment
- Materials handling
 - Vehicles and equipment
 - Operations
- Policies
- Training
- Safety committee
- Tailgate safety talks
Importance of Training

- Simulator training
 - Increased use in our area
 - Cecil County, Maryland
 - Elkton, Maryland
 - DelDOT
Remember:
Protecting Pedestrians, Motorists, and Our Own Snowfighters is Job #1
Innovation, Experimentation, Evolution

- Organization and individual managers should be open to new ideas (and even old ideas that need a fresh look)
- Abrasives versus chemicals versus mixes
- Alternatives to traditional rock salt – use of other freeze point depressants
- Brines and anti-icing approaches
- Alternative equipment
Innovation, Experimentation, Evolution

- Example – Seattle Department of Transportation
 - 2008 storm crippled the city
 - 26 plows, 4 deicing trucks equipped with GPS
 - 2,200 tons salt and 46,500 gallons salt brine in storage
 - New “Winter Weather Response” webpage
 - Shows where plows have been in last hour, 3 hours, 12 hours
 - Links to traffic cameras
 - Clear levels of service projections
 - Level I (transit, emergency responders) cleared 8 hours after storm
 - Level II – one lane each direction bare and wet
 - Level III – clear problem spots (hills, curves, stopping zones)
 - “Snow Watch” tracks and forecasts at neighborhood level
 - Additional temperature sensors on bridges
Fostering Innovation and Evolution

- New equipment
- New materials
- New uses of traditional equipment/materials
- New outreach/communication methods
- Requirements of the Americans with Disabilities Act (ADA)
- Multi-modal objectives
Duty concerning snow and ice

- Generally, courts say agencies have no duty to undertake precautionary or remedial action...
- Urban governments may have greater duty to clear streets...
- No duty to [clear snow...] in absence of weather hazard not reasonably apparent to person exercising due care...
- No duty...to remove general accumulations unless agency has notice of a dangerous/hazardous condition caused by snow/ice
Duty concerning snow and ice (cont’d)

- Duty to exercise reasonable care – alleviate or give warning
- General rule – no duty to remove general accumulations...
- Where notice of hazard, duty to exercise reasonable care...
- Plaintiff has burden of proving duty owed, breach of duty, breach proximately caused incident, and agency had constructive or actual notice of the conditions
Tort Liability

- (Legal) duty must be measured by number of factors
 - Size of task (geography, etc.)
 - Severity of storm
 - Available resources
 - Practicality of treatment
- Plaintiff must demonstrate harm outweighed utility
- Most dangers are known to travelers – impossible not expected
- Liability may be based on agency-created defect
- But patch of ice by itself imposes no liability
- Not liable where agency exercised due diligence
- Duty to apply chemicals often considered reasonable care
- Summary – courts often impose duty of reasonable care
Tort Liability

- **Trespass/Nuisance**
 - Damage to abutting property by snow/ice operations
 - Sue for nuisance, trespass, or inverse condemnation
 - “Unreasonable or excessive” salting?
 - Might be treated as any other invasion of property or interference with quiet enjoyment
 - Court even entertained the notion that if injury is severe, it could constitute a “taking”

- **Involve your legal counsel when in doubt**
Safety, Risk Management, Liability

- **Winter maintenance carries dangers, risks**
 - Some risks we can control or affect; others not
 - Start by knowing the difference
 - Perhaps others can control things we cannot – law enforcement for example

- **Obligation to operate safely and use safe equipment**
 - No place for “cowboys”
 - Have all summer to check brakes, hydraulic lines, etc.

- **Safety plan**
 - Has to be sound, simple, straightforward
 - Has to apply to everyone in organization
 - Has to be clearly supported by all layers of management
Safety, Risk Management, Liability

- Good safety plan can:
 - Reduce lost work time
 - Reduce equipment costs
 - Less repairs
 - Less equipment downtime
 - Reduce operating costs
 - Insurance premiums
 - Workman’s Compensation
 - Increase productivity
 - Improve quality of service
 - Improve community relations
 - Increase employee stability, loyalty, and motivation
Safety culture starts with management
 - Supervisors should be held accountable

Recognize and correct unsafe behavior
 - Horseplay or improper equipment use creates risk

Investigate crashes and near misses
 - No “witch hunt” necessary – just find out what happened
 - Make corrections, communicate with crews

Develop standard operating procedures (SOPs)

Safety rodeos and training

Reward safety
Safety, Risk Management, Liability

- **Equipment safety**
 - Comprehensive vehicle maintenance – before storms
 - Brakes
 - Power trains
 - Hydraulic systems
 - Tires
 - Lights, wipers, mirrors
 - Dump body operations
 - Fluids
 - Cutting edges
 - Mechanical checks during and after storms
 - Many crashes come from mechanical failure or operator error – we can control both to a large degree
 - Breakdowns less likely – less downtime
Safety, Risk Management, Liability

- **Safety gear**
 - Tools for minor maintenance
 - Fire extinguishers
 - Retroreflective triangles, flares, or breakdown warning signs
 - Retroreflective vest (ANSI Class 3)
 - Gloves
 - Foul weather gear
 - Flashlights
 - First aid kit
Public safety – operators should

- Obey traffic laws
- Watch speed, stopping distances, turning radii, skid control
- Avoid making sudden moves
- Avoid pushing snow
 - Over bridge rails
 - Onto sidewalks
 - Into storefronts
- Keep to right approaching oncoming traffic
- Control material spinners relative to vehicles and pedestrians
- Report stranded motorists
Operational speeds
Safety, Risk Management, Liability

- Operational speeds
Public safety – traveling public should
- Stay off roads until after storm cleanup, if possible
- Obey traffic laws – including Move Over Law
- Avoid walking in vehicle travelways
- Watch speed, stopping distances, skid control
- Avoid making sudden moves
- Keep to right approaching oncoming plows/equipment
- Stay back where operators can see you in mirrors
- Be aware – equipment backs up and operators can’t always see
- Report stranded motorists

This can be part of pre-season public relations; we’ll see more of this in Module 3
• Drugs and alcohol
 o Should be no tolerance
 ▪ Operators
 ▪ “Second seaters”
 ▪ Any other essential personnel
 o Commercial Drivers License (CDL)
 ▪ DOT - Omnibus Transportation Employee Testing Act of 1991
 ▪ Positive test – employee immediately removed from safety-sensitive functions
 o Don’t forget your contractors
 ▪ They should comply with the same policies that you use
Multi-Modal

Don’t forget – it’s more than just roads these days

- Pedestrian pathways
- Bicycle routes
Multi-Modal

- You don’t necessarily have to do it by hand

Video
Multi-Modal

- The intrepid cyclist
 - On a bike
 - In the snow
 - At night
Elected Officials – Jump In

- Get involved
 - Visit Your Public Works Facilities
 - Talk to Your Snowfighters
 - Ride a Plow Truck During a Winter Storm

Winter Operations: Survival Lessons for Public Officials
Winter Maintenance Training – Delaware T² Center
Matt Carter
Municipal Engineering Circuit Rider
Delaware T² Center
matheu@udel.edu
(302) 831-7236

http://www.ce.udel.edu/dct/T2.html

The Technology Transfer (T²) or Local Technical Assistance Program is a partnership among state universities, state departments of transportation, and the Federal Highway Administration. There are 58 centers throughout the United States with primary missions to promote training, technology transfer, and research project implementation at state and local transportation agencies. This document and/or its attachments may contain analyses or other technical information. These are prepared as an Information Service of the Delaware T² Center and are provided "as is" without warranty of any kind, either expressed or implied. The Delaware T² Center, and its funding agencies (e.g., DelDOT, FHWA, University of Delaware) shall not be responsible for the use of this information. The products and technologies discussed herein (some of which are proprietary) are not endorsed by the author or the Delaware T² Center. Except where noted, all content herein, including photographs and tables, were developed and produced by the Delaware T² Center and may not be reprinted or otherwise used without written permission.