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Chapter 1

INTRODUCTION

The use of sandwich structures is growing very rapidly around the world.
Its many advantages, the development of new materials, and the need for high
performance, low weight structures insure that sandwich construction will continue to
be improved and have wider use. In the study herein, an improvement for the
fraditional truck tank by a sandwich structure is investigated, and parametric analysis
to optimize this structure using different approaches are given and compared.

At present most if not all of the truck tanks used in the highway
transportation of liquids, gases, and solids are a metallic monocoque (thin single
walled) construction that acts structurally as a membrane. In general, such construction
requires a large heavy keel (or a metallic undercarriage/chassis structure) to support
the loaded container. Most of these tanks are either elliptical, or circular in cross-
section, which is inefficient. A major improvement can be made through replacing
these tanks with an advanced “boxy” tank design incorporating a fiber reinforced
composite material sandwich construction. These tanks will involve four plates joined
at each corner of the cross-section by a quarter of a circular shell, such that the overall
width of the tank will not exceed the eight feet width limitation, and the overall height
of the truck tank will not exceed the fourteen feet height limitation.

Sandwich construction typically consists of a core sandwiched between
two faces, where the two faces are of a strong, stiff material and the core is a very

lightweight material. In this design, the faces take most of the in-plane and bending



loads and the core acts as a spacer to hold the faces apart and to resist the transverse
shear loads much the same as the web of an I-beam.

Although there are many variations on the basic form, most sandwich
cores fall into four general categories shown in Figure 1.1: (1). honeycomb core, (2).
foam or solid core, (3). web core and (4). truss core. This study will consider
sandwiches of a foam core design. This type of sandwich construction is used
extensively in the aerospace industry and is gaining popularity in the automotive and
passenger r2il industnes.

The advantage to sandwich construction is in its superior ability to handle
bending loads. For in-plane tension, compression and shear loads (not including
buckling), a sandwich offers no improvement over a monocoque structure; however,
when loaded in bending, for example, a sandwich with a core depth to face thickness
ratio of 20 is shown [23] to have a flexural stiffness 300 times that of a monocoque of
similar weight and when the sandwich is subjected to a bending moment, while the
bending stresses will be 1/30 of those in the monocoque constructions. So the
sandwich construction can bring about a dramatic reduction in weight when used for
structures loaded in bending and provide enough flexural stiffness that hopefully will
enable a truck tank to be completely self-supporting. Consequently, the traditional
heavy keel structure (undercarriage/chassis) would be no longer necessary, and
considerable reduction in structural weight can be achieved. The use of suitable
composite materials for the sandwich faces will preciude maintenance (including

painting) and salt deterioration.
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Figure 1.1  Types of Sandwich Construction

(a) foam core, (b) honeycomb core, (c) truss core, (d) web core

Most often, the two faces of a sandwich structure are identical in material
and thickness, however, in special cases the faces may differ. In this study, the
sandwich construction is assumed to be mid-plane asymmetric in order to suppress the

bending stresses in the four comers through bending-stretching coupling (i.e. the B



matrix quantities in the stiffness matrix). This can be accomplished by having the
faces of sandwich be of different thickness, and/or be of a different fiber orientation,
and/or be of a different material. Thus, it will be easy to have the inner face be a
material with little or no deterioration or reaction to the chemical or other attack by the
load being carried, while the material of the outer face can be chosen to best withstand
the outer environment. Figure 1.2 shows a schematic illustration of a self-supporting
composite/sandwich shell truck tank. Such truck tanks will weigh a small fraction of
the present structures, will be nearly maintenance free, and will have a lifetime much
greater than the present tanks, thereby significantly reducing the cost of the truck fleet
of DelDOT as well as increasing the efficiency of its operation.

Using a sandwich can also increases the natural vibration frequencies and
overall buckling loads since these characteristics are a function of the bending

stiffness.

Figure 1.2 Conceptual Design of Boxy Composite/Sandwich Shell Truck Tank



1.1 Related Research

In most of the research that has been performed in the past, the sandwiches
investigated were symmetrical about their mid-surface. The result is that there is no
coupling between the responses to in-plane and bending loads. Asymmetric
sandwiches are considerably more complicated to analyze due to their coupled
behavior between in-plane and lateral responses. While in many cases a symmetric
sandwich is desirable, an asymmetric sandwich is used in this study to achieve the
advantages mentioned above.

A brief summary of some of the work that is related to the current research
is presented below, with an emphasis on that involving an asymmetric sandwich

configuration.

1.1.1 General Response Due to Simple Loading

As aircraft age, it is often necessary totrepair fatigue cracks in various
parts of the airframe. One of the methods used to reduce crack growth is to use a
bonded composite patch. A paper published by Caisheng, Heller and Lam [5] in 1993
develops analytic solutions for an unbalanced (asymmetric) laminated panel subject to
distributed shear loads on one face and an offset concentrated load at one end. This
analysis could describe such a patch used to repair a fatiguing aircraft structure. The
analysis assumes a plane strain condition and fiber directions of zero or ninety degrees.

This configuration produces no bending/twisting or stretching/twisting coupling.



Monforton and Ibrahim [14] published a numerical solution for
asymmetric composite plates using a double Fourier series expansion. It is assumed
that the core is incompressible in the transverse direction and possesses no stiffness in
the in-plane direction. The faces were considered to be asymmetric, cross-ply
laminates with fibers in the zero and/or ninety degree direction. It was found that
unlike thin plates, the coupling effects do not atways reduce the stiffness of a sandwich
plate. The coupling effects can cause an increase or decrease in the effective stiffness
of a sandwich depending on the lay-up configuration, the material properties of the
faces and core, the level of anisotropy of the face materials and the thickness of the
core relative to that of the faces.

Satapathy and Vinson [16] investigated the optimization of asymmetric
sandwich beams subject to a distributed lateral load and either clamped/clamped or
simple/simple boundary conditions. They established a factor of merit by which
different materials could be ranked in order of the weight required for an equal
strength beam. It was found that the properties of Kevlar/epoxy in tension made it a
good choice for the face experiencing tensile loading and the properties of

carbon/epoxy in compression made it a likely choice for the compressed face.

1.1.2 Impact on An Asymmetric Sandwich

A paper published by Kwon and Fuller [13] investigated the effect of
impact on the compressive failure behavior of asymmetric sandwich panels. The
sandwich considered was composed of one titanium face and one glass reinforced
plastic face with a Nomex honeycomb core. It was found that when the asymmetric
sandwich beam was subjected to an impact on one face, the decrease in the

compressive strength as a result of the damage sustained was very dependent on which



face was impacted. When the titanium face was subjected to the impact, the panel was

30% — 40% weaker.

1.1.3 Buckling and Elastic Stability

Sandwich beams in bending can experience local buckling of the face in
compression. This is known as face wrinkling. Aiello and Ombres [1] investigated the
critical face wrinkling loads for various face lay-ups. Since face wrinkling is a local
phenomena, and the interaction between the faces is minimized for sandwiches with a
large face thickness to core depth ratio, where overall asymmetry of the sandwich does
not appreciably affect the face wrinkling loads. Aiello and Ombres [1] find that using a
hybrid laminate made up of layers with different material properties through the
thickness can increase the critical face-wrinkling load. A four-layer face was studied
using a variety of stacking sequences. By using one outer layer of high stiffness
composite material and three inner layers of a lower stiffness composite material next
to the core, improvements in the wrinkling load are generally found when compared to
a face of equal weight with all laminae made of the same material.

Vinson [22] performed a minimum weight optimization for sandwich
panels with a variety of cores including foam, honeycomb, web and truss cores. This
treatment takes into consideration compressive overstressing, overall buckling, face
wrinkling, core shear instability, monocell dimpling (for honeycomb core), web and
truss plate buckling. The optimum construction for in-plane compression and in-plane
shear is determined for various boundary conditions.

Conflicting formulae have been proposed for the critical face-wrinkling
load. Heath [11] derived an expression for the critical load that is dependent on the

thickness of the face and that of the core in addition to the material properties. The



widely used equation developed by Hoff and Mautrer [12] is dependent only on the
face and core material properties but also includes a constant whose value is not

agreed upon.

1.1.4 Higher Order Theories

In classical beam or plate theory, the strains are assumed to be small and
the rotations are assumed to be very small, such that the higher order terms are
sufficiently small that they may be neglected in order to simplify the equations. This
simplification is relatively accurate for very small deflections but if the strains or
rotations become too large, the geometric non-linearity becomes more important and
the higher order terms are no longer negligible. Many researchers have looked at
higher order theories for sandwich behavior and developed models that have a greater
range of applicability.

Frostig, Baruch, Vilnay and Sheinman [9] and later Frostig and Shenhar
[8], performed research on the bending of asymmetric sandwich beams that allowed
for a transversely flexible core. A higher order theory was used to investigate the effect
of three-point bending with pinned ends and a concentrated load in the middle of the
span. Near the point load, there exist large stress concentrations and gradients and it
can be seen that there is a noticeable deflection of the loaded face relative to the other
face. This is an important effect to consider when investigating the effects of hard
points, bulkheads, stiffeners, etc. or in the assessment of damage due to localized
impact.

Shenhar, Frostig and Altus [17] further investigated sandwich beams
subject to singular loading using a higher order theory that allows for asymmetric,

orthotropic faces and a transversely flexible core. Stress maps and failure patterns are



generated for a beam in three-point bending. It is found that in the area near the
application of the concentrated load, failure is often caused by behavior that cannot be
explained by simple first order shear theories.

Bozhevolnaya and Frostig [4] developed a high-order solution for the
analysis of curved sandwich panels that considers the geometric non-linearity of the
deflection response. The model allows for the intermediate class of deflections so the
rotations are not required to be very small. The deflections obtained with the non-
linear solution show a slight attenuation when compared to a linear model. This
‘stiffening spring’ behavior is due to the geometric non-linearity in the problem. Of
note is the fact that if the geometrically non-linear effects are ignored, the predicted
deflection will be slightly greater and a linear solution is conservative when applied to
a case where the maximum deflection is the primary restriction.

Frostig and Rabinovitch [10 ] investigated the behavior of sandwich
panels that consist of a multi-skin construction and a multi-layered core layout.

Thomsen [21 ] developed a high-order theory for the analysis of arbitrary
multiple layer plate assemblies with N high stiffness layers separated by (N-1)
compliant interface layers. The theory includes the transverse flexibility of the
interface layers, thus allowing the thickness of the muitiple layer plate assembly to
change during deformation. The theory provides a complete solution with respect to
the solid laminate displacements, stress resultants and moment resultants, as well as
the interface layer displacements, tansverse normal stresses and shear stresses.

A review of the papers written on the use of higher order theories for
sandwich beam bending show that a simple first order shear theory is often not

adequate to describe the behavior of the beam, asymmetric or not, near concentrated



loads, in the vicinity of restrictive boundary conditions, or in the presence of large

transverse normal stresses.

1.1.5 Vibration

Qatu [15] studied the vibration of curved, laminated beams using a
variational approach to determine the governing equations and boundary conditions.
The responses to forced and free vibrations are characterized using classical beam
theory for thin beams and first order shear deformation theory for moderately thick
beams. The paper gives some insight as to the limitations of thin beam theory. It is
found that when the fundamental natural frequency of the beam is calculated using
both thick and thin beam theories, the difference is approximately 5 percent when the
ratio of the beam height to length is 0.05. This is the point that is taken as the limit for
the thin beam solution. As the thickness ratio increases beyond 0.05, the shear
deformation plays a larger role and the difference between the theories increases
noticeably.

The nonlinear oscillations of asymmetric composite beams were
investigated by Singh and Rao [18] in order to better determine the natural frequencies
under large deformations. The results show that the natural frequencies for
asymmetric, laminated beams are lower than those predicted by linear theory when
subject to small deflections and higher than the linear predictions for large amplitudes.
The amplitudes are also found to be different in the positive and negative directions.
Nonlinear analysis is therefore recommended for asymmetric laminates subject to

dynamic loading.
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1.1.6 Fatigue

Friction, fatigue and failure modes of a composite pressure vessel was
presented by Wu, J.S., Zhu, X.Q. and Chen, G.L. [24]. The authors developed a new
type of multiplayer wrapped composite thick-walled vessel that includes an inner
cylinder and layer bearing loads by the layer friction. Also a theoretical mechanical
model was established and the overall analyses were carried out and matched with

experimental results.

1.2 Current Research

The effect of loading on fairly simple shapes of asymmetric sandwich
construction is considered in several papers. The current research involves combining
the solutions for straight beams and curved beams to analyze a more complicated shell
structure. Analytical solutions are developed for constant as well as varying internal
pressures, the resulting solutions are then subjected to a parametric optimization to
obtain the lowest weight structure that meets the desired constraints.

The structure dealt with in this study is that of a truck tank shell that is
axially asymmetric and is shown in Figure 1.3, the portion of the shell that is
investigated is that which is far enough away from the ends and other restrictive
supports as to be outside the shell bending boundary layer. In this region, it is assumed
that all dependent variables do not vary in the shell axial direction. As a result, a two
dimensional solution to a cross section can be used and the shell may be reduced to a
complex set of beam problems. In the bending boundary layers, the presence of
fasteners, bulkheads, variable boundary conditions, etc. will likely require the use of a

finite element solution.
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Representative
Cross Section

Figure 1.3 Bending Boundary Layers and a Cross Section being Analyzed

This construction is analyzed for two different situations, one filled with a
gas giving a constant internal pressure, and the other filled with liquid that gives an
internal pressure varying linearly with .depth. This structure is geometrically symmetric
about the vertical and horizontal axes, so when the constant internal pressure is under
consideration, only a quarter of the cross section need to be analyzed; for the liquid
internal pressure, since it is only symmetrical about the vertical axis, half of the cross
section must be analyzed.

In an attempt to more efficiently utilize space inside a truck tank, it is
desirable to use this cross section that is not circular. If a rectangular cross section
were to be used, the resulting stress concentrations in the corners would likely result in
a much heavier structure. A compromise is to use a rectangular cross section with
rounded corners. The problem of constant internal pressure has been well analyzed by

Forbes in his Master’s thesis [26], so in the study herein, only the analysis for this



structure in the second situation is given, i.e. a linearly varying internal pressure. See

Figure 1.4.

Figure 1.4  Cross Section of the Truck Tank

‘While the flat portions in the cross section will experience large bending
loads when subject to an internal pressure, it is possible to minimize the increase in
weight associated with the increased stresses by using an asymmetric sandwich. An
analytic beam solution to the rectangular cross section with rounded corners will be
obtained and the sandwich optimized for the lowest weight subject to various
constraints. The solution will be sufficiently general to allow for an asymmetric
sandwich, different materials in each face and will include the effects of transverse

shear deformation.
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Chapter Two will detail the problem and the development of the analytic
solution. The governing equations, stress/strain and strain/displacement relationships
will be developed. The loading and boundary conditions will be defined and the
governing equations solved using Waterloo’s Maple V software. Chapter Three will
describe the Maple worksheet and its capabilities. In Chapter Four, parametric analysis
will be performed on cross sections constructed from a sandwich with constant
geometric and material properties. In Chapter Five, several factors that may affect the
optimal structure and weight will be considered, different materials combinations will
be optimized for comparison, and a preliminary study for variable geometry in the

circumferential direction will be conducted.
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Chapter 2

ANALYSIS OF THE PROBLEM

2.1 Basic Description

The problem of interest is that of a truck tank shell with a cross section
that of a rectangle with rounded corners, it is composed of flat, plate sections at the
top, bottom and on both sides, joined by circular, cylindrical shell sections at the
COTnErS.

The portion of the shell that will be investigated is that which is far
enough from the ends and from any concentrated loads to consider this as a plane-
strain problem in the axial direction. This shell will exhibit bending boundary layer
type behavior near the ends, supports, etc. but that there will be no variation of any
parameter in the axial direction outside this bending boundary layer. So the resulting
problem is then a two-dimensional, plane-stress or plane-strain problem. Ifitis
assumed that axial warping of the cross section is constrained so that plane cross
sections remain plane after deformation, the problem becomes a plane-strain problem.
The in-plane stress in the axial direction will vary around the cross section due to
Poisson ration effects so it cannot be treated as a plane-stress problem.

The portion of interest can then be described as a thin piece taken from
anywhere outside the bending boundary layers and away from any concentrated load. It
is assumed that the truck tank is filled with liquid that gives internal pressure varying

linearly with depth. This structure is symmetrical about the vertical and horizontal
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axes, but the internal pressure is only symmetrical about the vertical axis, so half of the
cross section must be analyzed. This plane-strain “slice” is taken to be of unit length in
the axial direction.

Thus, the problem studied is that of a beam comprised of an upper straight
horizontal section, followed by an upper curved section that covers an angle of ninety
degrees, then a straight vertical section, a lower curved section covers the same angle
and a lower straight horizontal section. Each of the sections is constructed as a
sandwich made from a lower face, a core and an upper face. See Figure 2. 2.

The two faces are not necessarily made of the same material and do not
have to be of the same thickness. It is possible to take advantage of the
bending/stretching coupling resulting from the use of an asymmetric sandwich to
reduce the maximum stresses experienced due to the internal pressure.

Flat sandwich plates or beams that are made with identical faces are
straightforward to analyze since the responses to in-plane and lateral loads are
uncoupled. Curved shells and beams, as well as flat sandwiches made with
asymmetrical faces will experience coupling behavior when subjected to loading. In
these cases, there will exist bending/stretching coupling behavior such that an in-plane
load will produce both a lateral deflection and an in-plane displacement. Likewise, a
lateral load will produce both in-plane displacement and lateral deflection.
Bending/twisting, stretching/twisting, bending/shearing and stretching/shearing
coupling are usually due to fiber reinforced composite faces with the fibers aligned at

an angle to the principle directions of the sandwich.
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Figure 2.1  Half of Cross Section

The twisting and shearing interactions are used in structures such as wings
or helicopter rotors to produce an effect known as aero-elastic tailoring. It is expected
that they will not be allowed in the truck tank since they would produce undesirable
effects. For example: a tank that bends upward when it is subject to positive torsion
and bends downward when subject to negative torsion is likely to cause severe

problems. As a result, the investigation presented here will consider sandwiches that
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exhibit only bending/stretching coupling. Allowing only specially orthotropic
materials (those with the material principle directions aligned with the geometric
principle directions) will ensure this. Such materials could be unidirectional
composites with the fibers aligned in either the axial or the ‘hoop’ direction, cross-ply
composites with the fibers aligned in the zero and ninety degree directions, quasi-
isotropic composites or isotropic metallic faces.

An asymmetric sandwich can be used to reduce deflection and/or weight
in the following manner. Due to the geometry of the truck tank, the internal pressure
produces both in-plane and moment resultants. By using an asymmetric sandwich, the
lateral deflection caused by the bending moment can be partially offset by the coupling
effects generated by the in-plane resultant. Alternately, if one face is being under-
utilized; that is, if the maximum stress found in the face is less than the allowable
stress, the face thickness can be reduced to save weight. Since the maximum loads in
the faces will likely be different, one face will be thinner than the other resulting in an
asymmetric sandwich.

Since the problem is not convenient to work with in a global coordinate
system, a local coordinate system will be utilized. The coordinate system used will be
an X, s, z system where x is the axial direction of the truck tank (normal to the cross
section), z is the direction normal to the un-deformed mid-plane of the sandwich and s
is the direction tangent to the un-deformed mid-plane of the sandwich, normal to the x
and the z directions. The origin for the s coordinate is the top center of the truck tank
and the origin for the z coordinate is the mid-plane of the sandwich (note that this may

not be the mid-plane of the core).
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For this study, the sign conventions are as the following and shown in
Figure 2.2: tensile in-plane stresses are considered positive and compressive stresses
are negative; a positive moment causes a concave-down curvature and a positive
transverse shear stress acts in the positive z direction on a face with a normal vector in

the positive s direction.

Figure 2.2  Local Coordinate System

2.2 Strain/Displacement Relations

It is assumed that the simplified structure behaves as a Timoshenko beam.
A lineal element through the thickness of the sandwich, normal to the un-deformed
mid-plane will undergo, at most, a translation and a rotation. The effect of transverse
shear deformation will be included, so the element may not remain normal to the mid-
plane after deformation. It is also assumed that there is no stretching or shrinking of
the element; that is, there is no strain in the z direction and that the normal stress, o 18

negligible. The result of the above assumptions is that the in-plane strains are linearly

19



distributed through the thickness of the sandwich and the displacement at any point

can be related to the displacement at the mid-plane by the following relationship.

u(x,s,z) = u, (x,5)+ 28 (x,5,2) (2.1)
v(x,s,2) = v, (x,5)+ 23, (x,5,2) (2.2)
w(x,s,2)= w(x,s) (2.3)

The displacements v, v and w correspond to the x, s and z directions. P is

the rotation of the element from its un-deformed state. The strains at the mid-plane can

be given by
2s) - 20 @4
X
£2(s)= 2o 2.5)
os
g, =0 (2.6)
583 _ _1_ Oy, N ov, @.7)
2005 ox
1 ow
o A 2.8
1 ow W,
= o o 2.9
2 TG (ﬁ s R ) @.9)

R is the radius of curvature of the structure in the s-z plane. To find ¢_ in

a plate section, we can set R equal to infinity. The transverse shear strains do not need
to be related to the mid-plane value since they are necessarily constant through
thickness due to the assumption that the lineal element remains straight. Since it is
assumed that no parameter varies in the x direction, all the x derivatives are zero.

Although in reality there may be some warping of the cross sections, it is expected that



such warping will be small enough that the cross section can be assumed to remain

plane; therefore, Oug/0s = 0.

2.3 Stress/Strain Relations and Stress Resultants
The general formula for the stress/strain relationship, ignoring

hygrothermal effects and before applying the simplifications discussed above is:

x éli QEZ gll O 0 2g16 g-f
0'5 QIZ QZ” st 0 0 "“Q’(i 85
J O‘: L — QIS QZB QJS E 0 ZQJ(J J g: L (2}0)
o, 0 0 0 20, 20, 0 |l&
.| |0 0 0 20, 205 O |5
(9 s ) _ng Zéza 2636 0 0 2@66_ L Esx )

The éu values are the material properties, transformed as second order

tensors from the principle material coordinate system to the X, s, z coordinate system.

)= [rI'{elr] 2.11)

Where
Eii E’n v, E
= el (J,, = S , =0, = 2.12
Q” (1 - Vlzvzl) Q” (1 - Vl"vzl) QL = (1 VEZVZI) ( )
0,=Gy Os5=0G; Q= Gy, (2.13)
In this case, where only specially orthotropic materials are allowed:
Qs = Ous (2.14)



o :“éza =@36 = éqs =0 (2.15)

For laminae with fibers aligned in the axial direction:

0,=0, (i=12and4,5) (2.16)

and for laminae with fibers aligned in the hoop direction:

8.-9,

b

(i=12and 4,5), (=2, and 5,4) (2.17)

The loading in this study is limited to an internal pressure with no torsion
loads present; therefore, o, = &, =0. When equation (2.10) is simplified for a
specially orthotropic laminate and the assumptions made regarding the strains are
applied, the stress/strain relation for this study becomes the following with the stresses

written in terms of the mid-plane strains where appropriate:

o-.r éil @lz O 0 E,'f
19) 0 2008/
O _ 0, 0Ox E 0 &, +z00,/0s (2.18)
o, 0o 0 20, O £,
o, 0 0 0 20, &

Since a two faces, single core sandwich can be treated as a three-layer
laminate, the traditional A, B, D stiffness matrix formulation is employed. The

vectorial distance from the mid-plane to the top of the k™ lamina is A

o
3]
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A‘j = Z(Qu)A [hk - hkwl] (I’J = 1’256) (219)
3 [—
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D, = %i‘(@”,)ﬂ 2 -n2,] =126 (2.21)
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Finally, an expression can be written for the stress and moment resultants.

N, Ay A, 24 i B, B, 2B, E.g
N, A, A, 24,1 B, B, 2By gf
t
No | (Ao A 2ot Bio Brg 2Bss | 25 (2.23)
M, B, B, 2B, iD:z Dy, 2Dy | x, o
M,| |B, By 2By 1D, Dy 2Dy x,
M mBm By 2BGG:D16 D, 2D66__Krs
Qx = Z(AJSSS + ASSE\") Os = 2(A448s~ + A458.t;) (‘?' 24)
where the curvatures are written as
., 1o @25
) ox Os | 2\ Os Ox

From the plane strain assumption and the use of specially orthotropic

rnaterials



Since stretching/shearing Coupling is not allowed, 4,45 and 4,5 must be
zero. Likewise, because the bending/shearing and twisting/stretching coupling is zero,
the B,s and B4 terms must be zero and the lack of bending/twisting coupling requires

that D,s and D34 be zero. Using these simplifications in (2.23) and (2.24) yields:

N, A, A, : B, B,j0
|
N, Ay, Ay B, By 8?
v ] 2 | o — e e o i [
M, B, B, i D, D,| 0 (2.27)
M, B, B, D, Dy,
Qs —2‘4«1481

Now substituting the strain/displacement relations from section 2.5 into
(2.27), the simplified equations for the resnltants can be written in terms of the

displacements



N xA,z[%?+}ﬂ+Bu%

Os
N, =4, «@-}1+E +B,,9~E~f~—
“Lds R T 0Os

M. =p,| 2o ¥l p, P
. T O

i L Os R
M, =520 +—’3]+ p, %
“lds R “ Os
I ow v
0, =4 +—-=
=5 34 _Bs aS' R]
Q. =M,=N,=0 (2.28)

2.4 Governing Equations

Now the governing equations can be written in terms of the resultants.
Starting with the equilibrium equations for a circular cylindrical shell in the x, s, z
coordinate system, the shell equations can be reduced to those for a plate by setting R

equal to <o as above. For equilibrium to be maintained:



Zf’s :Q&L.;.%,;_g._}_qs =0
ox ds R

0. 60 1
F om—=x =5 1 X,5)= 2.
Z . ———6x +mas R N, +p(r s) 0 (2.29)

ZMH: :%4_ aﬂ/fﬁ - (Qr - ’n.r) =0
ox Os '

oM, oM
My = == (0, —m, )= 0

where ¢, , g,, m,, and m_ are functions of the surface shear stresses and

p(x,s) is a distributed lateral load. Since the surface shear stresses are zero for this
analysis, they will be omitted from this point on. Simplifying for the plane strain case
with no surface shear stresses and a hydraulic internal pressure p, the equilibrium

equations in the s, z plane can be written as

—Qj—v—sﬂ%«-—g—iro ?..M....._’._sto
s R ds
2.30)
9, ~——1-NS +p=0
ds R

Note that for constant internal pressure p = p,; for liquid internal pressure

P = P&l , Where py. ., is the mass density and g is the gravitational constant.

will be specified respectively for different sections.

In terms of the displacements, (2.30) can be written as



A, 8“1:0+m1m9£ + B, ame “*”"fiw“ Bs+§ﬂ_ﬁ =0
"o Ros| T o R

BTJ 5“1:0_‘__1_% +D17§;Q)L—A44{:Bs+é‘i—l’l]=0
|l s R 85_ = o5 s

A-M %4,9;};},_1.% _._._]L %2(%+E]+322% .{_pmo
os R ds

Equation (2.31) is the set of governing equations for a circular,
cylindrically curved, laminated shell in the s, z plane, allowing for an asymmetric
stacking sequence and assuming a constant strain & in the x direction. The equations
are in terms of three unknown functions; w, v, and fs

At this point, the assumptions used herein to obtain the governing

equations will be reviewed.

o Shell cross section to be analyzed is outside the bending boundary layer.

° Plane cross sections of the shell remain plane after deformation.

° No properties except 1 vary in the x direction.

° &=0.

° Euler beam behavior: a lineal element through the thickness of the sandwich,

normal to the un-deformed mid-plane will undergo, at most, a translation
and a rotation. This requires that & =0 and g. = 0.

° Small displacements and rotations.

° h << R. Love’s first approximation: the thickness of the sandwich is much

smaller than the radius of curvature.



o No thermal or hygrothermal effects.
® Specially orthotropic materials.
° Displacement Functions For The Sandwich Beam Using First Order Shear

Deformation Theory

2.5 Displacement Functions for an Asymmetric Sandwich

The solution to the set of governing equations is obtained here by using
Waterloo Maple’s Maple V, release 5 mathematical software package. All further
mathematical analysis is also performed using Maple. Equation (2.31) is the set
governing equations for an asymmetric, curved beam under plane strain conditions. It
is a set of three differential equations in three functions of s: w(s), vo(s) and Si(s).
Since it is assumed that there is no variation in x, the system of partial differential
equations becomes a system of ordinary differential equations and may be readily

solved using Maple. The solutions are given respectively for the five sections.

2.5.1 Upper Horizontal Section (0<s<L1)

The beam of this section does not undergo any loading because the liquid
is not pressurized. But for generality, a constant pressure p = p, is taken into account,
which can be set to zero in the present case, and R is set to infinity in this section. The

general solutions are:

wi(s)= of;P.D. s+ C, +Cys” +Cps +C, (2.32)

o

B,(3C, s +2C,s+C,)

vl(s)r:%f + +Cs+C, (2.33)

Bs)=—+s' — L0 s M 30, 5" - 2C 55~ C, (2.34)



where B and D are the reduced stiffnesses defined by Whitney (1987)
and are will be used in the following equations:
D23A°2 _BZZ (235)

D22A22 - By (2.36)

2.5.2 Upper Curved Section (L.1<s<L1+L2)

In this section the pressure varies with the depth, which can be expressed

as h = R(1—cos8), as shown in Figure 2.3, and approximately, we can use 6= re

then the pressure is p = p, + Py, &R(1 —cos ) . The general solutions are:



w,(5) =— = Cyy = Coy + Cyy8in 8 — C,, c0s8 + C,5fsin 8 — C, 6 cos &
z A 22 23 24 15

22

2 2D,,4,, 2Dy By,

z RY

'*”{ (ng WZB§2A44R _BzzA4.|Dzz)+

A
BZZR - 1](C35 cosf+Cyq sin 9)+ ux

AzzDzz - Bzzz + D, + AZERZ + szzR
84,T 43
+ L(4A4A€22R + Azzf_fiﬂl?4 + 4A22f44R3 + 2*"‘[44”"2221[23
8z B D B D
3(A22D23 - Bi?z)
B DA, 44,35
13D,, + 64,R* +19B,,R 1 294, D,,R 94, D,R’
+ = 22 R g (R I
4% 4% B D
22‘44&922‘?2 + lSAZZ:_—‘:!“RS + 3A22_f£44R4 + 10ﬁ44D222 )]
B B D D4,
Ay Dy =B}, | 3Dy +24,R’ + 5B, R
24,Z 2%
oL AR TADR | SAnAuR | (204, BpR
2% D B B B
2 2 3
+ 3‘444321}2 te 2{'541333 )]} + p!r‘quin'gR
D DA, A,

.+.

+ pﬁqm‘rngj {92 COS@[

-+

—Bsin ]
(2.37)

vy (8) = Cyy + Cppl + Cpyc088 + Cyy 5in8 + Gyl cost + Cp fsind

1 R R D
— g, gR| —— e+ =+ 2 238
Jo[rqwdg !:81‘-{_14 48 8D 8(A22D22 - B’j! )il ( )

x (67 sin6 + 66 cos6 —125in8)
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C,s8iné — C,q 0S8 6}

Bi(s)= %(Cm +C,,0)-2 Ay (Bzz};‘ A, R) (

_ pfiquirigRJ [29 cos 9(1‘1 R+ B.. + A44D22 + 3R3A’13A-'M + 2RA44B22

e o B 2.39)
+ R A"_ZA.M_:ERAMDZZ ) _ Sil‘l Q(QA”R 4 ng + 5R f121/144ﬁ-_§:9RAMD32

D - - D
94,,D,, +19R* A, A,, +14RA, B,,
e < )
B
where
Z=Dpd, + AR Ay + Dy Ay - B;, + 2B, AR (2.40)
h=R(1-cosB)

Figure 2.3 } of the Upper Curved Section

2.5.3 Vertical Section (L1+L2<s<L.1+L2+L3)
The load in this section varies as a linear function of the coordinate s

(between joint 2 and 3), h=s+ R, and p = p, + Pp,,&(s+R) . Since py,,,gR 1s a

constant value, we can use py, = py + £y, &R » and then p = py, + Py 85 - BY setting

R = oo in the governing equations, the general solutions can be obtained as:
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4 3
PmS + ph'quid 85

wy(5) = Gy, + Cpps + Cps™ + Cpy8™ + 24D | 120D (2.41)
B, 2 s
vy(8) ==E(Cp, +2C,;5 +3C;,8° )+ Cy; + Cyp5 + —=[pgs + 4p,,]
Ay, 248
2 (2.42)
Piiguin &S Ba
2A22A-H
,. 6D 3
By(5) = ~(Cy, +2Cy5 +3C, %) == Cyy — 2 _ Pord
Ay 6D A,
(2.43)

pn'l'qm'dg A34 2_,444 245‘

2.5.4 Lower Curved Section (L1+L2+L3<s<L1+L2+L3+14)

Similar to section 2, the pressure in this section varies with the depth,

which can be approximated as s = R+ L, + Rsin®, shown in Figure 2.4, where 0 = s ,

and so the pressure is p = p, + Py, 8(R + L, + Rsinf) . Since here R and L, are
known constants, S0 We Can use Py = Py + Pypuia g(R+L,),and so

P = Poy + Pipiu&R sin 8 . Then the general solutions are:

h=Rsin® g

AN

Figure 2.4 1 of the Lower Curved Section
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v,(5) = Cy, + Cpp@ + Cyyc0s8 + Cp5inf + C, ;8 cosd + Cfsind

1 R F D,,
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324, "168 32D 32(/1,,,  ~ B )

37

- pffqm'ngj[ (2.45)

X (4193 cos@ —-240sin8 - 450039)
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! Ay (Byy + AR
ﬁ,t(s)m-ﬁ(cﬂ.%cue)_g s -.;Ag_ )(

C4ssin9—C460059)

Ay Dy + 3R2A22A-14 +2RA, By,

3
piiquing .
o e [2 0 sin N A, R+ B, +
4% [ (4 - B

(2.46)

3 3
+ R AzzAuiRAtzz )+ cos8(9A,R +9B,, + SR A22A4.,i9RA44D22
D . - D
+ 94,D,, + ISS‘JRaAEr’{M +14RA4,8,, )]
B

where T has been specified in equation (2.40).

2.5.5 Lower Horizontal Section (1.1+L2+L3+L4<s<L1+L2+L3+L4+L5)

In this section, the beam undergoes a constant loading, that is

p=py+ p,,.qm.dg(ZR + L), so the general solutions will have the same format as those
of section 1, except that the different constant value of p, i.e.

P=Pp=Pyt pﬁqm‘dg(z‘R + La)-

wy(s)= 2*2 s+ Gy C,ys* + Cps + Gy, (2.47)

vs(s) =fogy Bl?«(?’cs.:sz +2C,s+C 2)
6B L

1+ Cyus +Cg (2.48)
ﬁs(s):—gi!.i—sj —"lr)—m»s~~--6—Csi——3C'5~,.s2 ~2Cs - Cs, (2.49)

where B and D are the reduced stiffnesses and have been specified in

(2.35) and (2.36).
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The C; (j=1..6, i=section/segment nmber) values in the above solutions

are constants that depend on the boundary conditions.

2.6 Solution for the Combined Beam
Now that analytic solutions for the curved and straight sections of the
beam have been developed, they can be combined to describe the behavior of a beam

made from a combination of curved and straight sections.

2.6.1 Boundary Conditions

Each section involves a set of equations with six unknown constants,
which can be determined by the boundary conditions in the s, z plane, so the total
number of unknowns for a beam made up of N sections is 6N. To find the constants,
three boundary conditions are needed at each end of each section of the beam. Thus, if
the structure to be analyzed consists of the half cross section, the five beam segments
will require three boundary conditions at each end of the beam (the planes of
symmetry), six boundary conditions at each of the two junctions for a total of thirty
boundary conditions and thirty unknown constants.

The boundary conditions at the ends of the beam are not the usual simple
support or clamped support conditions used for elementary calculations. Instead, they
are determined through the use of the symmetry of the cross section about the vertical
planes. The ‘ends’ of the beam are not really the physical ends at all (there are no real
ends since the cross section is closed) but are the planes of symmetry and treated as the
ends of the beams for calculation purposes only. At these points, the lateral
displacement w is not fixed. Due to the symmetry of the cross section, the slope of the

beam must be zero and the transverse shear resultant must be zero. Due to the
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requirement of continuity, the in-plane displacement v must be zero at each end of the

half section of the truck tank.

51
30 T D Q 4’
v={ W, =W
b0
%5 ;B;,x = ﬁ:.z Wi = W3
Ns,l ;NS._? e V2= V3
ﬁcf{s,i : Ao’fs.z >~ Ba=f
AN 4 B ;’*\SZ Ng2=N;;3
e M; 7= ﬂ’fs.?
Os.? = Q$.3
53
w3 = Wy
~ nTv
Wy = Ws ﬁ’—\?3 )85'3 - ﬂﬁr‘
V4 = Vs < Nas =N
/Bs 4= ﬁs 5 Moz = M
v=1{0 NS.4 = N$.5 Qs.j ) QE’J
ﬁs — 0 ﬁ/fs..a' = ﬂff.'f.j'
0,=0 Gss = Cos
85 T> 84( ¢

Figure 2.5 Boundary Conditions
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At the junctions between sections, the boundary conditions take the form
of matching conditions. At each junction, the in-plane resultants, moment resultants
and transverse shear resultants must match. The displacements w and v must also
match along with the angle of rotation f;. Note that if transverse shear deformation is
allowed, it is not required that the slopes of the beam sections must match at the
junctions. It is perhaps a subtle point, but if the equations that account for transverse
shear deformation are used, and if different materials or a different sandwich geometry
are used in the sections on each side of the junction, the slopes could in fact differ
even though f; matches. Due to the symmetry about the vertical planes, this detail
does not apply to the boundary conditions at the ends.

Now all the necessary boundary conditions have been determined and the
unknown constants can be obtained. Figure 2.5 shows the boundary conditions for the
five-segment beam from Figure 2.1. The total length of the five sections is L.

If the beam consists of more than the five sections discussed above, the
boundary conditions are the same. At each end there are the conditions induced by
symmetry: the in-plane displacement, transverse shear resultant and slope of the beam
must be zero. At each junction between sections, the resultants, displacements and
rotations must match. The boundary conditions for a beam consisting of N sections are
summarized below.

Atends: s=0ands =sy

v, =0
_‘E_}f,‘,f, =10 (2.50)
Os

0, =0
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At junctions: s =s; (i=1.N-1)

0.i+1
H’J W‘x'+l
!35 i = Bs i+
' ' (2.51)
Ns.r' =N i
M:.a = Ms.r‘+l
b4 3] = Qs.i-;-!

2.6.3 General Solution for A Beam Composed Of V Sections

Now the boundary conditions can be applied to each section of the total
beam. The solution for the general problem of N sections is obtained by applying the
general solutions (2.32) through (2.49), or the appropriate simplifications, to each
section in a piecewise fashion. In the i™ section, s should be replaced in the
displacement equations by (s-si.;) where s is the value of s at the end of the previous
(the (i-1)™) section. The 6N unknown constants are found by applying the 6N boundary
conditions using equations (2.50) and (2.51). The resulting problem is an algebraic
system 6f 6N equations in 6V unknowns.

While the problem treated in the current research is one involving the
cross sectional shape shown in Figure 1.3, the equations presented here could also be
used for other shapes or cross sections made from symmetric or asymmetric
sandwiches subject to a linearly varying internal pressure, provided that each segment
is either straight or circular-cylindrically curved and that all of the assumptions we are
using are valid. For the boundary conditions to be used, the cross section must be

closed and symmetrical about the vertical planes.
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2.6.4 Geometric Discontinuity

At points of geometric discontinuity such as the junction between straight
and curved section or between sections composed of different materials or face
thicknesses, etc. there will be discontinuous behavior exhibited by some of the
problem parameters. For example, at the junction between a straight section and a
curved section there will be a ‘kink’ in the plot of the in-plane resultant. Since the
transition from an infinite to a finite radius of curvature is discontinuous, there is a
discontinuity in the derivative of the in-plane resultant at the junction. The resultant

must stili be continuous but it is not a smooth function. Likewise, the stress will also

exhibit a kink at the junction since stress is given by o, = 513“% + Q?:,_ [Ef + sz] and
£° inherits the kink from the in-plane resultant. These effects may be less prominent
in reality than in the mathematical model since there will be slight deviations from the

mathematically perfect geometry that will likely lead to a smoothing effect on the

actual stress distributions and displacements.
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Chapter 3

IMPLEMENTATION OF THE SOLUTION USING MAPLE V

The displacement functions and boundary conditions developed above are
used in a Maple worksheet to find the stresses, strains and displacements for a cross

section compiled from user specified data.

3.1 Description of the Worksheet

" The Maple software package uses an interface that is very similar to a
computer programming language. Program structures such as If/Then logic tests and
loops can be combined with symbolic algebraic manipulations to allow the analysis of
complex problems. A worksheet/program was developed to allow the user to specify
- various input conditions and specify whether the sandwich should be subjected to a
parametric optimization. The worksheet then determines the deflections, stresses,
strains, etc. and, if required, modifies the thickness of the faces and core based on the
optimization critena.

The worksheet allows the user to specify the initial geometry and loading
of the cross section including the number of segments; the thickness of the mner face,
outer face and core, the material properties of each face and core for each segment;
internal pressure and factor of safety for the allowable stresses. Once the inputs have
been specified, the boundary conditions are applied and the unknown constants are

determined. The displacements and stresses could be calculated. If desired, the core
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thickness and face thicknesses can be adjusted in an automatic iterative process that
optimizes the structure based on the specified critena.

The optimization criterion is that the weight be minimized, subject to
restrictions of the in-plane stress and the shear stress. The maximum allowable stress
is the yield stress for a ductile material, or the ultimate strength for a material that
displays brittle behavior (the stress/strain curve is linear to failure), divided by a
suitable factor of safety. In areas of the faces that are subject to compressive stress an
additional limit is imposed, such that the stress may not exceed the cnitical stress at
which face wrinkling will occur.

When the optimization is to be performed with no restriction on the
deflection, the determination of the face and core thicknesses both take place within
the optimization loop. When a restriction is placed on the deflection, the optimization
needs to be performed differently. A series of face thicknesses is specified; the
corresponding core thickness that results in an acceptable deflection is determined
through an iterative process, and the lightest combination choser.

In Chapter 4, sandwich structures with geometric and material properties
that are constant in the circumnferential direction will be analyzed. Each component,
the inner face, the outer face and the core, is made of the same material and has the
same thickness throughout the circumferential length of the structure. The faces may
differ in materials. With this restriction, only three materials and thickness need to be
specified for the structure: one for the core and one for each face.

If the sandwich components are constant in thickness, the dimensions of
each face and the core are determined for the entire structure by the thickness required

at the point of maximum stress. Since the stress in the rest of the structure is lower
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than this value, the strength of the material is under-utilized everywhere except at the
point of maximum stress. Another way of looking at it is that the structure is overbuilt
and therefore heavier than necessary.

The Maple worksheet is general enough to allow for any number of
segments. The limitation is that the computational time required for large numbers of
segments becomes extremely large since the system of equations that needs to be
solved to determine the unknown constants is of order 6N where N is the number of

segments.

3.2 Worksheet Algorithm
The general algorithm for the worksheet is as follows:
o Read input data file. Data file contains all geometric data and material

selections for each element of the structure, as well as the internal pressure.

® Read the material property data files for the specified materials.

° Calculate the Q matrix for each segment of the structure.

] Calculate the A, B, D matrices for each segment of the structure.

° Define the expressions for the resultants, strains and stresses in terms of the
displacements.

° Apply the boundary conditions and solve for the unknown constants.

° If the structure is to be optimized, continue with the following steps. If not, skip

to the last step.

° Find the maximum in-plane and shear stress in each segment of the structure.

o Determine the optimum thickness for each component, subject to the maximum
in-plane stress restriction (the determination of these values will be discussed

below).



° Find the optimum core thickness, subject to the maximum deflection restriction.

° Determine the minimum core thickness to prevent core shear failure.

® If there is a face loaded in compression, determine the minimum face thickness
of that face to prevent face wrinkling.

° Compare the face thicknesses obtained above with the specified minimum
allowable face thickness.

o Modify the thickness of each face and the core using the greatest of the
thickness values obtained from the last five steps as the new value.

° Return to the calculation of the A, B, D matrices and recalculate using the new
values of the constants. Continue as before to this step for each iteration.

® After the specified number of times through the optimization loop, save the
most recent data for use if further refinement is needed.

o Calculate the face and core thicknesses, and the weight of the full cross section

per unit length.
3.3 Criteria for Optimization

3.3.1 Core Shear Failure
In order to determine the minimum allowable core thickness to prevent

shear failure, the following assumptions are made by Zenkert [24]:

E, <<Ef
3.1

Lo J << T,

(tr'nner * “guter

The first assumption in (2.43) results in a constant shear stress across the

core since the shear stress is given by
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T, = Jcrsdz- (3.2)

If the core is weak, the in-plane load carried by it will be negligible
compared to that carried by the faces. The in-plane stress in the core is then
approximated to zero and the transverse shear stress distribution will be constant
through the thickness of the core. The second assumption is that the face thicknesses
are much smaller than the core thickness. If this is the case, the linear distribution of
the in-plane stress in the faces can be approximated as a constant stress, yielding a
linear rather than parabolic distribution of the transverse shear stress in the faces. The
effects of the assumptions are shown in Figure 3.1. With these approximations, the

transverse shear stress in the core and the maximum in each face are given by

0,
.= Tf.m:s:f. - t,- to (33)
I
2 2

where Q; is the transverse shear resultant.

It should be noted that the second approximation discussed above 1s
conservative in that the predicted transverse shear stress in the core is slightly higher
than if the parabolic distribution in the faces is used.

To find the minimum core thickness, substitute the allowable shear stress

for 1, in equation (2.45) and solve for h..

h - Qs . tr‘ + fo
e
T 2

¢ iffownlde

(3.4)
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No Approximations E.<<E;¢ E.<<Erand h>>t;

Figure 3.1  Approximations for The In-Plane And Transverse Shear Stress
Distributions Through The Thickness Of The Sandwich

3.3.2 Face Wrinkling

Sandwiches with very thin faces can be subject to local instability
phenomena known as face wrinkling. This occurs when the compressive load in a face
is so great that the core is not stiff enough to prevent the face from buckling
independently from the sandwich as a whole. Since this is a local rather than global
action, the determination of the critical stress in the compressive face of a sandwich
loaded in bending is performed in the same manner as for a sandwich loaded in in-
plane compression.

There are two formulas that can be used to determine the critical wrinkling

stress. The first is the equation developed by Hoff and Mautner [12]

Oser = —C(Es.fnchs.cam Gs:.cvm )”3 (35)
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where ¢ is a constant whose value has been taken by different researchers
as being between 0.5 and 0.91. This equation implies that the effects of the behavior of
one face are not felt by the other face since there is no geometric dependency.

The other formula for the critical stress is the one developed by Heath [11]
for isotropic materials which includes geometric considerations. When the equation is

modified for anisotropic materials, the critical wrinkling stress is given by

12

1/2
- _?:_iEc\jEs,fE,r,f

- 3.6
as‘cr 3 ]IC (1 - VSIV.\‘S) ( )

As can be seen from the equation, the critical stress tends toward zero as
the core to face thickness ratio becomes large.

Since the two equations often yield significantly different results, it is
unclear which is the more appropriate one to use. The sandwich profiles in this study
typically have large core to face thickness ratios and thus the critical wrinkling stress
predicted by the Heath equation is often very small. While the effects of the geometry
may be important for sandwiches that have cores that are thin enough for one face to
influence the other, this author believes that since the h./tr ratio is large for the
sandwiches investigated here, the influence of one face on the other is negligible and
as a result, the Hoff/Mautner equation should be used. Supporting this theory is the
fact that even if the compressive face wrinkles, the structure is in bending so the other
face is in tension and will not wrinkle. This effectively gives the core’s response to

the buckled face twice the distance (the full thickness of the core instead of the
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distance from the face to the mid-surface) to decay without affecting or being affected
by the other face.
For the investigation presented here, the Hoff/Mautner equation will

therefore be used, with the value of the constant ¢ taken to be 0.5, to be conservative.

3.3.3 Optimization the Structure for Lowest Weight
When deterrnining the optimal face and core thicknesses for lowest
weight, the same approximations regarding the stress distribution are made as for the
shear stress calculation. They are repeated here:
E <<E,

3.7)
(tl'nncr ¥ toumr ) << hc (

resulting in an approximately constant in-plane stress distribution through
the face thickness. If one also makes the approximation that
h h

oty (3.8)

then the in-plane and moment resultants can be written as

N, =to0,+t0,

3.9
M, :toduﬁi—rjajﬁfm (3.9
2 2

The s subscript has been dropped from the stresses to simplify writing the

equations. It is understood that the in-plane stresses are in the s direction. To find the
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optimum face thicknesses, set the stresses equal to the maximum allowable values for

the appropriate direction (tension or compression) and solve for t; and t, in terms of N,

M, and h,
N
by = {__s M, } fy oy = P’a " ﬁ’f—} (3.10)
Jl’.a!.’mmble 2 / Ic Cra atfowable 2 hc

The face thicknesses cannot be negative so the allowable stress will have
the same sign as the quantity in the brackets. If the stress is negative (compressive), the
allowable stress is the lesser of the maximum allowable due to overstressing or that
which will induce face wrinkling. The resultants are known along with the allowable
stresses, so all that remains is to find the optimum core thickness for the lowest
weight. If there is no restriction on the deflection, the optimum core thickness can be
found as follows. Writing the weight per unit platform area, with W equal to the
weight of the components minus the weight of the adhesive (the adhesive is not
included since it is not a known factor and does not influence the optimization results

in any case) that holds them together

W :pchc +piti +potu

' 3.11
W=pchc+.mf'— N M\, _ P N, M, (3.11)
2 hc a 2 hc

iallowable a,mflowable

The weight is minimized when dW/oh, =0

oh, h? .

¢ o.ailowable fallowable

6W='OC_M, Itg )Oo _ pi :‘:0 (312)
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B = M’[ e } (3.13)
o

2 c o.allowable Ul‘,ai!uwr:bla

If the quantity under the square root sign is negative, equation (3.13)
yields no solution for h.. For those cases, the weight continues to decrease as hc
becomes smaller with the minimum at h, equals zero. In reality, there may be a
minimum at a very small he, but the assumption of constant in-plane stress distribution
in the faces eliminates the higher order terms that would allow the determination of
this minimum. The optimal h, in this region is unimportant for this problem anyway
since there is a large enough transverse shear resultant in these regions that shear
failure dominates the core thickness determination.

The core thickness must also be great enough that the shear stress in the
core is below the maximum allowable value. The minimum core thickness that
satisfies this constraint is calculated using Equation (3.4). Once the optimum thickness
is obtained for each constraint; in-plane stress and shear stress, the greater of the two is
used.

Changing t, t, and h, will change the bending/stretching coupling and
therefore the moment resultant M, so the optimization is an iterative process. While
the face thicknesses given by equation (3.10) are used for the calculation of he gp, the
assumption of uniform in-plane stress distribution in the faces can be eliminated from
the optimum thickness calculation if the following iterative relation is used once the

optimal core thickness has been determined
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oth : . Ty ,
for the j™ iteration: tegm = ey (k = inner, outer) (3.14)

k. atlfowable
where Oy 18 the maximum in-plane stress that occurs in the face, usually

on the outer surface of the structure. This equation allows t; and t, to be refined a little

more accurately than equation (3.14) does.
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Chapter 4

PARAMETRIC ANALYSIS OF THE PROBLEM

Now the tools have been developed to analyze the rectangular cross
section with rounded corners, the optimization of the cross section and sandwich
geometry is then explored.

In general, plates and shells resist loads in different ways. Plates typically
resist lateral loads through bending stresses while a well-designed shell under lateral
loading minimizes the bending stresses and resists the load primarily through in-plane
membrane stresses. Since the cross section in question is a combination of the two
types of element, some level of compromise is inevitable. So the effect of the overall
cross section geometry must be considered before the face and core thicknesses are

optimized.

4.1 Analysis of the Cross Section Geometry

Since the cross section geometry is symmetric about the vertical and the
horizontal axis, it is defined by three parameters: Li, R, and L, which are shown in
Figure 4.1. If the cross section is not to be any larger than necessary, i.e., larger than a
specified pair of outer dimension limitations ( Ly, and L. ...), then specifying one
of the parameters (L;, R and Ls) determines the other two. The length of circumference
is readily available also.

The weight per unit length of the truck tank will be this circumferential

length times the weight per unit platform area. The weight per unit area will be heavily
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dependent on the cross sectional geometry since as Ly and L; become larger, the
greater bending and shear loads will require thicker faces and a thicker core to prevent

over-stressing.
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Figure 4.1  Definition of Geometric Parameters

In order to determine the effect of the cross section geometry on the
weight of the structure, the sandwich will be optimized for different values of L, and

L; and R, and the results will be compared.

4.2 Sample Cross Sections
The problem investigated in this thesis is a truck tank. Since there are
limitations of 8 feet (2.43m) width and 14 feet (4.26m) height on outside dimensions

on American highways, for comparison, we consider two cases, one is that the outside



dimensions of the tank is 8(ft. width) x8(ft. height), which has a square cross section;
another case is that the outside dimensions of the tank should be 8(ft. width) x10(ft.
height), which has a rectangular cross section.

As stated above, the cross section can be defined by three parameters: L,
R, and Ls, which are shown in Figure 4.1. Since we have already known the outside

dimension limitations L., and L, , as long as we specify one of the parameters

(L;, R and L3), we can determine the other two. For example, 1f we specifies L, then
R=L,/2-L and Ly=1L, ., —2R.

In order to investigate the response of various cross sections, ten
geometric configurations are selected for further studies, i.e. for both of the two cases
described above, five radii—from small to large--are specified for the curved sections.
Once the geometry is specified, the sandwich profile can be optimized for each sample
cross section.

The cross sections consist of two groups. The square cross sections will be
referred to as CS-S1 to C8-85. The rectangular cross sections will be referred to as
CS-R1 to CS-RS5. Since R is the radius of the mid-plane of the sandwich and it is the
outside face of the curved section that must clear the maximum exterior dimension, the
radius used when specifying the cross section geometry will be the radius of the outer
surface, R’, which is defined as

(t,. +h.+1, )

R =R+ (4.1)

The values for R’, L; and L3 for each cross section are listed in Table 4.1.
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Table 4.1

Geometric Specifications for Sample Cross Sections

Unit (f/m) L, R’ L;
CS-S1 | 1.5/0.4572 | 2.5/0.762 | 3/0.9144
CS-S2 | 1.8/0.5486 | 2.2/0.6706 | 3.6/1.097
cs-53 | 2:2/0-6706 | 1 8/0.5486 | 4.4/1.341
CS-S4 | 2.50.762 | 1.5/0.4572 | 5/1.524
CS-S5 | 3/0.9144 | 1/0.3048 | 6/1.829
CS-R1 | 191045721 2.5/0.762 | 5/1.524
CS-R2 | 1.8/0.5486 | 2.2/0.6706 | 5.6/1.707
CS-R3 | 2.2/0.6706 | 1.8/0.5486 | 6.4/1.951
CS-R4 | 2.5/0.762 | 1.5/0.4572 | 7/2.134
CS-R5 | 3/0.9144 | 1/0.3048 | 8/2.438

4.3 Sample Materials and Loadings
As a sample problem, Aluminum 6061-T6 is used as the face material, and
a foam core that has a density of 75Kg/m"3 is used in this sample problem. The

property values are listed in Table 4.2.
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Table 4.2 Material Properties for the Sample Problem

Aluminum Foam Core
6061-T6
E]; GPa 72 79.091e-3
E;J,g, GPa 72 79.091e-3
G2 GPa 26 28.247e-3
v 0.33 0.4
G_comp MPa -290 -69
o_tens MPa 290 69
T MPa 193 1.022
P kg/m’ 2700 75
Ei: modulus of elasticity in the fiber direction
En: modulus of elasticity perpendicular to the fiber direction

In-plane shear modulus (for transversely isotropic

composites, G13 = G12)

Vi Poisson’s ratio
o_comp:  Compressive strength
T In-plane shear strength

p Density in kg/m’

4.4 Loadings

Water (p=1000Kg/m"3) is used as the sample linearly varying load. The
results are calculated for two situations:
e Sample Loading I

In this case, only the liquid loading is considered but exclude the effect of
the constant internal pressure, i.e., the truck tank is filled with water, so there is no

inner air pressure. The loading profile is shown in Figure 4.2.
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Water
Pressure

Figure 4.2 Loading Profile of Sample Loading I

o  Sample Loading II

In this case, the truck tank is not filled, so the loading of the idealized
truck tank CS shown in Fig. 4.3 consists of two parts; the first is the hydraulic head
loading exerted by the fluid contained in the tank, arbitrarily the fluid level is assumed
to coincide with the intersection between the curved panel in the top and the vertical
sandwich panel (side panel); and the second loading the constant inner pressure, which

has the value of 100Mpa.
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Inner pressure only

Water and
inner pressure

Figure 4.3 Loading Profile of Sample Loading I

4.5 Resuits for the Sample Preblem

In order to find the lightest construction for a given material combination,
an initial range is chosen for the thickness of each face. The thickness of each face is
then varjed over this initial range. For each combination of face thicknesses, the
thickness of the core is modified such that the stresses are less than the allowable
stresses. The weight is then calculated for each final combination.

In order to automatically determine the optimum face thicknesses, a range
of face thicknesses that is broad enough to include the minimum is established. Within

this range, a three by three grid of points is calculated: one at the top, middle and
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bottom of the range for each face for a total of nine data points. The point resulting in
the lowest weight structure is designated as the new center of the range for the (i+1)"
iteration and the magnitude of the range is reduced. The process is repeated until the
resolution of the data points is sufficiently accurate.

The allowable stress is the strength of the material divided by the factor of
safety. Tentatively a factor of safety 2 is used for both faces and core in this sample
problem. Since the problem studied here in this thesis is a rather practical one, the
transportation truck tank is a frequently used, heavy duty vehicle, greater values of the

factor of safety may be required in reality, the effect of the factor of safety on the

optimal structure and weight will be discussed in Chapter 5.

4.5.1 Results for Case I — (No Constant Internal Pressure)

Since the thickness of the sandwich is not yet known, the outer surface is
specified and the mid-plane radius, R is adjusted within the worksheet using equation
(4.1) to keep the outer surface constant each time the thickness of the sandwich is
changed.

After running the Maple program described in the previous chapter, the
optimized values of the faces and core thicknesses and weight can be obtained and are
listed in Table 4.3, Also in this table, the ratios of the inner cross section area to
weight are listed, since we assumed that there is no variation of any geometry
parameter in the axial direction, these ratios are equivalent to the truck tank volume to

weight ratio.
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Table 4.3  Optimized Geometry and Weight for Sample Case I, Subject to
Maximum Allowable Stresses and Lightest Weight Criteria

Cross

. section
t i(mm) | t o(mm) | h c(mm) | W (Kg/m) ‘ner area R=A/W

A (m"2)
CS-S1 0.619 0.563 43.15 53.40 5.079 0.0952
CS-S2 0.663 0.599 46.04 57.99 5.159 0.0890
CS-83 0.711 0.676 49.30 64.39 5.248 0.0815
CS-S4 0.740 0.759 51.36 69.55 5.301 0.0762
CS-S5 0.813 0.910 54.19 78.94 5.360 0.0679
CS-R1 0.933 0.879 42.32 76.83 6.513 0.0848
CS-R2 0.980 0.987 42.46 82.27 6.617 0.0804
CS-R3 1.069 1.189 43.87 92.79 6.718 0.0724
CS-R4 1.127 1.247 48.25 100.57 6.746 0.0671
CS-R5 1.095 1.203 61.50 110.86 6.698 0.0604

From this table, it is seen that the square cross sections are comparatively
lighter, the reason is that the moment resultants generated by the pressure on the
straight sides act to balance each other out and are most effective at doing so when
they are of the same magnitude. This occurs when the straight sections are of the same
length. In this case, each one reduces the maximum moment in the adjacent side by the
same amount and as a result, neither side is overbuilt with respect to the other for the
constant thickness sandwich construction due to the fact that the maximum bending
moments are smaller.

In a rectangular configuration where one side is longer and the other
shorter than in the square case, the moment generated in the longer side by the
pressure on that side is larger since the moment increases with the length of the

straight section. The pressure on the shorter side helps to counteract this moment

59




(through the matching conditions at the junctions between sections) but when there is a

differential in the lengths, this effect of counteracting the moment is reduced and the

maximum net moment resultant in the longer side is of greater magnitude for the

rectangular case, resulting in the need for a heavier sandwich to handle the increased

moment. Likewise, the net moment resultant in the shorter side is smaller in

magnitude, so the sandwich will be overbuilt in that section.

The volume to weight ratio of both the square and rectangular cross

sections shows a decreasing trend as the radius decreases. So if the only consideration

is the volume to weight ratio, then a tank with a circular cross section should be the

best choice, but in that case, it results in very thin faces and a non-existent core. To

illustrate this trend, three additional rectangular cross sections with very large corner

radii are examined and the results are listed in Table 4.4.

Table4.4  Optimized Geometry and Weight for Sample Loading I, Extra-
Large Corner Radii, Subject to Maximum Allowable Stresses and
Lightest Weight Criteria
Cross
section
. t o hc W .
R{ft/m) |t i(mm) - - o inner R=A/W
(mm) {mm) (Kg/m) area A
(m"2)
CS-RA ]3/0.9144 § 0.530 (.489 37.19 44.68 4.920 0.1101
CS-RB 3'5/71'06 0.408 0.387 28.99 33.81 4.737 0.1401
CS-SC 3'8/81'15 0.303 0.321 21.95 25.63 4.621 0.1803

But this weight saving cannot be fully realized, in actual use, there will be

many other loads and factors such as durability, vibration, etc. that will not permit the
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use of a shell that is as thin as that predicted using membrane analysis. When
considering the additional loadings, it would be unreasonable to assume that it is
possible to transfer the weight of the loadings to the shell and maintain a state of
membrane stress. Furthermore, a truck tank with a round cross section cannot be
loaded as efficiently as one that is more rectangular, since not all of the space is usable
space, So a circular cross section is not very feasible

Plots of the in-plane stress in the faces, shear stresses in the cores and the
bending moment resultant as functions of the circumferential coordinate, s for the
sample cross sections are shown in Figure 4.4 through 4.9, along with the maximum
allowable in-plane and shear stresses and critical stresses at which the faces will
wrinkle. In the plots for CS-R1,CS-R3 and CS-RS5, the profile of lateral deflection are
included also. For simplicity, the plots for cross section CS-82, CS-54, C5-R2 and
CS-R4 are listed.

And only the right half of the cross section is shown on the plots since the
response of the other half is identical due to the symmetry about the vertical axis.
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Figure 4.5 Stresses and Moment Resultant of CS-S3 (Sample Case I)
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Figure 4.9 Stresses, Moment Resultant and Later Deflection of CS-R5 (Sample
Case])

From these plots, one can see that the core shear stresses did not reach the
maximum core shear limits. This is because both of the lightest weight and the stress
limitations were used as the optimization criteria, if one optimized the structure only
under the criterion of the stress limitations, as an example, for CS-S3, the results
would be:

t, =1.217mm t, =1.146mm h, =2936mm W =7478Kg/m (4.2)

f

Compared to the value in Table 4.2, there is a 16.14% increase on the
optimized weight, since one must use thicker faces in compensation for the thinner
core in which the maximum shear stress reaches the core shear limitation. The plot of

this situation is shown below in Figure 4.10.
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Figure 4.10 Stresses and Moment Resultant of CS-S3 (Sample Loading I, Using

the Stress Limitations Only for Optimization)

4.5.2 Results for Case II-—(with constant internal pressure)

The optimized values of the faces and core thicknesses and weight can be

obtained and are listed in Table 4.5.

Table4.5  Optimized Geometry and Weight for Sample Case 1I, Subject to
Maximum Allowable Stresses and Lightest Weight Criteria
Cross
. section
t i(mm) | t o(mm) | h_c(mm); W (Kg/m) area A =AW
(m"2)
CS-5S1 1.293 1.410 101.90 121.26 4,598 0.0379
CS-S2 1.377 1.304 123.28 135.27 4.526 0.0335
CS-S3 1.487 1.177 152.21 154.91 4.393 0.0284
CS-54 1.568 1.090 174.16 170.27 4.279 0.0251
CS-85 1.700 0.9570 211.28 197.01 4.036 0.0205
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CS-R1 1.440 2.006 164.40 197.67 5.400 0.0273
CS-R2 1.506 1.857 186.25 212.69 5.297 0.0249
CS-R3 1.602 1.679 216.20 234.23 5.124 0.0219
CS-R4 1.676 1.557 239.17 251.39 4.969 0.0198
CS-R5 1.800 1.370 278.33 281.49 4.659 0.0166

Also, plots of the in-plane stress in the faces, shear stresses in the cores
and the bending moment resultant as functions of the circumferential coordinate, s for
the sample geometries are shown in Figure 4.11 through 4.16, along with the
maximum allowable in-plane and shear stresses and critical stresses at which the faces

will wrinkle.
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Figure 4.11 Stresses and Moment Resultant of CS-S1 (Sample Case II)
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Figure 4.14 Stresses and Moment Resultant of CS-R1 (Sample Case 11}
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Figure 4.16 Stresses and Moment Resultant of CS-RS (Sample Case II)

4.6 Critical Failure Points

The points in the structure that experience the greatest stress are the points
where the moment resultant and the shear resultant are largest, and can be referred to
as Critical Failure Points.

For different geometries of the cross section and the loadings, the
locations of the Critical Failure Points are not the same:

° The possible locations where the moment resultant can have the greatest

magnitude are at either the middle of one (both, in the case of a square cross



section) of the straight sections or one of the curved sections. Sometimes, the
critical points at the curved sections are shifted a bit away from the middle of

the comner, and can be designated such as sy 5+ 535, €tc.

515
h"‘-._._'\.\ '/.
! ~ONE S1.5+
\
g hY
% So 51 w2 4 7 \
. 'q\}‘/ \
! . §
| s \
| L 2 ~—all
%
!
| S2.5
| /
SIS S S
E
!
!
!
!
?
!
|
!
I

Figure 4.17 Critical Points Where Stresses Are Maximized
The extreme magnitudes of the shear resultant occur at the joints between the

straight and curved sections, say s, sz, 83, 54 0t 85, normally the greatest shear

critical point is the joint between the vertical and lower curved sections, s3.
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4.7 Discussion of Optimized Geometry

When optimized for the least weight, subject to the restrictions on the
stress, the resulting structure has very thin faces and a very thick core. These values for
the optimum construction may be useful only in the academic sense. While they do
result in the lightest weight construction, they are not practical from an application
point of view. In some cases, the optimized geometry also fails to adhere to one of the
assumptions posed in the development of the theory: h << R. When optimized for
lowest weight, h is on the same order as R and VR may not be small enough to
neglect. Also, transverse flexibility of the core is not considered. When ‘soft’ cores,
such as the polymer foams considered here are used, the faces can often deflect
relative to one another. This will be most noticeable in the curved section where the
transverse normal stresses will try to pull the faces away from each other, siretching
the core in the z direction. As such, it must be recognized that there will be a certain
amount of associated error in the results, underscoring the preliminary nature of this
investigation. These results also show that, under these conditions, the limiting
considerations are not the basic in-plane and shear stresses only, but rather are other
factors that affect the functional usefulness of the structure. For example, a sandwich
face that is less than one millimeter thick may resist the in-plane loads without failure
but will not be able to tolerate any concentrated transverse loading from sources such
as cargo, fittings, internal structure, etc. The structure would be very susceptible to
damage and would not be sufficiently durable.

In the interest of gaining more insight into the effects that various
parameters or limitations have on the geometry and weight of the structure, several

possibilities are examined in the following Chapter.
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4.8 Summary

In this chapter, the overall geometry of the cross section and the geometry
of the sandwich were considered. The geometric and material properties of the
sandwich were constant in the circumferential direction. Ten different cross sections
and two loading cases were selected to be optimized for comparison.

In the next chapter, several factors/parameters were varied to examine
their effect on the optimized geometry and the weight of the structure. Also, a
preliminary exploration of the situation of varied sandwich geometry in the

circumferential direction will be included.
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Chapter 5

ANALYSIS OF VARIOUS PARAMETERS INFLUENCING ON THE
OPTIMAL STRUCTURE

Further from the baseline study in the previous chapter, here, several
parameters will be varied to determine their influence on the optimal truck tank

construction.

5.1 Face Wrinkling

One possible mode of failure for a sandwich face loaded in compression is
face wrinkling. Face wrinkling is a local elastic instability of the face and is described
in more detail by Zenkert [24] and Vinson [22]. When the effects of face wrinkling are
considered, the magnitude of the compressive stress in either face must be less than the
critical face wrinkling stress. The expression for the critical face wrinkliAng stress 18
given by equation (2.56), and will be repeated here with the value of ¢ taken as 0.5.

o, =-05,,EG,.,.)" (5.1)

fat e ez

For the sample loading I described in Chapter 4, when the sandwich
profile is optimized for cross section CS-R3 without considering face wrinkling, using
the 75 kg/m® foam core material and Aluminum 6061-T6 faces, the resulting face and

core thicknesses are:
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£, =1.088mm h, =43.18mm ¢, =1.129mm (5.2)

and the weight per unit length of the structure is 91.21kg/m.
A plot of the in-plane stress in the faces as a function of the
circumferential coordinate, s is shown in Figure 5.1 along with the critical stress at

which the faces will wrinkle.

Outer Face
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Figure 5.1 In-Plane Stress in the Faces of CS-R3 without Considering Face
Wrinkling (Sample Loading I)

As can be seen in Figure 5.1, the compressive stress in the outer face
exceeds the critical face wrinkling stress in the lower curved section. When face
wrinkling is considered, the outer face must be thickened such that the maximum
compressive stress does not exceed either the critical face wrinkling stress or the
maximum allowable stress.

When the optimization is performed with face wrinkling included, the

resulting sandwich geometry is

t; =1.069mm h, =43.87mm ¢, =1.189mmn (5.3)
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and the weight per unit length of the structure is 92.79kg/m, that have
been listed in Table 4.3. The corresponding plot of the in-plane stresses is shown in
Figure 4.8.

The weight per unit length of the structure after adjusting the face
thicknesses to prevent face wrinkling has an increase of 1.732% in the overall weight.

The increase is so small because the maximum allowable stress of the
Aluminum face is very closed to the critical face wrinkling stress calculated. If we use
quasi-isotropic Carbon/Epoxy (propertiés are listed in Table 5.2) is used, there is a
larger difference between the maximum allowable stress and the critical face wrinkling
stress as the face material, one sees the significance of how the criterion of face
wrinkling affects the optimal weight. The results calculated for the cross section CS-

R3 with 75 kg/m’® core under sample loading I are listed in Table 5.1.

Table 5.1  Optimized Construction for CS-R3, Using Quasi-Isotropic
Carbon/Epoxy Faces, Sample Loading I, with/without Consideration

of Face Wrinkling
t_i (mm) t_o (mm) h_c (mm) W (Kg/m)
Face Wrinkling 1.238 1.480 37.05 68.88
w/o Face 1.035 0.903 37.43 57.31
Wrinkling

One can see that there is a 20.188% weight increase after adding the factor
of face wrinkling. Plots of the in-plane stresses with/without Face Wrinkling are

shown in Figure 5.2 and Figure 5.3.
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Figure 5.2  In-Plane Stress in the Faces of CS-R3 Considering Face Wrinkling
(Sample Case I, Quasi-Isotropic Carbon/Epoxy Faces)
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Figure 5.3 In-Plane Stress in the Faces of CS-R3 without Considering Face
Wrinkling (Sample Case |, Quasi-Isotropic Carbon/Epoxy Faces)

In some cases, the critical stress will be above the maximum allowable
stress for the face in question. In these cases, the weight will not change since face

wrinkling will not be the limiting failure mode.

5.2 Minimum Allowable Face Thickness

The face thicknesses that correspond to the lightest weight construction
are often too thin to be practical. If a minimum face thickness is prescribed, the
optimum construction can be determined subject to this additional constraint. This

minimum thickness may be dependent on the face material manufacturer’s guidelines,
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the concentrated loading that may occur, or any other factor that may apply. For
example, consider the sample problem under the sample loading case [, if one defines
a minimum face thickness of 1 mm, it will be active for several of the 10 sample cross
section geometries. Table 5.2 then lists the optimized core thickness and weight

corresponding given this additional restriction.

Table 5.2 Optimized Construction Subject to a Minimum Allowed Face
Thickness Dimension

No Weight
Restriction Minimum Face Thickness Equal to Imm increase
on Face by
Thickness Adding
the
W (Kg/m) t i{mm) |t o{mm) he w Restrictio
- - {mm) (Kg/m) n (%)
CS-S1 53.40 1 1 43.06 71.66 34.195
CS-S2 57.99 i 1 45.98 74.78 28.953
CS-S3 64.39 1 1 49.25 78.67 22.177
CS-54 69.55 1 1 51.33 81.41 17.052
CS-55 78.94 1 1 54.20 85.70 8.563
CS-R1 76.83 1 1 42.28 81.65 6.274
CS-R2 82.27 1 1 42 .47 83.12 1.033
CS-R3 92.79 1.069 1.189 43.87 92.79 0
CS-R4 100.57 1.127 1.247 48.25 100.57 0
CS-R5 110.86 1.095 1.203 61.50 110.86 0

When both faces are restricted by the minimum thickness, a symmetric
sandwich with both faces equal to the minimum allowed thickness results.
The restriction of minimum thickness wili substantially affect the

durability of the structure, as well as its ability to resist concentrated loads.

80



5.3 Factor of Safety

When designing structures, an empirical safety factor is often used when
determining the allowable stresses. Material properties are not exact values in reality,
but rather stochastic variables and a factor of safety helps to allow for any lower-than-
expected material properties and/or higher-than-expected loading conditions. Although
a stochastic approach is occasionally used where each parameter is given a distribution
function (often either a normal distribution or a Weibull distribution) rather than a
distinct value and the likelihood of failure calculated, traditionally an empirical safety
factor is used. The factor of safety that is used for the allowable stresses in the faces
and core can strongly influence the optimized geometry in many cases. Any increase in
the factor of safety will result in a heavier structure.

As a baseline for comparison, consider still the cross section geometry CS-
R3 which has Aluminum 6061-T6 faces and a 75Kg/m”"3 core, under the sample
loading case I, i.e., the pure hydraulic loading without constant inner pressure. Table
5.4 shows the effect of increasing the factor of safety for the stresses in the faces

and/or the core.

Table 5.3 Effect of the Factor of Safety on Geometry and Weight

F.S.fce 1 2 3 4 5 6 7

F.S.core 1 2 2 A 2 2 2

t (mm) 0.763 1.069 1.299 1.491 1.658 1.806 1.942

he (mm) | 31.28 43.87 53.40 61.36 68.31 74.54 80.24

t, (mm) | 0.840 1.189 1.457 1.682 1.881 2.060 2.225

w
(kg/m)

66.24 92.79 112.81 | 129.45 | 143.92 | 156.86 | 168.63
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F.S.core 1 3 4 4.5 5 6 7

ti (mm) | 0.763 0.821 0.597 0.522 0.462 0.371 0.305

he (mm) | 31.28 56.10 74.43 83.41 92.28 109.73 | 126.79

to (mm) | 0.840 0.922 0.680 0.600 0.535 43.75 0.367

66.24 87.79 88.44 90.67 93.61 100.83 | 109.05

(kg/m)

In this table, two series of Factor of Safety are examined: one keeps the
F.S. of the core unchanged and varies the F.S. of the faces; the other involves a
constant value of F.S. of the faces and a series of varying F.S. of the core. From the
table, one can see that the F.S. of the faces has much greater influence on the

optimized weight of the structure.

5.4 Studies for the Different Core and Face Materials

For the purpose of comparison, the cross section CS-53 and CS-R3 are
used in this section and the rest of this chapter, also, the sample loading in use will be
the sample case ], i.e., the purely hydraulic loading.

First, in parametrically examining the effect of different core density on
the optimal structure, three core materials will be used with the same face material
Aluminum 6061-T6. The core properties are listed in Table 5.5, and the optimized

geometry and weight for both CS-53 and CS-R3 are listed in Table 5.6.
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Table 5.4 Optimized Geometry and Weight for Three Different Cores with

Aluminum 6061-T6 Faces
t 1(mm) t_o (mm) h_c(mm) W (Kg/m)
Foam #1
(75 kg/m3) 0.711 0.676 49.30 64.39
Foam #2
- 2 ) 7
CS-53 (100 kg/m3) 0.782 0.757 42.14 72.61
Foam #3
(125 kg/mg) 0.875 0.849 37.77 81.45
Foam #1
9
(75 kg/nrf’) 1.069 1.189 43.87 02.79
cs.r3 | [Foami2 1.258 1.300 37.45 105.50
(100 kg/m’) - ‘ ' ‘
Foam #3
2
(125 kg/m3) 1.406 1.448 33.52 117.97
It is clear that the lowest weight results when the lightest core material is
used.

Then, the optimized weight and sandwich profile for cross sections CS-53
and CS-R3 with all combination of face materials are compiled in tables 5.6 — 5.9. The
core material used is the 75 kg/m’ foam because this provides the minimum weight
construction. The face material abbreviations CE, KE, EG and AL correspond to
carbon/epoxy, Kevlar/epoxy, E-glass/epoxy and aluminum. The material properties are
listed in Table 5.5. The parametric optimization is based on the criteria that the

sandwich must not be over-stressed.
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Table 5.5 Properties for Isotropic and Quasi-Isotropic Face Materials

Quasi-Isotropic | Quasi-Isotropic | Quasi-Isotropic | Aluminum
Carbon/Epoxy Kevlar E Glass/Epoxy 6061 T6
T300/5208 49/Epoxy
5 GPa 65.48 32.44 40.22 72.0
psi x10° 9.50 4.71 5.83 10.01
Gia GPa 22.60 10.95 15.46 26.0
| psix 10° 3.28 1.59 2.24 3.77
G GPa : 5.60 2.30 11.99 26.0
“ 1 psix 10 0.81 0.33 1.74 3.77
v 0.31 32 23 0.33
MPa 427.5 144.0 497.5 290.0
% | psi x10° 62.0 20.9 722 37.0
MPa 358.6 760.0 667.7 290.0
% [ psi x10° 52.0 1102 96.8 37.0
Vi - 0.70 0.60 0.72 NA
kg/m’ 1536.2 1397.8 1965.0 2700
P e 95.9 87.3 122.7 169.3.

The weight penalty listed in the following tables is the increase in weight

for a given material combination compared to the lightest case.

Table 5.6 Optimized Constructions for Cross Section CS-R3
Sorted by Face Material, Core Is 75 kg/m’ Foam

Matenials Geometry Weight
Inner face | Outer face t; (m) he {(m) t, (m) W (kg/m)
CE CE 1.238 37.05 1.480 68.88
CE KE 1.232 36.52 2.777 84.32
CE EG 1.244 36.94 1.705 79.58
CE AL 1.169 39.07 1.353 82.96
KE CE 2,239 37.70 1.435 80.81
KE KE 2.316 35.83 2.796 07.37
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2.340 36.39 1.706 92.63

1.912 43.67 1.197 90.74

EG 1.448 36.97 1.501 78.50

EG 1.446 36.28 2.853 94.58

EG 1.248 42.54 1.255 89.32

1.249 37.96 1.425 83.28

1.094 42.47 2.336 92.98

AL 1.129 41.52 1.495 90.03

EG
AL
CE
KE
EG EG 1.453 36.87 1.720 89.14
AL
CE
KE
EG
AL

1.065 43.87 1.189 92.79

Table 5.7 Optimized Constructions for Cross Section CS-R3, Sorted By

Weight.
Weight
Materials Penalty
Weight (% increase
W (kg/m) | comparative
Inner face | Outer face to the lightest
combination)
CE CE 68.88 0
EG CE 78.50 13.966
CE EG 79.58 15.534
KE CE 80.81 17.320
CE AL 82.96 20.441
AL CE 83.28 20.906
CE KE 84.32 22.416
EG EG 89.14 29.413
EG AL 89.32 29.675
AL EG 50.03 30.706
KE AL 90.74 31.736
KE EG 92.63 34.480
AL AL 92.79 34.713
AL KE 92.98 34.988
EG KE 94.58 37.311
KE KE 97.37 41.363
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Table 5.8 Optimized Constructions for Cross Section CS-83
Sorted by Face Material, Core Is 75 l{g/m3 Foam

Materials Geometry Weight
Inner face | Outer face t; (m) he (m) to (M) W (kg/m)
CE CE 1.024 36.14 0.971 50.19
CE KE 1.161 31.51 2.058 61.11
CE EG 1.108 33.63 1.203 57.30
CE AL 0.829 43.92 0.768 57.58
KE CE 1.593 42.29 0.818 57.71
KE KE 1.745 38.47 1.653 66.28
KE EG 1.697 40.20 0.988 63.59
KE AL 1.351 49.02 0.682 64.06
EG CE 1.042 40.82 0.866 55.87
EG KE 1.147 36.85 1.772 65.09
EG EG 1.108 38.64 1.048 61.95
EG Al 0.875 47.76 (0.715 62.59
AL CE 0.833 42.59 0.812 58.04
AL KE 0.910 38.81 1.640 66.49
AL EG 0.883 40.52 0.981 63.80
AL AL 0.711 49.30 0.676 64.39
Table 5.9 Optimized Constructions for Cross Section CS-53, Sorted by
Weight.

Weight
Materials Penalty

Weight (% increase

W (kg/m) | comparative

Inner face | Quter face to the lightest

combination)

CE CE 50.19 0

EG CE 55.87 11.317
CE EG 57.30 14.166
CE AL 57.58 14.724
KE CE 57.71 14.983
AL CE 58.04 15.641
CE KE 61.11 21.757
EG EG 61.95 23.431
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EG AL 62.59 24.706
KE EG 63.59 26.699
AL EG 63.30 27.317
KE AL 64.06 27.635
AL AL 64.39 28.292
EG KE 65.09 29.687
KE KE 66.28 32.058
AL KE 66.49 32.477

5.5 Preliminary Study for the Cross Sections with Variable Geometry in the
Circumferential Direction

All of the truck-tank cross sections discussed so far have constant
geometry in the circumferential direction. The material and sandwich profile were the
same at all points in the cross section. Now a more efficient construction will be
investigated that would allow the material properties or/and geometry of the sandwich
to vary in the circurnferential direction to better accommodate stresses that vary with

the s coordinate.

5.5.1 Variable Core Thickness

In this section, the core will have a constant thickness and the face
thicknesses will vary in a discrete fashion.

As in the previous chapter, the structure will be optimized based on the
criteria of obtaining the lowest weight possible without over-stressing the faces or the
core, and without allowing face wrinkling.

Using core with a constant thickness, the face thicknesses are adjusted to
prevent overstressing or wrinkling of the faces due to the bending load or overstressing
of the core due to shear load. The point where the bending load is the lowest is very
close to the point where the shear load is greatest so the two requirements have a

tendency to work against each other. As a sample case, the exploration using the cross
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section CS-R3 with Aluminum 6061-T6 faces and a varied-thickness core has a
density of 75 kg/m’, under sample loading I will be illustrated.

The sandwich face profile and the plots of in-plane and shear stress for the
sample structure are shown in Figures 5.4 to 5.6. In each section, the thicknesses of the
faces are optimized to be as thin as possible without allowing face wrinkling or over-
stressing. In every iteration, the optimal core thickness is calculated for each segment

and the thickest value used for the entire face.

Face Thickness Profile
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Figure 5.4 Sandwich Faces Profile for the Case of Variable Face Thicknesses
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Figure 5.5  In-Plane Stresses Plots for Sandwich with Variable Face
Thicknesses
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Core Shear
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Figure 5.6  Stress Plots for Sandwich with Variable Face Thicknesses

The resulting face thicknesses and optimal weight are:

h_ =44 85mm W =76.70kg/m (5.1)

It can be seen from Figure 5.4 that if the entire faces were as thick as the
thickest part, the structure would be significantly over-built in other areas. The stress
plots show that the faces and core are being utilized with greater efficiency when the
thicknesses of the faces are allowed to vary in the circumnferential direction. Compared
to the result from the constant-geometry sandwich of the same cross section that has a
weight value of 92.79kg/m, there is a 17.34 percent decrease in weight.

Obviously when a greater number of segments are used, a closer
approximation to a smooth variation of the thickness will be obtained, but in this
preliminary study, only five segments are used to show the general trend.

Although the efficiency of the sandwich has been improved by using
variable face thicknesses, greater weight savings can be achieved by allowing both the

core and the faces to vary in the circumferential direction.
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5.5.2 Sandwich with Variable Face and Core Thickness

If the thickness of the faces of the sandwich are allowed to vary in the
circumferential direction, the material can be utilized more efficiently than when they
are of constant thickness. The limiting case would be when the entire face is at the
maximum allowable in-plane stress and the core is at the maximum allowable shear
stress over the entire cross section. Since this does not leave any extra capacity for
additional loading conditions, the results only serve to demonstrate that greater weight
savings can be achieved by allowing as many properties as possible to vary according
to the local stress levels. For comparison, the cross section CS-R3 with Aluminum
6061-T6 faces and the core that has a density of 75 kg/m’ are again used. The
optimized profile of faces and the whole sandwich profile are shown separately in
Figure 5.7 and Figure 5.8, since if the same scale is used and put them into a single
picture, the variation of the face thicknesses is too small to be noticed. In these two
figures, the interface between the faces and the core is the z = 0 plane. Figure 5.9 to
Figure 5.11 are the plots of in-plane stresses in faces, shear stress in the core and the

bending moment resultant.
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Figure 5.7  Plot of the Face Thickness with the Core Excluded for the Case of
Variable Face and Core Thicknesses
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Bending Moment Resultant
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Figure 5.11 Bending Moment Resuitant Plots for Sandwich with Variable Face
and Core Thickness

The weight per unit length of the optimized structure is 435.86kg/m.
Compared to the constant-geometry sandwich, there is a significant reduction of 50.58
percent.

If the structure is to be able to withstand any other types of loading, such

as beam bending or torsion, the faces will need to be limited to a minimum thickness.

5.6 Sammary

In this chapter, the effects of several parameters, such as face wrinkling,
core density, factor of safety and miﬁimum face thickness on the optimal structure and
weight were examined. Optimal weights for different face material combinations were
calculated for comparison. Also, a preliminary study for the case of varied cross

section geometries in the circumferential direction was conducted.



Chapter 6

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

In this thesis, the use of sandwich construction for a truck tank structure
has been investigated. In order to improve the efficiency of the structure, the sandwich
was allowed to take on a mid-plane asymmetric configuration where one face could be
thicker than the other, involve different materials or different stacking sequences.
Different material combinations for the faces were investigated to determine the
choice that results in the lightest structure. The loading considered was mainly
concentrated in a linear-varied loading to accommodate the purpose of liquid
transportation, and the mathematical formulation did not include in-plane shear loads
or bending loads in the axial direction of the shell. This is consistent with the analysis
of a cross section that is sufficiently far from the ends of the shell, reinforcing
bulkheads, etc. as to be outside of the bending boundary layers induced by those
restraints, allowing the assumption of a plane-strain condition in the axial direction.

The shape of the cross section was that of a rectangle with rounded
corners. In the region outside the bending boundary layers, this was modeled as a
combination of straight beams and circular ring sections. Analytical solutions were
obtained for the response by solving the governing differential equations and applying

the appropriate boundary and matching conditions.
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6.1 Conclusions from Chapter Four

In Chapter Four, the effects of the overall geometry of the cross section
were examined. It was found that, because of the large bending loads introduced by the
straight beam sections, a circular cross section, 1.e. no straight sections, results in the
lightest construction possible. This was expected since a circular shell handles all of
the internal pressure loadings as in-plane membrane stresses. There are many reasons
why this may not be the ideal construction, such as cost and manufacturability,
efficiency of the geometry of the cargo bay in terms of usable space, etc. In order to
further explore the axially asymmetric possibilities, ten cross section geometries were
chosen for additional analysis. All of the cross sections were specified to fulfill the
outside dimension limitations on the American highway system.

It was found that a square cross section resulted in a lighter structure than
a rectangular cross section with the same corner radius. This is because the bending
loads in the horizontal sections (the top and bottom of the shell) are more completely
counteracted by the bending loads in the vertical sections when they are of the same
length. In the rectangular cross sections, the greatest bending moment occurs in the
middle of the longer straight sectioﬁ, while in the square cross sections 1t is in the
middle of the corner section. In both the square and rectangular cross sections there
was a trend of decreasing weight with increased corner radius.

It was noticed that the core shear stresses is not necessary to reach the
maximum core shear limits for the overall structure to achieve the lightest weight.

When the thickness of the core and faces remain constant in the
circumferential direction, the faces experience the greatest in-plane siresses either at

the middle of one of the straight sections or near (or at) the 45 degree point in one of
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the curved sections. The core experiences the greatest shear stress at the junction

between the vertical straight section and the lower corner section.

6.2 Conclusions from Chapter Five

In Chapter Five, several factors that may affect the optimized structure and
weight were examined. Cross section CS-R3 and sample loading I were used as a
baseline to investigate the sensitivity of the results to those factors.

It was found that in many cases, the critical face wrinkling stress was
lower than the allowable compressive stress for the faces, so it must be taken into
account as an optimization criterion.

The optimum face thicknesses are very thin, and in practical applications
the faces may need to be thicker than the optimum value for lowest weight to account
for durability concerns, localized loading, etc. The effect of specifying a minimum
face thickness sometimes may significantly increase the weight of the structure.

The optimal weight of the structure is more sensitive to the factor of
safety of the face than that of the core.

Three core materials were compared, and it was concluded that the with
the lightest density the lowest sandwich weight results.

The optimum construction was determined for each combination of
materials. The carbon/epoxy composite proved to be the lightest choice of materials
when used for both faces.

A preliminary investigation was performed for the situation of variable
geometry in the circumferential direction. With the thickness of the core and faces
allowed to vary in the circumferential direction, a more efficient utilization of the

materials can be achieved.
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6.3 Summary
In brief, the conclusions that can be drawn from this investigation are that

under the loading and restrictions included here:

o The best overall geometry will depend on factors other than the internal volume to
weight ratio.

» The weight of the structure increases as the radius of the corner decreases.

o For a given comer radius, a square cross section will be lighter than a rectangular
one that has the same outer or dimensions.

o Of the materials analyzed here, the 75 kg/m’ foam core and quasi-isotropic
carbon/epoxy composite faces are the best choice of materials for the structure.

e When the geometry of the sandwich is allowed to vary in the circumferential

direction, significant weight savings can be achieved.

6.4 Recommendations for Further Research

In future research, other loading conditions such as solid cargo loads can
be analyzed. These include, but are not limited to, beam action bending of the tank,
torsion loading, vibration and the response within the bending boundary layers.

In addition to allowing the thickness of the sandwich components to vary
in the circumferential direction, the material properties themselves may be varied. For
example, a layer of stiffer foam could be introduced just under the face in areas of high
compressive stresses to increase the critical face wrinkling stress. The density of the
core could be allowed to vary in the circumferential direction. The faces could include
additional layers of Kevlar in areas of high tensile stress. Web stiffeners could be
introduced into the core in the areas of high shear stress. Finite element solutions could

be used to gain insight into the behavior near bulkheads and other restrictive supports.
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Since the deflection are often greater than those which can be considered
small, the effects of the geometric non-linearity should be studied using a theory based

on a class of medium deflections that will encompass those experienced by the

structure.
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Appendix A

MAPLE WORKSHEET

> restart.

Input Section
Any system of units may be used as long as there is consistency between all of the
entries (don't forget material properties)
> Digits:=12:
file containing the input data
> input_data_file:="C:/thesis/cs.txt";
file for storing the output data
> output_data_file:="C:/the/temp_output.txt";
Include effects of transverse shear deformation?
> tsd:="yes";
Optimize faces and core?
> opt_face:="yes"; opt_core:="yes";
will the faces and core have constant geometric and material properties?
> constant_face_properties:="yes": constant_core_properties:="yes";
Check for face wrinkling?
> face_wrinkle:="yes";
> read input_data_file;
Factor of safety for allowable in-plane stresses in the faces

> FS]:=2;
Factor of safety for allowable shear stresses in the core
> FS2:=2;

constant ¢ in face wrinkling equation
> fw_const:=1/FS1%0.5e+0;
n is the maximum number of times the face and core thicknesses will be vaned
in the optimization loop
>n:=16;
set allowable deflection as a fraction of the total thickness of the sandwich
> d_fraction:=1/10;

Loading Properties and RHO is the mass density of the hydraulic load
> RHO:=1000;
> gr=9.8;
> p[0] :=pressure;

Assign Lengths and check for errors
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internal pressure must be renamed since the subscript can't be saved, nseg is
the total number of segments in beam (half cross section)
> nseg.:=hlseg+clseg+vseg+clsegthlseg;
Assign lengths for the upper horizontal section
> for i from I to hiseg do
> Lfi] :=hLengths[i];
> od;
Assign lengths for the vertical section
> for i from I to vseg do
> Lli+hlseg+clseg]:=vLengths[i];
> od;
Assign lengths for the upper curved section
> corner_seg:=2:
> for i from I to clseg do
> Lfi+hiseg] :=R*Angle[i];
> od;
> outer R:=R;
Assign lengths for the lower curved section
> for i from 1 to c2seg do
> Lfi+hlseg+clsegtvseg] - =R*Anglefi];
> od;
Assign lengths for the lower horizontal section
> for i from 1 to h2seg do
> Lfi+hlseg+clsegtvseg+celseg] :=hLengthsfi],
> od;

Error Checking
> Asum:=0:
> for i from 1 to clseg do
> Asum:=Asum+Angle[i];
> od;
> if Asum <> Pi/2 then print ("ERROR! angles must total Pi/2"); fi:
> Asum:=0:
> for i from 1 to c2seg do
> Asum:=Asum+Angle[i];
> od!;
> if Asum <> Pi/2 then print ("ERROR! angles must total Pi/2"); fi:

Materials

Specify the materials for the inner face, outer face and core

Ifit is desired to specify different materials for different segments, simply define the
material matrix with i as the segment and 1, 2 or 3 to indicate the inner face, core or
outer face



> for i from I to nseg do

> materialfi, 3] - =outerface_material;
> materialfi, 2] :=core_material;

> materialfi, 1] :=innerface_material:
> od:

Read Material Properties
note: the 1 direction is the axial direction.
If fibers are aligned in the hoop direction, the 2 direction is the fiber direction
> fori from 1 to nseg do
> for j from 1 to 3 do
> read materialfij];
> Ef11jfij]:=E1l;
> Ef22][ij] - =E22;
> Gl12]fij]:=Gl2;
> Gf23][ij]:=G23;
> pufl2][ij]:=nul2;
> nuf21][ij]:=nuf12] [ij] *E{22] [ij]/E[11][i],
> sigma_allow_compressive[1][i,j]:=yield_stress_compressionl/FSI;
> sigma_allow_compressive[2][ij] :=vield_stress_compression2/FSI;
> sigma_allow_tensile[1][i,j] :=yield_stress_tensionl/FSI;
> sigma_allow_tensile{2] [ij] :=yield_stress_tension2/FSI;
> sigma_allow_shear[i j]:=yield_stress_shear/FS52;
> rho.ij:=rho;
> od;
> od;
Calculate the Q matrix for each section
> for i from 1 to nseg do
> forj from I to 3 do
> Qf11][ij]:=E[11][ij]/(1-nuf12] [ij] *nuf21] [i,j]);
> Qf12][ij]:=nuf12][i ] *E[22] [ij]/(1-nuf{12] [ij] *nuf21] [Lj]);
> Qf22][ij]:=E[22] [ij]/(1-nu[12] [ij] *nu[21][ii]);
> O[44][ij]:=G[23][i,j];
> Q[66][ij]:=G[12][ij];
> od;
> od:

Optimization loop
> inner_max:=array(l..nseg,1..n):
> inner_min:=array(l..nseg,1..n):

> outer_max:=array(l..nseg,i..n):
> outer_min:=array(l..nseg,1..n):
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> tl:=array(l..nseg,1.n+1):
> t3:=array(l..nseg, l.n+1):
> he:=array(l..nseg i .n+1):
initialize the face and core thicknesses to those specified by the user
> for i from 1 to nseg do
>11fi1], hefi 1], 13[i, 1] :=t_i[i], h{i], t_ofi]:

> od:
Main optimization loop

> for j from 1 to n do
Reset the dependent variables for each iteration

> for i from I to nseg do

> ¢ ifi]=t1fij]:t_ofi] :=t3[ij] h[i] :=hcfij]:

> C.if1]:=evaln(C.if1]);C.i[2] :=evaln(C.i[2]);C.i[3] :=evaln(C.i[3]):

> C.if4] :=evaln(C.if4]); C.i[5] :=evaln(C.i[5]); C.i[6] :=evaln(C.i[6]):

> od:

> Const:=evaln(Const): Boundary:=evaln(Boundary):

> R:=outer_R-(t_i[corner_seg]/2+h[corner_seg]/2+t_o[corner_seg]/2):

> inner_R:=R-(t_ifcorner_seg]/2+h{corner_seg]/2+t_of corner_seg]/2):

Re-assign lengths for the curved section to adjust for the thickness of the
sandwich

> for i from 1 to clseg do

> Lfi+hiseg]:=R*Anglefi]:

> od:

> forifrom I to c2seg do

> Lfi+hlseg+clsegtvseg] :=R*Anglefi]:

> od:

A, B, D Matrix

> for i from 1 to nseg do-

> z.if3] :=(h[i] +t_i[i] +t_o[i])/2: distance from mid-plane of sandwich to top of
outer face

> z.if2] :=(h[i] +t_i[i]-t_ofi])/2: distance from mid-plane of sandwich to top of core
> z.if1]:=(t_ifi]-h{i]-t_ofi])/2: distance from mid-plane of sandwich to top of inner
face

> z.i[0] :=(-hfi]-t_i[i]-t_o[i])/2: distance from mid-plane of sandwich to bottom of
inner face

Calculate the A, B, D stiffnesses.

note: DD[22]] is used instead of D[22] since Maple reserves D as the symbol fora
partial derivative
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> Aif11]:=Q[11][i, 1] *(z.i[1]-z.i[O] )+ Q[ 1 1][i,2] *(z.i[ 2] =4[ 1] )+ Q[ 11] [i, 3] *(=.i[3]-
z.if2]):

> A.if12]:=0f12][i,1] *(z.i[1]-2.i[0))+O[ 12] [i,2] *(z.i[ 2] -=.i[ 1] )+ O[12] [1,3] *(z.i[3] -
zif2]):

> A.if22]:=0f22] [i, 1] *(z.i[1]-z.i{0])+ Q[ 22] [i,2] *(z.if 2] -z.if 1])+0O[22] [1.3] *(=.1[3] -
z.if2]):

> Aif44]:=5/M4*Q[44] [i,1] *(=.i[1]-=.i[0]-4/3*(z.i[ 1] "3~

Zi[O) " 3)/h[i] +_ifi]+1_o[i])"2)+O[44] [i,2] ¥(z.i[ 2] -z.i[1]-4/3%(z.i[ 2] "3-
zi[1]A3)/hfi] +t_ifi]+t_ofi])"2)+Q[44] [, 3] *(z.i[3]-z.i[2]-4/3%(2.i[ 3] "3-
zif2]73)/(h[i] +1_ifi] +t_ofi])"2)):

> B.if12]:=1/2%(0[12] [i,1] *(z.i[ 1] "2-z.i[0] "2)+ Q[ 1 2] [i, 2] *(z.i[ 2] "2~
zif1]°2)+0[12][i,3] ¥(z.i[3]"2-z.i[2]"2)).

> B.if22]:=1/2%(Qf22] [i,1] *(z.i[1]"2-z.i[0]"2)+Q[22] [1, 2] *(z.i 2] "2-
zif1]72)+0f22][i,3] *(z.i{ 3] "2-z.i[2]"2)):

> DD.if22]:=1/3*(Q[22] [i, 1] *(z.if 1] "3-2.i[0]"3)+ Q[ 22] [, 2] *(z.i[ 2] "3-
zi[1]P3)+Q[22] [1,3] *(z.if3]"3-z.i[ 2] "3)):

> od:

Define functions for in-plane, lateral and shear displacements

All calculations are done for half part of the cross section and mirrored due to the
symmetry about the vertical and horizontal axes.

> 50:=0:

> for i from I to nseg do

> s.ir=(s.i-1)+L[i]): position of ith junction

> od:

For Each Section (Upper Horizontal, Upper Curved, Vertical, Lower Curved and
Lower Horizontal):

Define Displacement functions for v(s), w(s) and beta(s). Displacements are in terms
of theta for the Upper Curved section, alpha for the Lower Curved section, and are
converted to s using formulae given.

Define Strain functions: epsilon{2] and epsilon[23], and the curvature kappa.
Define Stress and Moment Resultants.

Note: The BBar and DBar formulas have been inverted from the normal form. This
prevents 'division by zero' errors when analyzing symmetric sandwiches. To account
for this inversion, BBar and DBar are used where 1/BBar and 1/DBar are ordinarily
used.

Upper Horizontal Section
> for i from I to hlseg do
Define Displacement functions
> DBar.i:=A.if22]/(DD.if22] *4.i[22]-B.i[22]"2):

105



> BBar.i:=RB.if22]/(DD.i[22] *4.i[22]-B.i{22]"2):
> w.i=g *C.if2] +s"3*C.if4] +C.if 1] +s"2*C.if3] +1/24%p[0] *s"4*DBar.i:
>
vir=(2*s*Cif3] +C.if2]+ 3% 2*C.i[4])*B.if22]/4.i[22] +s*C.if6] + C.i[ 5] +1/6¥p[ O] *
s"3*BBar.i:
> beta.i-=-C.if2]-3%s"2*%C.i[4]-2*s*C.i[3]-p[0] *s/A.i[44]-6*C.if4] (A.i[44] *DBar.i)-
pl[0] *s"3/6*DBar.i:
Calculate epsilon and kappa. epsilon{2] is the s-direction in-plane strain at the
mid-plane and epsilon[23] is the s,z shear strain, kappa is the curvature.
> epsilon.if 2] :=diff(v.i,s):
> epsilon.if23]:=1/2*(beta.i+diff{w.i.s)):
> kappa.if2] . =diff{beta.i,s):
Calculate the Moment resultants
> Moment.if2] :=B.i[22] *epsilon.if2] +DD.if22] *kappa.if 2] :
Calculate Shear resultants
> Shear.if23] :=A.if[44] *(beta.i+diff{w.i,s)):
> od:

Upper Curved Section
> for i from hiseg+1 to hiseg+clseg do

Define Displacement functions
> theta:=(s-s.hlseg)/R:  positional angle in the curved section. s.hseg is the value of
s at the end of the horizontal section.
> sigma.i:=DD.i[22] *4.i[22] +A.i[44] *R"2*A.i[22] +DD.i{22] *A.i[44] -
B.if22]72+2*R.i[22] *4.if44] *R.
> DBar.i:=A.if22]/(DD.if22]*4.i[22]-B.if22]"2):
> BBar.i:=B.if22]/(DD.i[22] *A.i{22]-B.i{22]"2):
> w.ir=-B.i[22] *C.i[2]/(R*A4.i[22])-C.i[ 2] +C.if 3] *sin(theta)-
C.if4] *cos(theta)+(C.i[5] *sin(theta)-C.i[6] *cos(theta)) *theta+(-1-
4* A i[44] *B.if22] "2/(A.if 22] *sigma.i}+2*DD.i[22] *A.if44] /sigma.i+2*B.i{ 22] "3/(A.
i[22] *R*sigma.i)-2*B.i[22] *A.i[44] *DD.i[ 22] (A.i[22] *R¥sigma.i)-
2%B.i[22] *DD.i[22]/(R*sigma.i)+B.i[22] (4.i[ 22] *R)) ¥(C.i[6] *sin(theta) + C.i[ 5] *cos
(theta))+RA2*p[0]/A.if22] +RHO*g*R"3 *(theta"2*cos(theta) *((A.i{22] *DD.i[22] -
B.i[22]"2)N8*A.if44] *sigma.i)+(DD.i[22] +A.i[22] *R"2+2*B.i[ 22] *R)/(4*sigma.i)+(
4*A4.i[44] *DD.i[22] *R*BBar.i+A.if22] *A.if44] *R"4*DBar.i+4¥4.i{22] *4.i[44] *R"3
“BBar.i+2*A.if44] *DD.if22] *R"2*DBar.i+4*4.i[44] *B.i[22] *R"2*BBar.i+A.if44] *
DD.i[22]"2*DBar.i/A.if 22])/(8 *sigma.i))-cos(theta) *(3*(A.i[22] *DD.i{22] -
B.i[22] " 2)/(4*A.if44] *sigma.i)+(13*DD.if 22] +6*A.if 22] *R"2+ 19*B.if22] *R)/(4 *sig
ma.i)+(29%A.if44] *DD.i[22] *R*BBar.i+3*A.if22] *A.i[44] *R"4*DBar.i+ 15%A.if 22]
*A i[44] *RA\3*BBar.i+9*A.i[44] *DD.i[22] *R"2*DBar.i+22%A.i{44] *B.i{22] *R"2"B
Bar.i+10%4.if44] *DD.i[22]"2*DBar.i/4.if22] )/(4 *sigma.i))-
theta*sin(theta) *((4.if22] *DD.if22]-
B.i[22]°2)/(2*A.i[44] ¥sigma.i)+(3*DD.i[22] +2%A4.i[22] *R2+5*B.i[22] *R)/(2¥sigm
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a. )+ (7*A.i[44] *DD.i[22] *R*BBar.i+A.i[22] *A.i[44] *R"4*DBar.i+5*A.i[22] *A.i[44
J*R™3*BBar.i+3*A.i[44] *DD.i[22] *R"2*DBar.i+6*4.i[44] *B.i{22] *R"2 *BBar.i+2*
A.if44] *DD.i[22]*2*DBar.i/A.i[22])/(2*sigma.i))+1/A.i[22]):
>
v.i:=C.if1] +theta*C.i[2] +cos(theta) *C.i[3] +sin(theta) *C.i[4] +cos(theta) *theta*C.i[
5] +sinftheta)*theta*C.i[6]-
RHO*g*R"3*(1/(8*A.i[44])+R*BBar.i/4+R"2*DBar.i/f8+DD.i[22] /(8 *(A.i[22] *DD.i
[22]-B.i[22]72))) *(theta"2*sin(theta)+6*theta*cos(theta)-1 2 *sin(theta)):
> beta.i:=-2%A.if44] ¥(B.i[22] +A.i[22] *R)*(sin(theta) *C.i[5] -
cos(theta)*C.if6] Vsigma.i+(C.if 1] +theta*C.if 2] )/R-
RHO*g*RN3/(4*sigma.i)*(2 *theta*cos(theta) *(A.i[22] *R~+B.i[22] +(A.i[44] *DD.i[22
JH3RRAINALI[22] *A.i[44] + 25R¥A.i[44] *B.i[22])*BBar.i+(R3*A.i[22] *A.i[44] +R*4
.if44]*DD.if22])*DBar.i)-
sin(theta) (9% A.if22] ¥R+9*B.i[22] +(9%A.i[44] *DD.i[22] + 19¥R"2*A.i[22] *A.i[44] +
J4*R*A.i[44] *B.i[22] ) ¥BBar.i+(5*R3*A.if22] *A.i[44] + 9*R*A.i[44] *DD.i[22])*D
Bar.i)):

Calculate epsilon and kappa
> epsilon.if2] :=diff{v.i,s)+w.i/R:
> epsilon.if23]:=1/2*(beta.i+diff(w.i.5)-v.i/R):
> kappa.if2] :=diff(beta.i,s):
Calculate the Moment resultant
> Moment.if2] :=B.i[22] *epsilon.if 2] +DD.i[22] *kappa.i[2]:

Calculate Shear resultant
> Shear.if23] :=A.i[44] *(beta.i+diff{w.i,5)-v.i/R):
> od:

Vertical Section
> for i from hlseg+clseg+I to hiseg+clseg+vseg do
Define Displacement functions
> sh:=s-s.(hiseg+clseg):
> DBar.i:=A.if22]/(DD.i[22] *4.i[22]-B.i{22]"2}:
> BBar.i:=B.if22]/(DD.i[22] *4.i[22]-B.i{22]"2):
> pf1]:=p[0] +RHO*g*inner_R:
>
w.i:=sh*C.if2] +sb 3*C.if 4] +C.i[1] +sb"2*C.if 3] +sb™*DBar.i*p[1]/24+RHO*g*sb
AS*DBar.i/120:
>
v.i:=(2*sb*C.if3]+C.i[2] +3*sb"2*C.i[4])*B.i[22]/4.i[22] +sb*C.i[6] + C.i[5] +sb"3*
BBar.i*(RHO*¥g*sb+4%p[1])/24+RHO*g*sb"2*B.i[22](2*A.i[44] *A.i[22]):
> beta.i:=-C.if2]-2*sb*C.i[3]-3*sb"2*C.i[4]-6*C.i[4] /{(A.i[44] *DBar.i)-
pl1]*sb"3*DBar.i/6-p[1] *sb/A.i[44]-
RHO*g*(1/(A.i[44]"2*DBar.i)+sb"2/(2*4.i[44] ) +sb"4*DBar.i/24):
Calculate epsilon and kappa
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> epsilon.if 2] :=diff{v.i,s):

> epsilon.if 23] :=1/2*(beta.i+diff{w.i,s)):

> kappa.if2] :=diff(beta.i,s):
Calculate the Moment resultants

> Moment.if2] :=B.i[22] *epsilon.i[2] +DD.i[22] *kappa.if2] :
Calculate Shear resultants

> Shear.if23] :=A.i{44] *(beta.i+diff{w.i.s)}:

> od:

Lower Curved Section
> for i from hiseg+clseg+vseg+l1 to hiseg+clsegtvsegtclseg do

Define Displacement functions
> alpha:=(s-s.(hlseg+clseg+vseg))/R:  positional angle in the curved section.
s.hseg is the value of s at the end of the horizontal section.
> sigma.i:=DD.i[22] *A.i[22] +A.if44] *R 2% A.i[22] +DD.i[22] *A.i{44] -
B.i[22]72+2%B.if22] *4.if44] *R:
> DBar.i:=A.if22]/(DD.if22] *4.i{22]-B.i{22]"2):
> BBar.i:=B.i[22]/(DD.i[22] *A.i[22]-B.i[22]"2):
> p[2] :=p[0] +RHO*g*(inner_R+L{3]):
> w.i:=-B.i[22] *C.i[2](R*A.i[22])-C.i[2] +C.i[ 3] *sin(alpha)-
C.if4] *cos(alpha)*+(C.i[5] *sin(alpha)-C.i[6] *cos(alpha)} *alpha+(-1-
4%4.i[44] *B.i[22]"2/(A.i[22] *sigma.i)+2*DD.i[22] *A.i[44] [sigma.i+2*B.i[ 22] "3/(A.
i[22]*R*sigma.i)-B.i[22] *A.i[44] *DD.i[ 22] /(A.i[ 22] *R *sigma.i)-
2%B.if22] *DD.i[22]/(R*sigma.i)+2*B.i[22] /(A.i[22] *R))*(C.i[6] *sin{alpha) +C.i[ 5] *
cos(alpha))+R"2*p[2]/A.i[22]-
RHO*g*R"3*(alpha’2*sin(alpha)*((A.i{22] *DD.i[22] -
B.i[22]A)/(8*A.i44] *sigma.i)+(DD.i[22] +A.if 22] *R"2+2*B.i[22] *R)/(4*sigma.i)+(
4*A.i[44] *DD.i[22] *R*BBar.i+A.i[22] *A.i[44] *R*4*DBar.i+4*A.i[22] *A.i[44] *R"3
*BBar.i+2*A.i[44] *DD.if22] *R"2*DBar.i+4*A.i[44] *B.if22] *R"2*BBar.i+A.i[44] *
DD.i[22]"2*DBar.i/A.if 22])/(8 *sigma.i))-sin(alpha) *(21 *(4.i[22] *DD.i[22] -
B.i[22]72)/(32*A.i[44] *sigma.i) +(98*DD.i[22] +42*A.i[22] *R"2+ 140*B.i[ 22] *R)/(3
2*sigma.i)+(220%A.1[44] *DD.i[22] *R*BBar.i+ 21 *A.if22] *A.i{44] *R"4*DBar.i+ 108
*4.i[22] *4.i[44] *R*3*BBar.i+66*A.i[44] *DD.i[22] *R"2*DBar.i+164*A.i[44] *B.i[2
2] *RA\2*BBar.i+77*4.i[44] *DD.i[22]"2*DBar.i/A.i[22])/(32*sigma.i 1)) +alpha*cos(al
pha)*((A.if22]*DD.if22]~
B.i[22]7)/(2*A.i[44] *sigma.i)+(3*DD.i[22] +2*A.i[ 22] *R"2+5¥B.i[22] *R)/(2*sigm
@.i)+(7*A.if44] *DD.i[22] *R*BBar.i+A.i[22] *A.i[44] *R™*DBar.i+5*A.i[ 2] *A.i[44
J*R*3*BBar.i+3*A.i[44] *DD.i[22] *R"2*DBar.i+6*4.i{44] *B.i{22] *R"2*BBar.i+2*
A.if44]*DD.i[22]"2*DBar.i/4.if22])/(2*sigma.i))):
>
v.i:=C.if1] +alpha*C.if2] +cos(alpha) *C.i[3] +sin(alpha) *C.if4] +cos(alpha)*alpha™*
C.if5] +sin(alpha)*alpha*C.i{6]-
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RHO*g*RM3*(1/(32*A.i[44])+R*BBar.i/16+R"2*DBar.i/32+DD.if22]/(32*(4.i[22] *
DD.if22]-B.i[22]"2)))*(4*alpha®2*cos(alpha)-24 *alpha*sin(alpha)-43 *cos(alpha)):

> beta.i:=-2*A.if44] *(B.if22] +A.i[22] *R)*(sin(alpha) *C.i{5]-
cos(alpha)*C.i[6])/sigma.i+(C.i[1] +alpha*C.i[2])/R+RHO*g*R"3/(4*sigma.i)*(2*al
pha*sin(alpha) *(A.if22] *R+B.i[22] +(A.i[44] *DD.i[22] +3*R"2*A.i[22] *A.i[44] +2*
R*A.i[44] *B.i[22])*BBar.i+(R"3*A.i[22] *A.i[44] +R*A.i[44] *DD. if22])*DBar.i}+co
s(alpha) *(9*A.i[22] *R+9*B.i[22] +(9*A.i[44] *DD.i[22] +19*R"2¥A.i[ 22] *A.i[44] +1
4*R*4.i[44] *B.i[22])*BBar.i+(S*R"3*A.i[22] *4.i[44] + 9*R*A.i[44] *DD.i[22])*DB

ar.i)):
Calculate epsilon and kappa

> epsilon.if 2] :=diff(v.i,s)+w.i/R:

> epsilon.if23] :=1/2*(beta.i+difftw.i,s)-v.i/R):

> kappa.if2]:=diff(beta.i,s).
Calculate the Moment resultant

> Moment.if2] :=B.if22] *epsilon.i[2] +DD.i[22] *kappa.i[2] :
Calculate Shear resultant

> Shear.if23]:=A.if44] *(beta.i+difftw.i,5)-v.i/R).

> od:

Lower Horizontal Section
> for i from hlseg+clseg+vseg+clseg+l to nseg do
Define Displacement functions
> sd:=s-s5.(hlseg+clseg+vseg+clseg):
> DBar.i:=A.if22]/(DD.if22] *A.if22]-B.if22]"2):
> BBar.i:=B.if22]/(DD.if22] *4.i[22]-B.i[22]"2):
> p[3]:=p[0] +RHO*g*(2¥inner_R-+L{3]):
> w.ir=sd*C.if2] +sd"3*C.i[4] +C.i[1] +sd"2*C.i[3] +1/24*p[3] *sd"4*DBar.i:
>
v.i:=(2*sd*C.i[3] +C.if2] +3*sd"2*C.if4])*B.i[22] /A.if22] +sd*C.if 6] + C.i[5] +1/6"p[
3] *sd"3*BBar.i:
> beta.i:=-C.if2]-3*sd"2*C.i[4]-2*sd*C.if3]-p[3] *sd/d.i{44] -
6*C.i[4]/(A.i[44] *DBar.i)-p[3] *sd"3/6*DBar.i:
Calculate epsilon and kappa. epsilon[2] is the s-direction in-plane strain at the
mid-plane and epsilon|23] is the s,z shear strain, kappa is the curvature.
> epsilon.if2] :=diff{v.i,s):
> epsilon.if23] :=1/2*(beta.i+diff{w.i,5)):
> kappa.if2] :=diff(beta.i,s):
Calculate the Moment resultants
> Moment.if2]:=B.if22] *epsilon.if 2] +DD.if22] *kappa.if2] :
Calculate Shear resultants

> Shear.if23]:=A.i{44] *(beta.i+diff(w.i,5)):
> od:
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For All Segments:

> for i from I to nseg do
Calculate the In-Plane resultants

> In_plane.if2]:=A.if22] *epsilon.if2] +B.i[22] *kappa.i[ 2] :

> In_plane.if1]:=A.if12] *epsilon.if 2] +B.if12] *kappa.i[2] :
Define equations for the face stresses (calculated at the distal surface of the
face, i.e. max stress)

> sigma_inner.if2] :=0[22][i,1] *(epsilon.if2] +z.i{ 0] *kappa.i[2]):

> sigma_outer.if2]:=0[22] [i,3] *(epsilon.if2] +z.if3] *kappa.i[2]):

> od:

Boundary Conditions
Set the Boundary conditions
Ats=0
shear force is zero at s=0 (due to symmetry)
> BCl:=eval(Shearl[23],s=0}=0:
beta is zero at left end
> BC2:=eval(betal,s=0)=0:
in-plane displacement is zero at left end
> BC3:=eval(vl,s=0)=0:

At s=s.nseg

shear force is zero at s=L (due to symmetry)
> BC4:=eval(Shear.nsegf{23] s=s.nseg)=0:

beta is zero at right end
> BC5:=eval(beta.nseg,s=s.nseg)=0:

in-plane displacement is zero at right end
BCé6:=eval(v.nseg,s=s.nseg)=0:

At jurnctions
> for i from I to nseg-1 do
in-plane displacements match at junctions
> BC.(6*(i-1)+7):=eval(v.i,s=s.i}=eval(v.(i+1),5=s.i):
lateral displacements must match at junctions
> BC.(6*(i-1)+8):=eval(w.i,s=s.i))=eval(w.(i+1),s=s.1):
betas must match at junctions
> BC.(6*%(i-1)+9). =eval(beta.i,s=s.i}=eval(beta.(i+1),5=s.i):
shear resultants must match at junctions
> BC.(6%(i-1)+10):=eval(Shear.if 23] s=s.i)=eval(Shear.(i+1)[23] s=5.i):
moments must match at junctions
> BC.(6%(i-1)+11):=eval(Moment.if 2] s=s.i)=eval(Moment.(i+1)[2] s=s.1):
resultants must match at junctions
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> BC.(6%(i-1)+12):=evalf{eval(In_plane.if2] s=s.i)=eval(In_plane.(i+1)[2],5=s5.0)):
> od:

Combine Boundary Conditions and Unknown Constants in o sets
> Boundary:={BC.(1..(6*(nseg-2)+12)})}:

> Const:={ }:

> for i from I to nseg do

> Const:=Const union {C.if1],C.i[2],C.if3],C.i[4],C.i[5], C.i[6]}:
> od:

Using the boundary conditions, solve for the unknown coefficients
> Csolutionl :=fsolve(Boundary,Const):assign(Csolutionl):

> indets(Csolutionl):

Optimize Face and Core Thicknesses
> for i from 1 to nseg do
Find the maximum and minimum stresses in the faces for each segment.
If there is no sign change in the slope of the stress plot, the extrema will be at
one of the ends.
>
inner_max[ij]:=max(evalf{eval(sigma_inner.if2] 5=s.(i1))),evalf{eval(sigma_inner.i [
2],5=s.0}));
> inner_minfi,j] :=min(evalf{eval(sigma_inner.if2] s=s.(i-
1)) evalffeval(sigma_inner.i{2] s=s.i}));
> outer_max[ij] :=max(evalf{eval(sigma_outer.if2] s=s.(i-
1)), evalffeval(sigma_outer.i{2],5=5.1)));
> outer_minfi,j]:=minfevalf{eval(sigma_outer.i{2],s=s.(i-
)).evalfleval(sigma_outer.if2] s=s.i)));
If there is a sign change in the slope of the stress plot, the extrema will be at
the point where the slope is zero.
> signchange_test_inner: =evalffeval(diff{sigma_inner.if2],s),s=s.(i-
1)-+.00001)*eval(diff(sigma_inner.if2] 5),s=5.i-.00001)):
> if signchange_test_inner < 0 then
> critical_point_inner: =fsolve(diff{sigma_inner.i[2],5)=0,s, 5.(i-1)..5.1):
> critical_value_inner:=evalf{eval(sigma_inner.if2],s=critical_point_inner)):
> if critical_value_inner > inner_max[i j] then
> inner_maxf{i,j]:=critical_value_inner:
> else inner_minfij] :=critical_value_inner: fi:
> fi:
> signchange_test_outer:=evalfleval(diff{sigma_outer.i[2],s),5=s.(i-
1)+.00001)*eval(diff{sigma_outer.if2],5),5=5.i-.00001)):
> if signchange_test_outer < 0 then
> critical_point_outer:=fsolve(diff(sigma_outer.if2],5)=0,s, 5.(i-1)..5.0):
> critical_value_outer:=evalf{eval(sigma_outer.if2] s=critical_point_outer)):
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> if critical_value_outer > outer_max[i,j] then
> outer_max[ij]:=critical_value_outer:
> else outer_minfij]:=critical_value_outer: fi:
> fir
Shear stress
> Shear_max[ij]:=max(evalfeval(abs(Shear.if23]),s=s.(i-
1)), evalf(eval(abs(Shear.if23]),5=5.1)));
Determine the critical siress that will induce face wrinkling.
(Hoff/Mautner equation)
> if face_wrinkle = "yes” then
> sigma_crit_inner.i:=-fw_const¥(E[22][i, 1] *E[22] [i, 2] *G[23][i,2])N(1/3):
> sigma_crit_outer.i:=-fw_const*(Ef22] {1, 3]*E[22] [, 2] *G[23] [i 2] )(1/3):
> else
> sigma_crit_inner.i:=-10e+20:
> sigma_crit_outer.i:=-10e+20:

> fis

Vary the face thicknesses to bring the stress up to the allowable level in both faces in
each segment

Determine whether each face is in tension or compression and use the appropriate
allowable stress.

If a face segment has tensile AND compressive stresses, determine the thickness to
handle each and use the greater of the two

> if inner_minfi,j] > 0 then

> sigma_allow_inner{i] :=sigma_allow_tensile[2][,1].

> tlfij+1]:=t1[ij] ¥inner_max[ij]/sigma_allow_inner{i]:

> elif inner_max{ij] < 0 then

> sigma_allow_inner(i]:=max(sigma_allow_compressive[2][i, 1] ,sigma_crit_inner.i):
> t1[ij+1]:=t1[ij] ¥inner_min[i,j]/sigma_allow_inner{i]:

> else

> tla:=tl[ij] *inner_max[ij]/sigma_allow_tensile[2][i,1]:

>

t1b:=t1[ij] *inner_minfij]/max(sigma_allow_compressive[2][i, 1] sigma_crit_inner.i)

> iftla > tlb then tlfij+1]:=tla:

sigma_allow_inner[i] :=sigma_allow_tensile[2][i,1]:

> else tlfij+1]:=tlb:

sigma_allow_inner{i] :=max(sigma_allow_compressive[2][i,1] sigma_crit_inner.i):
ﬁ_.

> fi:

> ifouter_minfi,j] > 0 then

> sigma_allow_outer{i] :=sigma_allow_tensile{2][i,3]

> 13fij+1]:=t3[ij] *outer_max[ij]/sigma_allow_outer[i]:



> elif outer_maxfi,j] < 0 then

> sigma_allow_outer[i] :=max(sigma_allow_compressive[2][i,3] sigma_crit_ouler.i):
> 13fij+1]:=t3[ij] *outer_minf[ij]/sigma_allow_outer[i]:

> else

> t3a:=t3[fij] *outer_max[ij]/sigma_allow_tensile[2][i,3]:

>

t3b:=t3[i j] *outer_minfij]/max(sigma_allow_compressive{2][i,3],sigma_crit_outer.i)

> ift3a > 13b then 13fij+1]:=t3a:

sigma_allow_outer(i] :=sigma_allow_tensile{2][i,3].

> else t3[ij+1]:=t3b:

> sigma_allow owter[i] :=max(sigma_allow_compressive{2][i,3] sigma_crit_outer.i}:
Ji:

> fi:

set a minimum allowable face thicknesses
> min_thickness:=0.0001:
> ift1fij+1] < min_thickness then t1[ij+1]:=min_thiciness: fi:
> if t3[i,j+1] < min_thickness then t3[ij+1]:=min_thickness: fi:
If faces are not to be optimized, restore original thicknesses
> ifopt_face <> "yes" then
> t1fij+1],03fig+ 1] =tifij]13[ij]:
> fi:
> od: end of i loop (iterate through all of the segments)

If properties are constant in s, set all face thicknesses to max value.
> if constant_face_properties="yes" and opt_face="yes" then
> tImax:=0:13max:=0:
> for i from I to nseg do
> iftifij+1] > timax then timax:=tifij+1]: fi:
> ift3fij+1] > t3max then t3max:=t3[ij+1]: fi:
> od:
> for i from 1 to nseg do
> tlfij+1]:=timax:
> 13[ij+1]:=t3max:
> od:
> fi: end of constant property case.

End face optimization procedure

Core optimization

> for i from I to nseg do
> if opt_core="yes" then
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set 2 minimum allowable core thickness - this is determined by the max
allowable core shear stress

> h_min:=Shear_max[ij]/sigma_allow_shear[i,2]-(t1[ij+1]+13{ij+1])/2:
determine the optimum core thickness for the lowest weight

> if opt_face = "yes" then
Determine the optimal core thickness if the faces will also be optimized.

> Fa:=evalffeval(Moment.if2]/rho.i.2 *(rho.i.3/sigma_allow_outer(if-

rho.i. l/sigma_allow_inner[i]).s=s.(i-1))):

> Fb:=evalfeval(Moment.if 2] /rho.i.2*(rho.i.3/sigma_allow_outer{i]-

rho.i. 1/sigma_allow inner[i]) s=s.i)):

> if Fa > Fb then

> if Fa > 0 then opt_h:=sqrt(Fa): else opt_h:=0: fi:
> else

> if Fb > 0 then opt_h:=sqrt(Fb): else opt_h:=0. fi:
> fi:

> hefij+1]:=max{opt_hh_min):

> else

Determine the optimal core thickness if the faces will not be changed. (the
thinner, the lighter)
> hefij+1]:=evalfimax(eval(-Moment.i[2]/(t1 {i,j] *sigma_allow_inner(i]-
In_plane.if2]/2),s=s.(i-1)),eval(-Moment.if 2] /(1 [i,j] *sigma_allow_inner[i]-
In_plane.if2]/2),s=s.i),eval(Moment.if2]/(t3[i ] *sigma_allow_outer[i]-
In_plane.if2]/2).s=s.(i-1)),eval(Moment.if 2] /(t3[i,j] *sigma_allow_outer[i]-
In_plane.if2]/2),s=s.i},h_min}):
> fis
> else
> hefij+1]:=hcfij]:
> fi
> od: end of i loop (iterate through all of the segments)

If properties are constant in s, set all core thicknesses to max value.
> if constant_core_properties="yes" and opt_core="yes" then
> hmax:=0:
> for i from 1 to nseg do
> if hefij+1] > hmax then hmax:=hefij+1]:
> fi
> od:
> for i from I to nseg do
> hefij+1]:=hmax:
> od:
> fi:  end of constant property case
End of core optimization procedure
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> od: end of j loop (optimization loop)

>

W:=evalffeval((L{1] *(t_i[1] *rhol I-+h{1] *rhol2+t_ofI]*rhol3}-+L[2]*(t_i[2] *rho2]
+hf1]*rho22-+t_of 2] *rho23)+L[3] *(t_if3]*rho3]+h{1]*rho32+t_o[3]*rho33)+L[4]
¥t if4] *rhod1+h[1]*rho42+t_o[4] *rhod3)+L[5]*(t_i[5] *rho51+h{1]*rho52+t_of5
J*rho33))*2)):

> A:=evalf(eval((L{1]*L{3] *inner R*(L{1]+L{3]+L[5])+inner_R"2*Pi/2)*2)}.

> Ratio:=A/W:

> print("™t_i ="t _ifl1],"he = "h[1],"t 0o ="t of1],"W =" W,"4 =", 4, "Ratio

=" Ratio);

Save updated Geometric data

record the last values for the optimized thicknesses for later use

> save hiseg, clseg, vseg, c2seg, h2seg, pressure, R, Angle, hLengths, vLengths, t_o,
t i h, outerface_material, core_material, innerface_material, output_data_file:

Plots

All plots are over one half of the complete cross section, i.e. right half.

Calculate functions for plotting
> with(plots):

Combined functions for the stresses, displacements, strains and resultants

> facestress_inner:=sigma_inner] [2]*(1-Heaviside(s-s1)):
> facestress_outer:=sigma_outerl [2] *(1-Heaviside(s-51)):
> we=wl*(1-Heaviside(s-s1)):
> yr=v]*([-Heaviside(s-s1)):
>
CoreMuaxShearStress]:=Shearl[23]/DDI1[22]*E[22][1,1]*t_i[1]*E[22][1,3]*t o[1]
*h[1]+t if1]/2+¢ of 1]/2)NE[22][1,1]* i[1]+E[22][1,3]*_of1])*(1-Heaviside(s-
51)):
> CoreMaxShearStress2:=Shear1[23]/(h[1]+1 _i[1]/2+t o[1]/2)*(]-Heaviside(s-s1)}:
Sigma_wrinkle_i/o stresses calculated using the Hoff equation
> sigma_wrinkle_i:=-fw_const*(E[22][1,1]*E[22][1,2]*G[23][1,2])"(1/3)*(1-
Heaviside(s-s1)):
> sigma_wrinkle_o:=-fw_const*(Ef22][1,3]*E[22]{1,2]*G[23][1,2])"(1/3)*(1-
Heaviside(s-s1)):
Sigma_wrinkle_i/o stresses calculated using the Heath equation
> sigma_wrinkle_i:=-
sqre(2/3%t if1]/{1]*Ef22][1,2] *sqri(E[11][1,1]*E[22][1,1])/(1-
nufi12][1,1]*nuf21][1,1]))*(1-Heaviside(s-s1)):
> sigma_wrinkle_o:=-
sqrif2/3*% _of 1]/hfI1]J*Ef22][1,2] *sqri(E[11][1,3]*E[22][1,3])/(1-
nuf12][1,3]*nuf21][1,3]))*(1-Heaviside(s-s1)):
> stresslimit_comp_inner:=sigma_allow_compressive[2][1,1]*(1-Heaviside(s-s1)):
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> stresslimit_tens_inner:=sigma_allow_tensile{2][1,1]*(I-Heaviside(s-s1)):

> stresslimit_comp_outer:=sigma_allow_compressive[2][1,3] *(1-Heaviside(s-s1}):

> stresslimit_tens_outer:=sigma_allow_tensile[2][1,3]*(1-Heaviside(s-s1)):

> stresslimit_shear _core:=sigma_allow_shear(1,2] *(I-Heaviside(s-s1)):

> epsilon{2] :=epsilonl [2] *(1-Heaviside(s-s1)):

> Moment[2] :=Momentl [2] *(1-Heaviside(s-s1)):

> Shear{23]:=Shear1[23] *(1-Heaviside(s-si)):

> In_plane[2]:=In_planel [2] *(]-Heaviside(s-s1)):

> iface:=-(hf1]/2+t_if1])*(1-Heaviside(s-s1)):oface:=(h{1]/2+t_of1])*(I-
Heaviside(s-s1)):

> coretop:=h{1]/2*(1-Heaviside(s-s1)):corebottom:=-(h{1]/2)*(1-Heaviside(s-51)):

> for i from 2 to nseg do

> facestress_inner:=facestress_inner-+sigma_inner.if2] *Heaviside(s-s.(i-1))*(1-
Heaviside(s-s.i}):

> facestress_outer:=facestress_outer+sigma_outer.if 2] *Heaviside(s-s.(i-1)) *(1-
Heaviside(s-s.i)):

> wr=w+w.i*Heaviside(s-s.(i-1)) *(1-Heaviside(s-s.i}):

> yr=y+y.i*Heaviside(s-s.(i-1))*(1-Heaviside(s-5.i)):

>

CoreMaxShearStressl :=CoreMaxShearStress1+Shear.if23]/DD.i[22]*E[22][i, 1]*t i
[iI*E[22][i,3] *t_ofi] *(h[i] +t_i[i}/2-+t_ofi]/NE[22][i,1]*_i[i] +E[22][i,3]*t ofi])*
Heaviside(s-s.(i-1))*(1-Heaviside(s-s.i)):

>

CoreMaxShearStress2:=CoreMaxShearStress2+Shear.if23]/(hfi] +t_ifi]/2-+t_ofi]/2)*
Heaviside(s-s.(i-1))¥(1-Heaviside(s-s.i)):

Using the Hoff equation

> sigma_wrinkle_i:=sigma_wrinkle_i-
fw_const*(E[22][i, 1] *E[22] [i,2] *G[23] [i,2])™(1/3) *Heaviside(s-s.(i-1) *(I-
Heaviside(s-s.1)):

> sigma_wrinkle_o:=sigma_wrinkle_o-
fw_const*(E[22][i, 3] *E[22] [i,2] *G[23] {i,2])"(1/3)*Heaviside(s-s.(i-1)) *(I-
Heaviside(s-s.1)):

>
stresslimit_comp_inner:=stresslimit_comp_inner+sigma_allow_compressive[2][i,1]*
Heaviside(s-s.(i-1))*(1-Heaviside(s-5.1)):

~

stresslimit_tens_inner:=stresslimit_tens_inner+sigma_allow_tensile[2][i, 1] *Heavisid
efs-s.(i-1))*(1-Heaviside(s-s.i)):

>

stresslimit_comp_outer:=stresslimit_comp_outer+sigma_allow_compressive{2] [i,3] *
Heaviside(s-s.(i-1))*(1-Heaviside(s-s.1)):
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>

stresslimit_tens_outer:=stresslimit_tens_outer+sigma_allow_tensile[2][i 3] *Heavisid
e(s-s.(i-1)) ¥(1-Heaviside(s-s.i}):

>

stresslimit_shear_core:=stresslimit_shear_core+sigma_allow_shear(i, 2] *Heaviside(s
-5.(i-1))*¥(1-Heaviside(s-s.i)):

> epsilon{2] :=epsilon{2] +epsilon.if 2] *Heaviside(s-s.(i-1))*(1-Heaviside(s-s.1)):

> Moment[2] :=Moment{2]+Moment.if2] *Heaviside(s-s.(i-1)) *(1-Heaviside(s-5.i)):

> Shear[23]:=Shear[23] +Shear.i[23] *Heaviside(s-s.(i-1)) *(1-Heaviside(s-s.i)):

> In_plane[2]:=In_plane[2]+In_plane.if2] *Heaviside(s-s.(i-1)) *(1-Heaviside(s-s.i)):
> oface: =oface+(hfi]/2+t_ofi])*Heaviside(s-s.(i-1)) *(1-Heaviside(s-s.1)):

> iface:=iface-(hfi]/2+t_i[i])*Heaviside(s-s.(i-1))*(1-Heaviside(s-s.1)):

> coretop: =coretop+h(i]/2*Heaviside(s-s.(i-1)) *(1-Heaviside(s-s.i)):

> corebottom: =corebottom-(h[i]/2)¥*Heaviside(s-s.(i-1)) *(1-Heaviside(s-s.i}):

> od:

Develop Plots

> Digits:=10:

> CoreShearplot:=plot({CoreMaxShearSiress2],s=0..s.nseg, title="Core Shear”,
color=[black], titlefont={TIMES,ROMAN,12], numpoints=300):

> wrinkleplot:=plot([sigma_wrinkle_i*Heaviside(-
facestress_inner),sigma_wrinkle_o*Heaviside(-facestress_outer)],s=0..s.nseg,
color=[grey,pink], numpoints=200):

> wplot: =plot(w,s=0..s.nseg, color={black], title="Lateral

Deflection” titlefont={TIMES,ROMAN, 12], numpoints=100):

> yplot:=ploi(v,s=0..s.nseg, title="In-Plane Displacement”,
titlefont={TIMES,ROMAN, 12}, numpoints=50):

> eplot:=plot(epsilon{2],s=0..s.nseg, title="In-Plane Strain”,
titlefont=[TIMES,ROMAN, 12], numpoints=50):

> Nplot:=plot(In_plane[2],s=0..s.nseg, title="In-Plane

Resultant”, titlefont={TIMES,ROMAN, 12], numpoints=50):

> Mplot:=plot(Moment{2],s=0..s.nseg, color=[black] title="Bending Moment
Resultant”, titlefont={TIMES, ROMAN, 12], numpoints=100):

> QOplot:=plot(Shear{23] 5=0..5.nseg, title="Shear Resultant”,
titlefont={TIMES,ROMAN, 12], numpoints=100):

> Stress_Plot:=plot({facestress_outer,facestress_inner], s=0..5.nseg, title="Face
Stress", linestyle=[1,1], color={black,blue], titlefont=[TIMES,ROMAN,12],
numpoints=300):

>
stresslimit_plot:=plot([stresslimit_comp_inner,stresslimil_tens_inner,stresslimit_com
p_outer,stresslimit_tens_outer],s=0..s.nseg linestyle=[3,3,3,3] color=[grey,grey,grey,
greyf):
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> shearlimit_plot:=plot([stresslimit_shear_core,-
stresslimit_shear_cove],s=0..s.nseg,linestyle=[3,3] color={grey,grey]):
=
> Profile:=plot([iface,corebottom,coretop,oface], s=0..s.nseg, linestyle={1,1,1,1],
color=[blue,black black,red], title="Sandwich Profile”,
titlefont=[TIMES,ROMAN, 12], numpoints=300):
> Profile2:=plot([iface-corebottom,oface-coretop], s=0..s.nseg, linestyle={1,1],
color={blue,red], title="Face Thickness Profile", titlefont=[TIMES,ROMAN,12],
numpoints=400):
Markers at the junctions befween segments
> jmark:={}:
> for i from I to nseg-1 do
> jmark:=jmark union {{s.i,0,"I"] };
> od:
> junctions: =textplot(jmark,color=black font={TIMES, ROMAN,12]):
Profile 2 shows just the faces with the core removed, Profile shows the whole
sandwich
> display({Profile2, junctions]);
> display([Profile junctions]);
> display([wplot junctions] font=[TIMES, ROMAN, 16} );
>
display([Stress_Plot junctions,wrinkleplot,stresslimit_plot], font=[TIMES,ROMAN,16]
)'.
> display([CoreShearplot junctions,shearlimit_plot] font=[TIMES,ROMAN,16]);
> display({Oplot junctions]);
> display([Mplot junctions] font={TIMES, ROMAN, 16] ),
> display([eplot junctions]);
> display([vplot junctions]);
> display({Nplot junctions]);
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