Link to Dr. Day’s Google Scholar Page
Journal Articles
52. Sahni M, Day ES. Nanotechnologies for the detection and treatment of endometriosis. Frontiers in Biomaterials Science. 2023. [Link] | |
51. Aboeleneen SB*, Scully MA*, Kramarenko GC, Day ES. Combination cancer imaging and phototherapy mediated by membrane-wrapped nanoparticles. International Journal of Hyperthermia. 2023; 40(1): 2272066. *co-first authors [Link] | |
50. Scully MA, Wilkins DE, Dang MN, Hoover EC, Aboeleneen SB, Day ES. Cancer Cell Membrane wrapped nanoparticles for the delivery of a Bcl2 inhibitor to triple-negative breast cancer. Molecular Pharmaceutics. 2023; 20(8): 3895–3913. [Link] | |
49. Irvin-Choy NS*, Nelson KM*, Gleghorn JP#, Day ES#. Delivery and short-term maternal and fetal safety of vaginally administered PEG-PLGA nanoparticles. Drug Delivery and Translational Research. 2023; 13: 3003–3013. *co-first authors; #co-corresponding authors [Link] | |
48. Fereshteh Z, Dang MN, Wenck C, Day ES, Slater JH. E-selectin targeted gold nanoshells to inhibit breast cancer cell binding to lung endothelial cells. ACS Applied Nano Materials. 2023; 6(2): 1315-1324. [Link] | |
47. Das S*, Harris JC*, Winter EJ, Kao C-Y, Day ES#, Papoutsakis ET#. Megakaryocyte membrane-wrapped nanoparticles for targeted cargo delivery to hematopoietic stem and progenitor cells. Bioengineering & Translational Medicine. 2023; 8(3): e10456. [Link] | |
46. Harris JC, Sterin EH, Day ES. Membrane-wrapped nanoparticles for enhanced chemotherapy of acute myeloid leukemia. ACS Biomaterials Science & Engineering. 2022; 8(10): 4439-4448. [Link] | |
45. Marek MRJ*, Nhan T-N*, Wang J, Cai Q, Yap GPA, Day ES#, Rosenthal J#. Isocorrole-loaded polymer nanoparticles for photothermal therapy under 980 nm light excitation. ACS Omega. 2022; 7(41): 36653-36662. *co-first authors; #co-corresponding authors. [Link] | |
44. Aboeleneen SB, Scully MA, Harris JC, Sterin EH, Day ES. Membrane-wrapped nanoparticles for photothermal cancer therapy. Nano Convergence. 2022; 9: 37. [Link] | |
43. Scully MA, Sterin EH, Day ES. Membrane-wrapped nanoparticles for nucleic acid delivery. Biomaterials Science. 2022; 10: 4378-4391. [Link]
|
|
42. Iqbal S*, Luo B*, Melamed JR, Day ES. Critical evaluation of different lysosomal labeling methods used to analyze RNA nanocarrier trafficking in cells. Bioconjugate Chemistry. 2021; 32(10): 2245-2256. *equal contribution [Link]
|
|
41. Irvin-Choy NS*, Nelson KM,* Dang MN, Gleghorn JP#, Day ES#. Gold nanoparticle biodistribution in pregnant mice following intravenous administration varies with gestational age. Nanomedicine: Nanotechnology, Biology, and Medicine. 2021; 36: 102412. *equal contribution #co-corresponding authors [Link]
|
|
40. Dang MN*, Hoover EC*, Scully MK, Sterin EH, Day ES. Antibody nanocarriers for cancer management. Current Opinion in Biomedical Engineering. 2021; 19: 100925. *equal contribution [Link] | |
39. Powsner E, Harris JC, Day ES. Biomimetic nanoparticles for the treatment of hematologic malignancies. Advanced NanoBiomed Research. 2021; doi: 10.1002/anbr.202000047. [Link] [PDF] | |
38. Dang MN, Gomez Casas C, Day ES. Photoresponsive miR-34a/nanoshell conjugates enable light-triggered gene regulation to impair the function of triple-negative breast cancer cells. Nano Letters. 2020; doi: 10.1021/acs.nanolett.0c03152. [Link] | |
37. Nelson KM, Irvin-Choy NS, Hoffman MK, Gleghorn JP#, Day ES#. Diseases and conditions that impact maternal and fetal health and the potential for nanomedicine therapies. Advanced Drug Delivery Reviews. 2020. doi: 10.1016/j.addr.2020.09.013. #co-corresponding authors. [Link] | |
36. Irvin-Choy NS, Nelson KM, Gleghorn JP, Day ES. Design of nanomaterials for applications in maternal/fetal medicine. Journal of Materials Chemistry B. 2020; DOI: 10.1039/D0TB00612B. [Link] | |
35. Valcourt DM, Day ES. Dual regulation of miR-34a and Notch signaling in triple-negative breast cancer by antibody/miRNA nanocarriers. Molecular Therapy-Nucleic Acids. 2020; 21: 290-298 [Link] | |
34. Wang J, Dang MN, Day ES. Inhibition of Wnt signaling by Frizzled7 antibody-coated nanoshells sensitizes triple-negative breast cancer cells to the autophagy regulator chloroquine. Nano Research. 2020; 13: 1693–1703. [Link] | |
33. Valcourt DM, Kapadia CH, Dang MN, Scully MA, Day ES. Best practices for preclinical in vivo testing of cancer nanomedicines. Advanced Healthcare Materials. 2020; 2000110. [Link] | |
32. Valcourt DM, Dang MN, Scully MA, Day ES. Nanoparticle-mediated co-delivery of Notch-1 antibodies and ABT-737 as a potent treatment strategy for triple-negative breast cancer. ACS Nano. 2020; 14(3): 3378-3388. [Link] | |
31. Wang J*, Potocny AM*, Rosenthal J#, Day ES#. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega. 2020; 5(1): 926-940.*equal contribution #co-corresponding authors [Link] [PDF] | |
30. Harris JC, Scully MA, Day ES. Cancer cell membrane-coated nanoparticles for cancer management. Cancers. 2019; 11: 1836. [Link] [PDF] | |
29. Kapadia CH, Ioele SA, Day ES. Layer-by-layer assembled PLGA nanoparticles carrying miR-34a cargo inhibit the proliferation and cell cycle progression of triple-negative breast cancer cells. Journal of Biomedical Materials Research Part A. 2019; doi: 10.1002/jbm.a.36840. [Link] [PDF] | |
28. Valcourt DM, Dang MN, Wang J, Day ES. Nanoparticles for manipulation of the development Wnt, Hedgehog, and Notch signaling pathways in cancer. Annals of Biomedical Engineering. 2019; https://doi.org/10.1007/s10439-019-02399-7. [Link] [PDF] | |
27. Kapadia CH, Luo B, Dang MN, Irvin-Choy N, Valcourt DM, Day ES. Polymer nanocarriers for microRNA delivery. Journal of Applied Polymer Science. 2019; doi: 10.1002/APP.48651. [Link] [PDF] | |
26. Valcourt DM, Dang MN, Day ES. IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer. Journal of Biomedical Materials Research Part A. 2019; 107A: 1702-1712. [PDF] [Link] | |
25. Melamed JR, Ioele SA, Hannum AJ, Ullman VM, Day ES. Polyethylenimine-spherical nucleic acid nanoparticles against Gli1 reduce the chemoresistance and stemness of glioblastoma cells. Molecular Pharmaceutics. 2018; 15(11): 5135-5145. [PDF] [Link] | |
24. Riley RS*, O’Sullivan RK*, Potocny AM, Rosenthal J#, Day ES#. Evaluating nanoshells and a potent biladiene photosensitizer for dual photothermal and photodynamic therapy of triple negative breast cancer cells. Nanomaterials. 2018; 8, 658.*equal contribution #co-corresponding authors [PDF] [Link] | |
23. Potocny AM*, Riley RS*, O’Sullivan RK, Day ES#, Rosenthal J#. Photochemotherapeutic properties of a linear tetrapyrrole palladium(II) complex displaying an exceptionally high phytotoxicity index. Inorganic Chemistry. 2018; 57(17): 10608-10615. *equal contribution #co-corresponding authors [PDF] [Link] | |
22. Kapadia CH, Melamed JR, Day ES. Spherical nucleic acids: Therapeutic potential. BioDrugs. 2018; 32(4): 297-309. [PDF] [Link] | |
21. Goyal R, Kapadia CH, Melamed JR, Riley RS, Day ES. Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a. Cellular and Molecular Bioengineering. 2018; 11(5): 383-396. [PDF][Link] Selected for the 2018 Young Innovator Award in Cellular and Molecular Bioengineering |
|
20. Melamed JR, Kreuzberger NL, Goyal R, Day ES. Spherical nucleic acid architecture can improve the efficacy of polycation-mediated siRNA delivery. Molecular Therapy-Nucleic Acids. 2018; 12: 207-219. [PDF] [Link] | |
19. Melamed JR, Morgan JT, Ioele SA, Gleghorn JP, Sims-Mourtada J, Day ES. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget. 2018; 9: 27000-27015. [PDF] [Link] Selected Cover |
|
18. Riley RS, Dang MN, Billingsley MM, Abraham B, Gundlach L, Day ES. Evaluating the mechanisms of light-triggered siRNA release from nanoshells for temporal control over gene regulation. Nano Letters. 2018; 18(6): 3565-3570. [PDF] [Link] | |
17. Valcourt DM, Harris J, Riley RS, Dang M, Wang J, Day ES. Advances in targeted nanotherapeutics: from bioconjugation to biomimicry. Nano Research. 2018; https://doi.org/10.1007/s12274-018-2083-z. [PDF] [Link] Selected for the 2018 Young Innovator Award in Nanobiotechnology |
|
16. Riley RS, Day ES. Frizzled 7 antibody-functionalized nanoshells enable multivalent binding for Wnt signaling inhibition in triple negative breast cancer cells. Small. 2017; 13(26): 1700544. [PDF] [Link] | |
15. Billingsley MM, Riley RS, Day ES. Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLOS ONE. 2017; 12(5): e0177592. [PDF] [Link] | |
14. Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. WIRES Nanomedicine & Nanobiotechnology. 2017; e1449. [PDF] [Link] | |
13. Kreuzberger NL, Melamed JR, Day ES. Nanoparticle-mediated gene regulation as a novel strategy for cancer therapy. Delaware Journal of Public Health. 2017; 3(3): 20-24. [PDF] | |
|
12. Melamed JR, Riley RS, Valcourt DM, Day ES. Using gold nanoparticles to disrupt the tumor microenvironment: an emerging therapeutic strategy. ACS Nano. 2016; 10(12): 10631-10635. [PDF] [Link] |
11. Fay BF, Melamed JR, Day ES. Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells. International Journal of Nanomedicine. 2015; 10: 6931-6941. [PDF] [Link] | |
10. Kouri FM, Hurley, LA, Daniel WL, Day ES, et al. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes & Development. 2015; 29: 732-745. [PDF] [Link] Selected Cover |
|
9. Melamed JR*, Edelstein RS*, Day ES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano. 2015; 9(1): 6-11. *Equal contribution. [PDF] [Link] | |
8. Jensen SA*, Day ES*, Ko CH*, Hurley LA, et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Science Translational Medicine. 2013; 5(209): 209ra152. *Equal contribution. [PDF] [Link] Selected Cover |
|
7. Day ES, Zhang L, Thompson PA, Zawaski JA, et al. Vascular-targeted photothermal therapy of an orthotopic murine glioma model. Nanomedicine. 2012; 7(8): 1133-1148. [PDF] [Link] | |
6. Kennedy LC, Bickford LR, Lewinski NA, Couglin AJ, et al. A new era in cancer treatment: gold nanoparticle-mediated thermal therapies. Small. 2011; 7(2): 169-183. [PDF] [Link] | |
5. Day ES, Thompson PA, Zhang L, Lewinski NA, et al. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. Journal of Neuro-Oncology. 2011; 104(1): 55-63. [PDF] [Link] | |
4. Day ES, Bickford LR, Slater JH, Riggall NS, et al. Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. International Journal of Nanomedicine. 2010; 5: 445-454. [PDF] [Link] | |
3. Rostro-Kohanloo BC, Bickford LR, Payne CM, Day ES, et al. The stabilization and targeting of surfactant-synthesized gold nanorods. Nanotechnology. 2009; 20: 434005. [PDF] [Link] | |
2. Day ES, Morton JG, West JL. Nanoparticles for thermal cancer therapy. Journal of Biomechanical Engineering. 2009; 131(7): 074001. [PDF] [Link] | |
1. Lowery AR, Gobin AM, Day ES, Halas NJ, et al. Immunonanoshells for targeted photothermal ablation of tumor cells. International Journal of Nanomedicine. 2006; 1(2): 149-154. [PDF] [Link] |
Book Chapters
4. Riley RS*, Melamed JR*, Day ES. Enzyme-linked immunosorbent assay to quantify targeting molecules on nanoparticles. In: Targeted Drug Delivery, edited by Rachael W. Sirianni and Bahareh Behkam (Humana Press). 2018; 1831: 145-157. *co-first authors [Link] | |
3. Melamed JR, Riley RS, Valcourt DM, et al. Quantification of siRNA duplexes bound to gold nanoparticle surfaces. Biomedical Nanotechnology: Methods and Protocols, edited by Sarah Hurst Petrosko and Emily S. Day. Methods in Molecular Biology Series. (Humana Press). 2017; 1570: 1-15. [Link] | |
2. Bickford LR, Day ES, Hu Y, Sun J, et al. Biomedical applications of multi-functional silica-based gold nanoshells. Handbook of Materials of Nanomedicine, edited by Mansoor M. Amiji, RPh, PhD, and Vladimir P. Torchilin, DSc, PhD (Pan Stanford Publishing). 2010. [Link] | |
1. Morton JG, Day ES, Halas NJ, West JL. Nanoshells for photothermal cancer therapy. Cancer Nanotechnology: Methods in Molecular Biology, 1st edition, edited by Stephen R. Grobmeyer and Brij M. Moudgil. Methods in Molecular Biology Series. (Humana Press). 2010; 624: 101-117. [Link] |
Books
Biomedical Nanotechnology: Methods and Protocols, 2nd edition. Methods in Molecular Biology Series. Edited by Sarah Hurst Petrosko and Emily S. Day. (Humana Press). 2017; Volume 1570: 341 pages. [Link] |