Link to Dr. Day’s Google Scholar Page

Journal Articles

36. Irvin-Choy NS, Nelson KM, Gleghorn JP, Day ES. Design of nanomaterials for applications in maternal/fetal medicine. Journal of Materials Chemistry B. 2020; DOI: 10.1039/D0TB00612B. [Link]
35. Valcourt DM, Day ES. Dual regulation of miR-34a and Notch signaling in triple-negative breast cancer by antibody/miRNA nanocarriers. Molecular Therapy-Nucleic Acids. 2020; 21: 290-298 [Link]
34. Wang J, Dang MN, Day ES. Inhibition of Wnt signaling by Frizzled7 antibody-coated nanoshells sensitizes triple-negative breast cancer cells to the autophagy regulator chloroquine. Nano Research. 2020; 13: 1693–1703. [Link]
33. Valcourt DM, Kapadia CH, Dang MN, Scully MA, Day ES. Best practices for preclinical in vivo testing of cancer nanomedicines. Advanced Healthcare Materials. 2020; 2000110. [Link]
32. Valcourt DM, Dang MN, Scully MA, Day ES. Nanoparticle-mediated co-delivery of Notch-1 antibodies and ABT-737 as a potent treatment strategy for triple-negative breast cancer. ACS Nano. 2020; 14(3): 3378-3388. [Link]
31. Wang J*, Potocny AM*, Rosenthal J#, Day ES#. Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapiesACS Omega. 2020; 5(1): 926-940.*equal contribution #co-corresponding authors [Link] [PDF] 
30. Harris JC, Scully MA, Day ES. Cancer cell membrane-coated nanoparticles for cancer management. Cancers. 2019; 11: 1836[Link] [PDF]
29. Kapadia CH, Ioele SA, Day ES. Layer-by-layer assembled PLGA nanoparticles carrying miR-34a cargo inhibit the proliferation and cell cycle progression of triple-negative breast cancer cells. Journal of Biomedical Materials Research Part A. 2019; doi: 10.1002/jbm.a.36840. [Link] [PDF]
28. Valcourt DM, Dang MN, Wang J, Day ES. Nanoparticles for manipulation of the development Wnt, Hedgehog, and Notch signaling pathways in cancer. Annals of Biomedical Engineering. 2019; [Link] [PDF]
27. Kapadia CH, Luo B, Dang MN, Irvin-Choy N, Valcourt DM, Day ES. Polymer nanocarriers for microRNA delivery. Journal of Applied Polymer Science. 2019; doi: 10.1002/APP.48651. [Link] [PDF]
26. Valcourt DM, Dang MN, Day ES. IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer. Journal of Biomedical Materials Research Part A. 2019; 107A: 1702-1712. [PDF]  [Link] 
25. Melamed JR, Ioele SA, Hannum AJ, Ullman VM, Day ES. Polyethylenimine-spherical nucleic acid nanoparticles against Gli1 reduce the chemoresistance and stemness of glioblastoma cells. Molecular Pharmaceutics. 2018; 15(11): 5135-5145. [PDF]  [Link]
24. Riley RS*, O’Sullivan RK*, Potocny AM, Rosenthal J#, Day ES#. Evaluating nanoshells and a potent biladiene photosensitizer for dual photothermal and photodynamic therapy of triple negative breast cancer cells. Nanomaterials. 2018; 8, 658.*equal contribution #co-corresponding authors [PDF] [Link]
23. Potocny AM*, Riley RS*, O’Sullivan RK, Day ES#, Rosenthal J#. Photochemotherapeutic properties of a linear tetrapyrrole palladium(II) complex displaying an exceptionally high phytotoxicity index. Inorganic Chemistry. 2018; 57(17): 10608-10615. *equal contribution #co-corresponding authors [PDF] [Link]
22. Kapadia CH, Melamed JR, Day ES. Spherical nucleic acids: Therapeutic potentialBioDrugs. 2018; 32(4): 297-309. [PDF] [Link]

21. Goyal R, Kapadia CH, Melamed JR, Riley RS, Day ES. Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a. Cellular and Molecular Bioengineering. 2018; 11(5): 383-396. [PDF][Link]

Selected for the 2018 Young Innovator Award in Cellular and Molecular Bioengineering

20. Melamed JR, Kreuzberger NL, Goyal R, Day ES. Spherical nucleic acid architecture can improve the efficacy of polycation-mediated siRNA deliveryMolecular Therapy-Nucleic Acids. 2018; 12: 207-219. [PDF] [Link]

19. Melamed JR, Morgan JT, Ioele SA, Gleghorn JP, Sims-Mourtada J, Day ES. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomideOncotarget. 2018; 9: 27000-27015. [PDF] [Link]

Selected Cover

18. Riley RS, Dang MN, Billingsley MM, Abraham B, Gundlach L, Day ES. Evaluating the mechanisms of light-triggered siRNA release from nanoshells for temporal control over gene regulation. Nano Letters. 2018; 18(6): 3565-3570. [PDF] [Link]

17. Valcourt DM, Harris J, Riley RS, Dang M, Wang J, Day ES. Advances in targeted nanotherapeutics: from bioconjugation to biomimicry. Nano Research. 2018; [PDF] [Link]

Selected for the 2018 Young Innovator Award in Nanobiotechnology

16. Riley RS, Day ES. Frizzled 7 antibody-functionalized nanoshells enable multivalent binding for Wnt signaling inhibition in triple negative breast cancer cells. Small. 2017; 13(26): 1700544. [PDF] [Link]
15. Billingsley MM, Riley RS, Day ES. Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLOS ONE. 2017; 12(5): e0177592. [PDF] [Link]
14. Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. WIRES Nanomedicine & Nanobiotechnology. 2017; e1449. [PDF] [Link]
  13. Kreuzberger NL, Melamed JR, Day ES. Nanoparticle-mediated gene regulation as a novel strategy for cancer therapyDelaware Journal of Public Health. 2017; 3(3): 20-24. [PDF]
12. Melamed JR, Riley RS, Valcourt DM, Day ES. Using gold nanoparticles to disrupt the tumor microenvironment: an emerging therapeutic strategy. ACS Nano. 2016; 10(12): 10631-10635. [PDF] [Link]
 Figure 4 v2 11. Fay BF, Melamed JR, Day ES. Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells. International Journal of Nanomedicine. 2015; 10: 6931-6941. [PDF] [Link]
GD cover

10. Kouri FM, Hurley, LA, Daniel WL, Day ES, et al. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes & Development. 2015; 29: 732-745. [PDF] [Link]

Selected Cover

Abstract Figure v4 9. Melamed JR*, Edelstein RS*, Day ES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano. 2015; 9(1): 6-11. *Equal contribution. [PDF]  [Link]
STM cover 8. Jensen SA*, Day ES*, Ko CH*, Hurley LA, et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Science Translational Medicine. 2013; 5(209): 209ra152. *Equal contribution. [PDF] [Link]
Selected Cover
Figure 2 7. Day ES, Zhang L, Thompson PA, Zawaski JA, et al. Vascular-targeted photothermal therapy of an orthotopic murine glioma model. Nanomedicine. 2012; 7(8): 1133-1148. [PDF]  [Link]
Figure 6. Kennedy LC, Bickford LR, Lewinski NA, Couglin AJ, et al. A new era in cancer treatment: gold nanoparticle-mediated thermal therapies. Small. 2011; 7(2): 169-183. [PDF]  [Link]
Fig4 compressed 5. Day ES, Thompson PA, Zhang L, Lewinski NA, et al. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. Journal of Neuro-Oncology. 2011; 104(1): 55-63. [PDF]  [Link]
2014-12-31-NPGraphic 4. Day ES, Bickford LR, Slater JH, Riggall NS, et al. Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. International Journal of Nanomedicine. 2010; 5: 445-454. [PDF] [Link]
Figure 3. Rostro-Kohanloo BC, Bickford LR, Payne CM, Day ES, et al. The stabilization and targeting of surfactant-synthesized gold nanorods. Nanotechnology. 2009; 20: 434005. [PDF]  [Link]
figure 2. Day ES, Morton JG, West JL. Nanoparticles for thermal cancer therapy. Journal of Biomechanical Engineering. 2009; 131(7): 074001. [PDF]  [Link]
Lowery 1. Lowery AR, Gobin AM, Day ES, Halas NJ, et al. Immunonanoshells for targeted photothermal ablation of tumor cells. International Journal of Nanomedicine. 2006; 1(2): 149-154. [PDF]  [Link]

Book Chapters

4. Riley RS*, Melamed JR*, Day ES. Enzyme-linked immunosorbent assay to quantify targeting molecules on nanoparticles. In: Targeted Drug Delivery, edited by Rachael W. Sirianni and Bahareh Behkam (Humana Press). 2018; 1831: 145-157. *co-first authors [Link]
 Book fig 3. Melamed JR, Riley RS, Valcourt DM, et al. Quantification of siRNA duplexes bound to gold nanoparticle surfaces. Biomedical Nanotechnology: Methods and Protocols, edited by Sarah Hurst Petrosko and Emily S. Day. Methods in Molecular Biology Series. (Humana Press).  2017; 1570: 1-15. [Link]
NS shell growth 2. Bickford LR, Day ES, Hu Y, Sun J, et al. Biomedical applications of multi-functional silica-based gold nanoshells. Handbook of Materials of Nanomedicine, edited by Mansoor M. Amiji, RPh, PhD, and Vladimir P. Torchilin, DSc, PhD (Pan Stanford Publishing). 2010. [Link]
Untitled 1. Morton JG, Day ES, Halas NJ, West JL. Nanoshells for photothermal cancer therapy. Cancer Nanotechnology: Methods in Molecular Biology, 1st edition, edited by Stephen R. Grobmeyer and Brij M. Moudgil. Methods in Molecular Biology Series. (Humana Press). 2010; 624: 101-117. [Link]


  Biomedical Nanotechnology: Methods and Protocols, 2nd edition. Methods in Molecular Biology Series. Edited by Sarah Hurst Petrosko and Emily S. Day. (Humana Press). 2017; Volume 1570: 341 pages. [Link]