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1. What is the definition and meaning of the Péclet number?  

2. Estimate the number of neighboring particles in a hard sphere colloidal dispersion at 
Φ=0.40.   

3. The intrinsic viscosity of a dilute colloidal suspension is equal to that of a dilute, non-
colloidal suspension. Why do the Brownian forces acting on the colloid not contribute to 
the viscosity?  

4. Describe the physical origins of shear thinning in semi-dilute suspensions of Brownian 
hard spheres.  

5. Figure 3.21 shows a Stokesian dynamics simulation of how <g(2a)> varies as a function 
of Pe for a φ=.45 colloidal dispersion.  How do these results relate to the onset of shear 
thickening? 

6. Discuss the effect of Brownian motion on the dynamic moduli.  
7. Explain the concepts underlying “caging” in a concentrated suspension. What is the 

effect on viscosity? 
8. What is short time self-diffusivity? What force(s) play a part in its determination?  

9. What are some of the issues surrounding measuring the viscosity near the hard sphere 
glass transition, φ=0.58?  

10. Discuss the normal stress difference for concentrated hard sphere suspension as a 
function of shear rates. Compare them with the normal stress difference for non-colloidal 
suspension. 

11. What information can we get from mode-coupling theory (MCT)? 
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1. The Péclet number is the ratio of the characteristic rate for advection to that for diffusion.  

This is relevant for colloidal suspensions as Brownian motion provides a natural 
relaxation mechanism that tends to drive the microstructure towards its equilibrium. The 
characteristic time for Brownian motion is 2

oa D  for dilute systems, which is the time 
required for a Brownian particle to diffuse an average distance equal to its radius. The 
corresponding time scale for shear flow (advective motion) is   γ

−1  Using the Stokes-
Einstein-Southerland equation (1.5), the Péclet number is    Pe = 6πηγa3 kBT . Hence, it 
characterizes a shear rate as high or low compared to the natural relaxation rate due to 
Brownian motion. For low shear rates Brownian motion is faster than rate of advection 
and the structure is near to equilibrium during flow. At high shear rates the 
microstructure will be distorted by flow.  Finally, the rate of diffusion is hindered at 
higher particle concentrations and so a dressed Pe*can be used where the suspension 
viscosity is used instead of the medium viscosity. This can also be expressed as a ratio of 
stresses.  

2. The number of neighboring particles is given in terms of the radial distribution function 
g(r).  The probability of finding a particle at a distance r is given by   ng(r) , where n is the 
particle number density.    The calculation proceeds by integration over a distance 
corresponding to the first peak in the radial distribution function as:

  
Nnn = 4πng(r)r 2 dr

2a

2a+δ

∫ 	
  	
  , where δ  is the distance of the first neighbor shell. Figure 3.7 

suggests this range is approximately of order ½*a.   A simple approximation can be made using 
the Carnahan-Starling approximation for the value of the pair distribution function at 
contact”: 

g(2a) = [1-(φ/2)] / [1-φ]3 

g(2a) = [1-(.4/2)] / [1-.4]3 

 g(2a) = 3.7 

Using an average value of (3.7+1)/2=2.35 for the pair probability in the nearest neighbor 
shell, an rough estimate for the number of nearest neighbors becomes:

  

Nnn ≈
4π
3

a3n*(2.35)* 2.53 − 23( )
≈ φ*(2.35)*(7.625) ≈ 7

 

Note that an FCC lattice has 12 nearest neighbors and a simple cubic lattice has 8.  Thus, 
the hard sphere liquid is densely packed.  

 Using the structures shown in Figure 3.7, the number of nearest neighbors for the hard 
sphere fluid have been calculated for various values of the nearest neighbor distance and 
the results are shown below: 
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3. Brownian motion is due to thermal fluctuations in the suspending medium that leads to a 
diffusive like motion of the colloid on time scales long relative to the molecular motion 
in the suspending medium and on length scales larger than the molecular size.  The 
energy imparted by these thermal fluctuations to the colloid is dissipated by the friction 
of the colloidal motion against the suspending medium. This is known as the fluctuation-
dissipation theorem and it means that there is no net energy transfer between the colloid 
and the suspending medium. Thus, at equilibrium there is no additional energy 
dissipation in the fluid due to Brownian motion that would contribute to the viscosity at 
the level of a single spherical particle.  Note that we will see an interesting effect when 
the particles are asymmetric (Chapter 5). Energy is still dissipated by the presence of a 
particle in the shear flow according to the calculation presented in Chapter 2 and so the 
Einstein viscosity is observed for colloidal particles in the dilute limit.  

4. The Brownian stress contribution is due to the forces acting between the particles Eqn. 
(3.10)  and the spatial arrangement of the particles, i.e., the microstructure. Upon 
shearing, Figure 3.11 shows that the microstructure changes significantly due to the 
applied shear rate.  Figure 3.11b shows how the Brownian forces contribute to the shear 
stress. At low shear rates the distortion of the microstructure is linear in shear rate and 
hence, so is the Brownian stress component, giving a constant contribution to the 
viscosity and hence, a zero shear rate viscosity.   The hydrodynamic viscosity component 
is hardly affected by these changes in microstructure and remains essentially constant. At 
higher shear rates the distortion of the microstructure is significantly different and it 
saturates, such that the Brownian component to the viscosity decreases with shear rate. 
As the hydrodynamic contribution to the stress is still relatively constant the total 
viscosity drops and shear thinning is observed.  At higher shear rates shear thickening is 
observed and this is discussed in Chapter 8 as a consequence of lubrication 
hydrodynamics.  

 

5. <g(2a)> is related to the probability of finding a neighboring particle. At Pe below 1, 
<g(2a)> is relatively constant, but beyond Pe=1, <g(2a)> increases dramatically as the 
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shear flow drives particles closer together and increases the number of particles at close 
contact.  Hydrodynamic interactions begin to grow as a result of the close particle 
proximity and these forces are exclusively dissipative.  Thus, the suspension viscosity 
increases.  More discussion of this effect is found in Chapter 8.  

 
6. Brownian forces are at the root of elasticity in colloidal hard sphere suspensions. Figure 

3.16 shows the magnitude of the elasticity and how it scales with the Brownian stresses 
introduced in Chapter 1.  Increasing the particle concentration significantly increases the 
Brownian forces acting between particles and the observed high frequency elastic 
modulus.  The frequency dependence of the moduli is shown in Figure 3.5, where for the 
colloidal liquid state, the viscous modulus is greater than the elastic modulus at all 
frequencies.  Note that in the colloidal glassy state, as shown in Figure 3.24, for a range 
of frequencies the opposite is true.  For colloidal suspensions in the fluid state the 
terminal regime is observed at low frequencies, as described in Figure 1.19, where the 
viscous modulus dominates. Figure 3.17 shows that frequency thinning is observed for 
the viscosity.  The frequency at which this occurs is related to the time associated with 
Brownian motion. Frequency thinning should be evident when the characteristic time for 
oscillatory motion ω −1   becomes comparable with that of Brownian motion, 2a D . At 
low frequencies the microstructure can relax during the oscillatory flow and there will be 
more viscous dissipation that at high frequencies where it cannot.  The elasticity at high 
frequencies reflects that fact that the microstructure cannot relax on the time scale of the 
deformation as so for small amplitudes of deformation, the microstructure distortion is 
more close to affine deformation. This leads to energy storage and a high frequency 
plateau for G’. Thus, the frequency necessary for the appearance of a significant elasticity 
in a colloidal liquid is determined by a balance between the two time constants
ωa2 D 1 .1.   

7. Caging occurs at high volume fractions and refers to the presence of many neighboring 
particles in the colloidal liquid. In caging, particle motion becomes retarded because 
particles are surrounded by many neighbors. Viscosity greatly increases as caging 
becomes significant. The crowding at high volume fractions becomes sufficient enough 
to limit the particle’s motion beyond its local position, leading to dynamic arrest.  If all 
particles are “caged” by their nearest neighbor particles, then they cannot diffuse and the 
suspension will exhibit solid like behavior.  

8. At high volume fractions, particles can become “caged” in by neighboring particles thus 
limiting their motion. Short time self-diffusivity is the rate of particle motion within the 
cage. The rate of diffusion is calculated purely by hydrodynamic particle interactions.  

9. As the glass transition is approached the Brownian relaxation time becomes very long 
due to particle caging.  Hence, very low shear rates or very low frequencies are required 
to study the equilibrium state.  At the glass transition, the sample will exhibit an apparent 
yield stress. Slip can also occur at these high packing fractions. Measurements of 
monodisperse systems can also be hindered due to slow crystallization.  

10. The shear rate behavior of the first normal stress difference is non-monotonic, owing to 
the competing effects of hydrodynamic and Brownian forces. The first normal stress 
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difference is positive at low shear rates for concentrated hard sphere suspension. The 
positive value reflects the contribution from Brownian forces. With increasing shear 
rates, the first normal stress difference becomes negative, a consequence of the growing 
contribution of hydrodynamic interactions. The normalized second normal stress 
difference is negative and remains negative for low and high shear rates. For non-
colloidal suspensions the first and second normal stress differences are both negative and 
of comparable magnitude because they arise solely from hydrodynamic interactions. 

11. MCT predicts the existence of an ideal glass transition, whereby particle motion at high 
volume fraction is very localized as a result of crowding by neighboring particles 
(caging). MCT also makes predictions for the contribution of Brownian forces to the 
stresses. The theory predicts that the zero shear viscosity should diverge at the ideal glass 
transition with a specific power law behavior. 

 
 


