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Abstract. No general algorithm is known for the functional de-
composition of wild polynomials over a finite field. However partial
solutions exist. In particular, a fast functional decomposition algo-
rithm for linearised polynomials has been developed using factoring
methods in skew-polynomial rings. This algorithm is extended to a
related class of wild polynomials, which are sub-linearised polynomi-
als.

1. Introduction

Let Fq represent the finite field with q = pe elements where p is prime.
A polynomial f ∈ Fq[X ] is called wild if p divides the degree of f and tame
otherwise. The polynomial f = g ◦ h = g(h) is the functional composition
of g and h. The polynomials g and h are called left and right composi-
tion factors of f respectively. Note that degree(f) = degree(g) degree(h).
A polynomial f ∈ Fq [X ] is called indecomposable over Fq if for each de-
composition f = g(h) where g, h ∈ Fq[X ] then either degree(g) ≤ 1 or
degree(h) ≤ 1. A decomposition f = f1 ◦ · · · ◦ fk is called a complete de-
composition of f if each fi, 1 ≤ i ≤ k is indecomposable and degree(fi) ≥ 1.
As (aX + b), a−1(X − b) ∈ Fq [X ] are inverses with respect to composition
then

f(g(X)) = f(aX + b) ◦ (a−1(g(X) − b)).

Thus, any complete decomposition can be varied using linear compositions.
In fact, even if we discount linear compositions, there is no truly unique
complete decomposition for polynomials. However, certain restrictions do
apply in the tame case.

In [7], Ritt shows that, over the complex numbers, any complete de-
composition of f is unique in a certain sense. This is known as Ritt’s first
theorem. Fried and MacRae [3] extend Ritt’s first theorem to include tame
polynomials over finite fields. We state their result for finite fields only.
Note that the full result in [3] is concealed within the text.

This work was partially supported by the Australian Research Council.
1



J.
 C

o
m

b
in

. M
at

h
. C

o
m

b
in

. C
o

m
p

. 2
8 

(1
99

8)
, 8

7-
94

2 COULTER, HAVAS AND HENDERSON

Theorem 1.1 (Fried & MacRae). Let f ∈ Fq[X ] where (degree(f), p) = 1.
If

f = g1 ◦ · · · ◦ gr = h1 ◦ · · · ◦ hs

are two complete decompositions of f over Fq then r = s and there exists a
permutation π of the symbols 1, . . . , r such that degree(gi) = degree(hπ(i)).

Therefore there is an “essentially” unique decomposition of f ∈ Fq [X ] in
the tame case. Ritt’s first theorem can not be extended to the wild case.
The following example supports this statement. It is a classic wild case
example and was presented by Dorey and Whaples in [2].

Example 1.2. Let p be a positive prime integer and F any field of charac-
teristic p. We have the following partial decompositions of f ∈ F [X ]:

f(X) = Xp3+p2

− Xp3+1 − Xp2+p + Xp+1

= Xp+1 ◦ (Xp + X) ◦ (Xp − X)

= (Xp2

− Xp2
−p+1 − Xp + X) ◦ Xp+1.

Evidently any polynomial of the shape Xp + aX is indecomposable. If a
polynomial of degree p2 is decomposable then it is of the form

(aXp + bXp−1 + · · · ) ◦ (cXp + dXp−1 + · · · )

= acpXp2

+ (adp + bcp+1)Xp2
−p + lower degree terms

and so it can not contain an Xp2
−p+1 term. Hence the polynomial Xp2

−

Xp2
−p+1 − Xp + X is also indecomposable. The decompositions of Xp+1

do not alter the fact that these two partial decompositions of f are distinct
in ways not acceptable in Theorem 1.1. So in characteristic p 6= 0 it is not
always true that two complete decompositions have the same number of
components or that the sequence of degrees are the same except for order.

Joachim von zur Gathen looks at the functional decomposition of tame
and wild type polynomials in the two separate articles: [8] and [9] respec-
tively. It is stated in the conclusions of [9] that although a satisfactory
solution for polynomial decomposition in the tame case has been found the
wild case remains open. The tame case relies on the essential uniqueness of
complete decomposition. In the wild case only partial solutions have been
achieved, see [9] and [4] for results and further references. The difficulty
of obtaining general results in the wild case arises from the absence of a
uniqueness property.

A polynomial of the shape

L(X) =

n
∑

i=0

aiX
pi

(1)
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WILD DECOMPOSITIONS 3

is called a linearised polynomial. More precisely, if there exists a positive
integer s such that ai = 0 unless s divides i then L is called a ps-polynomial.
For background material on linearised polynomials see [6, Chapter 3]. Let
L ∈ Fq [X ] be a ps-polynomial and d be a divisor of ps − 1. Then L(X) =
XT (Xd) where T ∈ Fq [X ]. The polynomial S(X) = XT d(X) is called a
sub-linearised polynomial, or, again more precisely, the (ps, d)-polynomial
associated with L. We see that L and S are associated if and only if
L(Xd) = Sd(X). These two classes of polynomials are certainly of wild type
as ps divides their degree. In [4], Giesbrecht introduces a decomposition
algorithm for linearised polynomials. Here, we extend this algorithm to
cover (p, d)-polynomials. Note that, although every ps-polynomial is a p-
polynomial, a (ps, d)-polynomial is only a (p, d)-polynomial if d divides p−1
(from the definition).

2. The decomposition algorithms

We extend the algorithms for linearised polynomial decomposition from
[4] to the class of sub-linearised (p, d)-polynomials. In [4], two decomposi-
tion problems are considered:

The complete decomposition problem: given a non-constant f ∈

Fq[X ], find indecomposable f1, . . . , fk ∈ Fq [X ] such that f = f1 ◦ · · · ◦ fk.

The bi-decomposition problem: given a non-constant f ∈ Fq [X ] and
n ∈ N where n < degree(f), determine if there exist f1, f2 ∈ Fq [X ] such
that f = f1(f2) and degree(f2) = n, and, if so, find f1, f2.

In [4], Giesbrecht obtains the following theoretical running times for
linearised polynomials in regards to the above decomposition problems.
The decomposition results for this wild class are actually applications of
the central results of [4]: factoring in skew-polynomial rings. Note that
M(e) = e2 or M(e) = elogelogloge depending on the multiplication algo-
rithm used and MM(n) = n3 or MM(n) = n2.376 depending on the matrix
multiplication algorithm used (see the opening remarks of [4]).

Theorem 2.1 (Giesbrecht). Let q = pe, L ∈ Fq[X ] be a linearised polyno-
mial of degree pn, and m = pt < pn. We can produce a complete decompo-
sition of L in Fq[X ] and determine if there exist L1, L2 ∈ Fq [X ] such that
degree(L2) = m and L = L1(L2), and, if so, find such L1, L2, with a de-
terministic algorithm requiring (nep)O(1) operations in Fp or a probabilistic
algorithm requiring O(n4eM(e) + n3e2M(e)loge + nMM(ne)log(ne)logp)
operations in Fp.

It is well known that the class of linearised polynomials is closed with
respect to composition. In addition, the decomposition factors of a lin-
earised polynomial are either linearised polynomials or transformations of
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4 COULTER, HAVAS AND HENDERSON

a linearised polynomial such as L(X) + a ∈ Fq[X ]. This was shown in [2].
See [1] for a succinct proof. This is a key point in Giesbrecht’s applica-
tion. It can be shown that the sub-linearised polynomials satisfy a similar
property. For a proof of the next result see [5].

Theorem 2.2. Let S be a (ps, d)-polynomial which decomposes over Fq

with S = f1(f2) for some f1, f2 ∈ Fq [X ]. Then S = f ′

1(f
′

2) where f ′

1(X) =
f1

(

X+f2(0)
)

, f ′

2(X) = f2(X)−f2(0) and f ′

1 and f ′

2 are (pr, d)-polynomials
where r divides s.

Therefore, if the (ps, d)-polynomial S decomposes it can be written as
the composition of (pr, d)-polynomials where r divides s. Note that the be-
haviour is not as “free” as the linearised case as the value d is set and must
divide pr − 1. The next theorem, also taken from [5], connects the compo-
sition behaviour of the linearised and sub-linearised polynomial classes.

Theorem 2.3. (i) Let L1 and L2 be ps-polynomials over Fq and S1 and
S2 be the associated (ps, d)-polynomials, respectively. Then S1(S2) is the
(ps, d)-polynomial associated with L1(L2).
(ii) Let L ∈ Fq [X ] be a ps-polynomial and S be the associated (ps, d)-
polynomial. Let r be some integer where r divides s and d divides pr − 1.
Then L = L1(L2) for pr-polynomials L1 and L2 if and only if S = S1(S2)
for (pr, d)-polynomials S1 and S2 and Ld

i (x) = Si(x
d), i = 1, 2.

Part (ii) of this theorem suits our purpose as it links the decomposition
of the two classes. In part (ii) we see that the decomposition factors of a
ps-polynomial are pr-polynomials where r divides s. It may be the case
that r < s. This is possible as coefficients of pr terms may be annihilated
in the composition. This is an important point as a ps-polynomial may
decompose into pr-polynomials but the associated (ps, d)-polynomial can
not correspondingly decompose unless d divides pr − 1 (as we have already
indicated). Therefore, to decompose a (ps, d)-polynomial S, the first step is
to find the least positive integer r such that d divides pr−1 and reinterpret
S as a (pr, d)-polynomial.

There is an even more subtle and important point concealed here. Sup-
pose that L = L1(L2) = L3(L4) where L, L1, L2 are pr-polynomials but
L3, L4 are pt-polynomials for some t dividing r. Giesbrecht’s decomposition
algorithms may return the composition factors L3, L4 which do not corre-
spond to a decomposition of the associated (pr, d)-polynomial S. Thus, we
can not decide, on the evidence of Giesbrecht’s algorithm, that the poly-
nomial S is indecomposable. This problem will not arise when s = 1,
the class of (p, d)-polynomials. For this reason, we restrict ourselves to
(p, d)-polynomials. We can make another simple restriction using the next
theorem.
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WILD DECOMPOSITIONS 5

Lemma 2.4. Let L ∈ Fq [X ] be as in (1) with degree > 1. Let ai = 0

for 0 ≤ i ≤ (m − 1) and am 6= 0. Then L(X) = L1(X) ◦ Xpm

and
L1 is a p-polynomial. If S is the associated (p, d)-polynomial to L then
S(X) = S1(X) ◦ Xpm

where L1(X
d) = Sd

1 (X).

Proof. To see the first part put L1(X) =
∑n−m

i=0 ai+mXpi

. Now

S1(X) ◦ Xpm

= Xpm

(n−m
∑

i=0

ai+m(Xpm

)(p
i
−1)/d

)d

= X

(n−m
∑

i=0

ai+mX(pm
−1+pm+i

−pm)/d

)d

= X

( n
∑

i=0

aiX
(pi

−1)/d

)d

which is S(X). �

Thus we may assume that the (p, d)-polynomial S to be decomposed
has a non-zero coefficient of X . Otherwise we can perform the simple
decomposition in Lemma 2.4 and consider S1 instead.

To solve either of the problems listed, we need to convert a sub-linearised
polynomial S to a linearised polynomial L, call the relevant algorithm by
Giesbrecht, and then convert the output back into sub-linearised polyno-
mials.

Algorithm: Complete-decomposition
Input: A (p, d)-polynomial S ∈ Fq[X ] and the integer d.
Output: Indecomposable (p, d)-polynomials S1, . . . , Sk ∈ Fq [X ] where
S = S1 ◦ · · · ◦ Sk.

1. Convert S to a linearised polynomial L.
2. Find indecomposable L1, . . . , Lk ∈ Fq[X ] satisfying L = L1 ◦ · · · ◦ Lk

using Giesbrecht’s algorithm;
3. Convert each Lj , 1 ≤ j ≤ k to respective (p, d)-polynomials Sj and
return S1, . . . , Sk.

Algorithm: Bi-decomposition
Input: A (p, d)-polynomial S ∈ Fq[X ] of degree pm, the integer d, and a
positive integer n = pk.
Output: S1, S2 ∈ Fq[X ] with degree(S2) = n and S = S1(S2), or a
message that no such bi-decomposition exists.

1. Convert S to a linearised polynomial L.
2. Using Giesbrecht’s algorithm, determine if there exist p-polynomials

L1, L2 ∈ Fq[X ] satisfying L = L1(L2) and degree(L2) = n. If L1, L2
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6 COULTER, HAVAS AND HENDERSON

are found then convert L1 and L2 to S1 and S2 and return them.
Otherwise return “S has no such bi-decomposition”.

So, to extend Giesbrecht’s algorithms we make conversions from (p, d)-
polynomials S to p-polynomials L and back again. These operations are
presented in the following two algorithms.

Algorithm: A (convert S to L)
Input: A (p, d)-polynomial S ∈ Fq[X ]
Output: An associated p-polynomial L ∈ Fq[X ]

1. Calculate f(X) = S(Xd);
2. Differentiate f(X) repeatedly d − 1 times to obtain f [d−1](X);
3. Change f [d−1](X) to a monic to obtain L.

Algorithm: B (convert L to S)
Input: A p-polynomial L ∈ Fq[X ]
Output: The associated (p, d)-polynomial S ∈ Fq [X ]

1. Calculate T (Y ) = L(X)/X where Y = Xd;
2. Return S(X) = XT d(X).

Recall that if the p-polynomial L and (p, d)-polynomial S are associated,
then L(X) = XT (Xd) and S(X) = XT d(X) for some T ∈ Fq[X ]. It is
evident from this that Algorithm B produces the desired polynomial. In
Algorithm A, f(X) = S(Xd) = XdT d(Xd) = Ld(X). As a0 6= 0 then the

(d − 1)th derivative of f is d!ad−1
0 L(X).

For the complexity analysis, note that d is O(p). In Algorithm A, steps 1,
2 and 3 will require O(pn), O(p2n) and O(ne) operations in Fp, respectively.
This gives an overall cost of O((p2 +e)n) operations. For Algorithm 2, step
1 requires O(n) operations. The number of operations required for step 2
is O(log(p)M(npe)). All of the costs for the two conversion algorithms are
contained, and thus absorbed, in the complexity of the algorithm of Gies-
brecht. Thus the extension of Giesbrecht’s algorithm to (p, d)-polynomials
is asymptotically free. Note that, if the input for the decomposition algo-
rithms was changed to be T (X) and d, rather than S(X) and d, Algorithm
A would be redundant as conversion would be a simple task.

3. Conclusion

In general, it has proved difficult to obtain decomposition results in the
wild case. We have presented a straightforward extension of a decomposi-
tion algorithm of the linearised polynomials to a related class of wild poly-
nomials: the (p, d)-polynomials. This increases the range of applicability of
Giesbrecht’s algorithm by the number of divisors of p− 1. Effectively, this
has been done without cost. It may also be possible to extend the results
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WILD DECOMPOSITIONS 7

from [4], by less direct methods, to the larger class of (ps, d)-polynomials.
Improvements in the average running time may also be gained on the al-
gorithms of [4] and those given here by applying other results from [5]. We
note that the methods employed here to decompose (p, d)-polynomials us-
ing Giesbrecht’s algorithm could be used to decompose (p, d)-polynomials
using any algorithm which decomposes linearised polynomials.
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