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Abstract

In this article we aim to develop from first principles a theory of sum sets and partial sum sets, which
are defined analogously to difference sets and partial difference sets. We obtain non-existence results
and characterisations. In particular, we show that any sum set must exhibit higher-order regularity
and that an abelian sum set is necessarily a reversible difference set. We next develop several general
construction techniques under the hypothesis that the over-riding group contains a normal subgroup
of order 2. Finally, by exploiting properties of dihedral groups and Frobenius groups, several infinite
classes of sum sets and partial sum sets are introduced.

§ 1. Introduction

In [1], the authors used versions of additive regularity of subsets of groups to obtain new results on skew
Hadamard difference sets. For instance, by exploiting the additive regularity of skew Hadamard difference
sets we were able to completely categorise their full multiplier group, see [1], Theorem 4.2. Motivated, in
part, by these results, in this article we treat sum sets and partial sum sets as combinatorial objects in their
own right. Moreover, in keeping with the “keep it simple” philosophy we adopted in [1], we approach our
topic with the intention of using as little heavy machinery as possible. For example, we find we are able to
manage without character theory, though we readily acknowledge that, in one or two places, such theory
may allow shorter, if possibly less illuminating, proofs.

Let G be a finite group, and let S be a subset of G. We shall be interested in counting the number
of ways an element of G can be generated as “a product in S” (that is, as the product of two elements
of S). If S is an arbitrary subset, then we should expect some elements of G to be generated more often
than others. Indeed, some elements may be generated very often while others are not generated at all.
If, however, the number of ways of generating elements of G takes very few values, we say the subset .S
possesses additive regularity. To make this concept more precise, we make the following definition.
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Definition 1.1. Let G be a group of order v and let S be a subset of G with |S| = k. We say S is
a (v, k,\, u) partial sum set if every nonidentity element in S can be written in precisely A ways as a
product in S while every nonidentity element not in S can be written in precisely . ways as a product in
S. If X\=p, then S is called a (v, k, ;1) sum set. The numbers (v,k, \, i) are the parameters of S.

Readers familiar with (v, k, \) difference sets will note how similar the definition of a sum set is to that
of a difference set, and it is because of this similarity that we choose to speak of “sum sets" instead of
“product sets”. The use of the term “difference set” is historical, as the earliest investigations of difference
sets focused entirely on cyclic groups, where additive notation is natural. The name was maintained, even
when mathematicians began constructing examples in arbitrary groups.

Sum sets as presently defined were previously studied in [5] and [7] as particular examples of “addition
sets”. Proper acknowledgement is made wherever the current work coincides with these papers’ results.

It is easily checked that the set-theoretic complement of a sum set is a sum set. Specifically, if S C G
isa (v, k,p) sum set, then G\ S is a (v,v — k,v — 2k + p) sum set. Hence we restrict our attention to
sum sets of size k < 3.

Note the empty set is a (v,0,0) sum set. Also, if g € G, then the singleton {g} is a (v,1,0) sum set if
and only if o(g) < 2. These sum sets and their complements are deemed trivial examples. Henceforth all
sum sets are understood to be nontrivial.

The parameters (v, k, ) of a sum set must satisfy

k2 = p(v—1)+ SN S, (1)

where S(-1 = {571 : 5 € S}. Any triple of nonnegative integers (v, k, i) with v > k > p induce a unique
value for |S N S| with respect to (1). If that value is between 0 and k, we say the triple (v, k, j1) are
admissible parameters for a sum set. Of course, if (v, k, ) is admissible, it is not necessarily true that there
exists a sum set with these parameters. In what follows, the quantity |S N S(*l)\ — 1 appears frequently
enough to warrant its own symbol, so we define n := |S N SV| — .

The primary goal of this paper is to offer a foundation for a comprehensive theory of sum sets. The theory
is built upon the dual goals of providing theoretical construction techniques which encompass all known
examples while simultaneously deriving nonexistence results to explain why there are no other examples.
Some of the theory is based on results from [1], and we recall the relevant results in Section 2. Nonexistence
results are obtained in Sections 3 and 4, where we also derive from first principles a theoretical basis for
the study of sum sets. Some general constructions are given in Section 5, which we then use to construct
several infinite families of sum sets in Sections 6 and 7.

§ 2. Special subsets

In [1], the authors introduce the notion of special subsets and use them to explore the additive properties
of skew Hadamard difference sets. These special subsets provide a useful mechanism for studying sum sets,
so we now recall some basic facts about them.

Let S be a subset of G. If S = S(-1 we say S is reversible. If SN S—Y = & we say S is skew. A
a skew subset of GG not properly contained in any other skew subset of G is called a maximal skew set. If
v = o(G) is odd, then any maximal skew set in G has size ”51. For any a € G, the special subsets of S

with respect to a are

Aus={r €S : a=xy " for some y € S},

Bas={ye€S :a=ay " for some z € S},

Cos ={x €S : a=uay for some y € S}.
The cardinality |4, s| counts the number of ways to write a as a quotient in S, so in this context S is a
difference set set if and only if |4, g| is constant for all nonidentity elements a € G. Similarly S is a sum

set if and only if |C,, s| is constant for all nonidentity elements a € G. The following lemma is a summary
of Lemmas 2.1, 2.2, and 2.4 in [1].



R.S. Coulter and T. Gutekunst, Subsets of finite groups exhibiting additive regularity 3

Lemma 2.1. Let S be a subset of the group G.
(i) Ag,s NCys =@ for all a € G if and only if S is skew.
(ii) Aq,s =Cqs for all a € G if and only if S is reversible.

(i) Suppose G has odd order v, and suppose S is a maximal skew set in G. Then

=3 jfge S
A, Cosl= '
| Aa,s| +Ca,s] {v—l fagds.

2

It is natural to ask whether a difference set may also be a sum set or a partial sum set. The former
question is completely answered, and in the latter case we know of one family of difference sets that are
also partial sum sets.

Theorem 2.2. Let G be a group of order v, and let S C G. Then any two of the following statements
imply the third.

(i) S is a (v, k,\) difference set.
(i) S is a (v, k,p) sum set.
(i) S = S1).
In particular, a (v, k, \) difference set S is also a sum set if and only if S = S0,

Proof. Suppose (i) and (ii) hold. Then the integers (v, k, A) satisfy
E2=Xov—1)+k,
as S is a difference set. At the same time, the integers (v, k, ) must satisfy
k2 =p(v—1)4+ SN SEY,

as Sis asum set. If 4=\, then k= |SNSY|and so S = SV If u # ), then combining these two
equations we have
(p=Nw—-1)=k—|SNnSEY].

Now 0 < |SN S(’1)| <k so0<k-—|SN S(*l)\ < k. Since v — 1 divides k — |[S N S(’1)| and k < /2,
we must have k — SN S| =0. Hence |SN SV =k, s0 5 =501,

If (i) and (iii) hold, then S is reversible, so by Lemma 2.1, |C, s| = |Aq,s| for all nonidentity elements
a € G. Hence S is a sum set with g = A. Similarly, if (i) and (iii) hold, then by Lemma 2.1 S is a
difference set with A\ = p.

The final statement, which also follows from Corollary 2.5 in [7], is now clear. O

The next theorem appears as Theorem 3.1 in [1].

Theorem 2.3. A (v, k, \) skew Hadamard difference set is a (v, k, \, A\ + 1) partial sum set.

§ 3. Nonexistence and restriction of admissible parameters

We begin with a basic observation regarding sum sets in an arbitrary group G. Whenever a sum set
contains a pair of commuting elements, their product is generated at least twice. More formally, we have
the following:

Lemma 3.1. /fa (v, k, ) sum set S C G contains a pair of commuting elements, then 1 > 2. In particular,
if G is abelian, then p is even.
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Proof. The first claim is obvious. Suppose G is abelian, and suppose S C G is a (v, k, pt) sum set with p
odd. Form all possible products of two distinct elements of S. In doing so, each element of GG is generated
some even number of times. To satisfy i odd, there must then be at least one element s € S for each
nonidentity g € G such that s> = g. This is possible only if |S| > v — 1, so S is a trivial sum set. O

This simple lemma is enough to restrict a large class of groups from admitting sum sets.
Theorem 3.2. An abelian group of odd order admits no sum sets.

Proof. Let G be an abelian group of order v, with v odd. Suppose S is a (v, k, pt) sum set in G. Since 2
does not divide v, the elements 22 with = € S are all distinct. It follows that the number of ways to write
any such element as a product in .S must be odd, contradicting the fact that © must be even. O

The results established thus far allow us to reject certain admissible parameters (v, k, i), or at least to
rule out certain groups of order v from admitting sum sets. To extend our ability to restrict parameters,
we now consider how the existence of normal subgroups can affect whether a group may admit sum sets.
In particular, we consider how S may be partitioned by the cosets of a normal subgroup.

Suppose G is a group admitting a (o(G), k, 1) sum set S. Further suppose that N is a normal subgroup
of G. Let H be a group isomorphic to the quotient group G/N and label the cosets of N in G by N,
a € H, so that N,Ng = N,g. For each a € H, set X, = |S N N,|. Note that

> Xo=k (2)

acH

As S is a sum set, any nonidentity element g € G is generated p times as a product in S. Suppose
g € Ng and g = ab for some elements a,b € S. If a € N, then we must have b € N,-15. Now if 3 # 1,
then 1 ¢ Ng. Hence, every element of Ng is generated precisely 4 times as a product in S. But if 5 =1,
then each nonidentity element of N; is generated p times as a product in S while 1 is generated |S NS~
times. Thus,

_ Juo(N) if 81,
C;{XQXWB B {uo(NHISﬁS“Mu ifa=1 (3)

We may rewrite (1) as
1SN STV — p =k — .

Noting n. = |S N S| — i (= k2 — uw), (3) has the following equivalent formulation:

_ Jpo(N) if B#1,
o;{X&XWB - {uo(N) 4n fB=1 (4)

We note that as 3 varies over H, (4) yields a system of o( H) equations that effectively partitions (1). The

sum of their left-hand sides is
2
<Z Xa) ’
a€EH

which is simply k% by (2). Their right-hand sides, meanwhile, sum to po(N)ig(N) + n, which equals
1(o(G) — 1) +|S NS
The following is a consequence of (4):

Lemma 3.3. Let G be a group with N <G and S C G a sum set. If the center of G/N contains some
element which is not a square of any element in G/N, then po(IN) must be even.
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Proof. Set H = G/N as above, and suppose 3 € Z(H) is not a square; i.e. the equation 22 = /3 has no
solution in H. Clearly 8 # 1. As € Z(H),

NoNg-15 = Ny-13N, = Nj

for each v € H. Correspondingly, whenever the term X, X,-15 appears on the left-hand side of (4), so
too does the (equal) term X,-15X,. Moreover, since 3 is not a square, no term of the form X,% appears
on the left-hand side of (4). It follows that the left-hand side of (4) is divisible by 2, proving the claim. O

We now consider the possible values of X,. That is, if a nonsimple group admits a sum set S, how
may that sum set be distributed over the cosets of some normal subgroup N7 We consider the situation
where the intersection sizes X, take only two values. That is, suppose M C H such that

X, — m ifozEM,
I fag¢ M.

With only two values for X, (2) reduces to
m|M|+l(o(H) — |M]) = k.

We will count }_ _, XoXy-15 in a different way and compare the result to (4). Before counting, it will
be useful to define the set Mz = {8y~! : v € M}. Note that for any 8 € H, a € Mj if and only if
a~!'B e M. In particular, M N Mg = Cg pr. We have

Y XaXop= > mXorp+ Y 1Xe-1p

a€H aEM ag M
CY e Y we Y me Y@
aeMNMpg aceM\Mpg aeMg\M a€H\(MUM3g)

= [Cp,ar|m® + 2(|M| — Cs,ar|)ml + (o(H) — 2| M| + |Cg,m )12
= |Cs,m|(m — l)2 +2|M|ml + o(H)Z2 — 2|M|l2
= |Csu|(m — 1)? + 2[k + | M|l — o( H)I]l 4+ o(H)I* — 2| M|I?
= |C,37M\(m — l)2 + 2kl — O(H)ZQ

Combined with (4), we have

N if 1

Contl(m — 1% + 20 — o(H)i2 = M) if5#1L
pwo(N)+n if g=1.

Equation 5 has several immediate implications, which we summarize in a theorem.

Theorem 3.4.

(i) |Cs,m| = w is constant for all B # 1. Hence, M is a (o(H),|M]|,w) sum set in H. In particular, M
is a subgroup of H if and only if M = {1} or M = H.

(i) n = (|C1 p| —w)(m —1)2.
(i) If M = {1}, then

In particular n must be a square. Moreover, the parameters of the complementary sum set satisfy
the same equation with the opposite sign chosen.
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. _ _ _ po(N)
(iv) If M = H, thenn =0 and m = 25~

Proof. That M is a (o(H),|M|,w) sum set in H is clear. Hence, M is a subgroup of H only if M is a
trivial subgroup, i.e. M = {1} or M = H, in which case M is a trivial sum set as well. This proves the
first claim.
To prove the second claim, simply subtract (5) with 8 = 1 from the same equation with 5 # 1.
For the third claim, note the condition M = {1} is equivalent to [Cg as| = O for all 8 # 1. Substituting
into (5), we get
2kl — o(H)I* = po(N).

Solving this quadratic for [ yields the claimed result. That n must be a square is clear since [ must be an
integer. Considering the complement easily verifies the remainder of the third claim.

Finally, suppose M = H. Then we must have m = [, so the first term in (5) vanishes, rendering the
left-hand side independent of 3. It follows that n = 0. Hence, for any 8 € H we have

2km — o( H)m? = po(N).
But we also have k = o(H)m, and substituting yields km = po(N). The last claim follows. O

On the surface, the most tantalizing outcome of Theorem 3.4 is that even distribution of a sum set over
the cosets of a normal subgroup induces a sum set in the corresponding quotient group. The sum sets in
the quotient group may be trivial, however, though even then we can deduce much about the original sum
set in G.

Consider a group G which has a normal subgroup N of index 2. As there are only two cosets of IV in G,
any sum set S in G must intersect the cosets of N in at most two values. Regardless of how S is distributed
among the cosets, the corresponding sum set in the quotient group will be trivial (as the quotient group
has order 2). Nonetheless, the fact that there can be at most two intersection sizes of .S with cosets of N
leads to a restriction of the possible parameters of any sum set in G:

Theorem 3.5. Suppose S is a (v, k, ) sum set in G. If G has a normal subgroup N of index 2, then n is
a square. In particular, if k is odd, then n must be a nonzero square.

Proof. Let G/N = {Ny, N3}, so H = {1,B8}. If X; = Xpg, then necessarily X; = X3 = £ and n = 0.
If X1 # Xp, then without loss of generality A = {1}, hence n is a square. If k is odd, then the first
conclusion is impossible, and the second conclusion is possible only if n is nonzero. O

It should be noted Sumner and Butson [7] prove that the parameter n is necessarily a square, though
possibly n = 0. We include the above somewhat weaker result as it follows very naturally and directly from
our discussion.

We may obtain similar results under the assumption that G has a normal subgroup of index 3. If a sum
set intersects the three cosets of this subgroup in at most 2 distinct amounts, then Theorem 3.4 applies. If
the sum set intersects the cosets in three distinct amounts, we obtain the following.

Theorem 3.6. Suppose S is a (v, k, ) sum set in G, and suppose G possesses a normal subgroup N of
index 3. If S intersects the cosets of N in G in three distinct values, then 3 divides k, |S N N| = % and
n = —3x? for some integer x # 0.

Proof. Since N has index 3 in G, H = {1,h,h?}, the cyclic group of order 3. Applying (4) to the cases
B =h and 8 = h?, we obtain

X2 +2X, X, = po(N),
X7 +2X1Xp2 = po(N),

respectively. Combined, these equations yield

X? — XP =2X1 (X — Xp2).
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By assumption X}, # X2 so we may divide by X, — X2 to obtain
Xp + Xp2 = 2X5.

But we also know X7 + X, + Xp2 =k, hence [SNN| = X; = g

Set X; = § + x for some integer x # 0 so that X2 = % — x. Substituting these values for X}, and
Xp2 into X7, +2X1X), = po(N), we obtain

k‘2
IJ’O(N) - ? = {E2,

which is equivalent to the final claim. O

§4. Higher-order regularity and Abelian Sum Sets

Whenever we have said an element a can be generated “as a product in S”, it has been implied there exist
elements x,y € S such that a = zy. In other words, we have only considered the notion of writing an
element as the product of two elements of our set S. One might wonder whether our notion of additive
regularity can be extended to include sets for which every nonidentity element of the ambient group can
be expressed some constant number of times as a product of three (or four, or five, etc...) elements of the
set. Intuitively, we refer to this extended notion as “higher-order regularity.”

In what follows, we demonstrate that additive regularity implies higher-order regularity. Specifically, if S
is a sum set in the group G, then the number of ways to write elements of GG as the product of j elements
of S —for any j > 2 — is predictable and (almost) constant. This fact, interestingly, proves to be the key
to characterizing abelian sum sets.

The calculations that follow are most easily carried out in the integral group ring ZG. This ring consists
of all formal sums

> a9

geG

with ag € Z. For each element g € G there is a corresponding element 1g € ZG, though for simplicity
we identify 1g with g. Similarly, for any a; € Z write a11 € ZG simply as a;. Each subset of S C G
corresponds to a group ring element desg, which we write simply as S. Reusing notation in this fashion
is convenient because we will often be able to use facts about the group ring element S € ZG to deduce
facts about the subset S C G.

Addition in ZG is defined component-wise:

Z agg + Z bgg = Z(ag +bg)g

geG geG geG

If we define (ag)(bh) = (ab)(gh) for a,b € Z and g,h € G, then we can extend this rule via the standard
distributive laws to define multiplication in ZG. Expressions such as X!, where X € ZG and t € N are
then understood to mean multiplication of X with itself ¢ times.

Finally, for any X = deG agg € ZG and any integer ¢, define X0 = deG agg'. Note that
X £ X in general! This notation has the potential to create confusion, since if S C G, then we may use
the same notation to define the set S(*) = {s': s € S}. In this instance, the elements appearing in the set
S® will be precisely those elements whose coefficient in the group ring element S*) is nonzero. However,
if there exist 7 distinct elements in G whose ¢! powers equal some element g, then the coefficient of ¢ in
the group ring element S® will be 7, while of course g will appear but once in the set S*). Note that
when ¢ is relatively prime to the order of G, there is no potential for ambiguity. So, for example, if S C G
we may write S(—1) to mean both the set of inverses of S and the group ring element Y oses s~ 1 without
fear of confusion.
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Lemma 4.1. If S is a (v, k, 1) sum set, then for any m > 1,

v

Proof. We induct on m. When m = 1, the equation reduces to S2 = wG + n, which is correct. Now
assume the result holds for some m > 1 and consider S2(m+1).

SQ(erl) _ S2m52 — (

SIS

(K™ —n™)G +n™)(uG + n)

— B2 G %(kzm — ™)@ + ™G + n™

(2™ = ™) (0 + ) + (K2 = )]G +

H
v
1
v
1
—[(K*™ — n™k? 4 (k* — n)n™]G +n™T!
v

1
v

(k2m+2 _ nm—i—l)G + nm—i—l.
This completes the induction. O

Since in ZG, GS = SG = |S|G for any subset S, we also have
Corollary 4.2. If S is a (v, k, ) sum set, then for any m > 1,

S = %(W —n™)G +n"S.

These results are aesthetically satisfying, for they imply that additive regularity at a base level is enough
to ensure regularity at all higher levels. However, the corollary has a rather surprising consequence in the
case where G is abelian. This consequence — that every abelian sum set satisfies S = S(—1) — is the main
result of this section. To prove it, we will need the following well-known fact about arithmetic in ZG when
G is abelian:

Lemma 4.3 ([4] Lemma 3.3). Let p be a prime. If G is abelian, then for any S € ZG,
5P = 8P mod p.

We will also use the fact that for any odd prime p, a natural number j relatively prime to p is a quadratic
residue modulo p if and only if j®=1/2 =1 mod p.

The outline of the proof is as follows: first we prove that if S is an abelian sum set, then n # 0. Next,

we show n # 0 implies n is a square. From there, we are able to deduce that S = § for infinitely many
primes p, which leads to the result.

Theorem 4.4. If S is a (v, k, ) sum set in an abelian group G, then S is reversible.

Proof. Suppose S is a (v, k, ) sum set with n = 0. Then k? = pv. For any odd prime p, Corollary 4.2
says

SP = <k> kPTG = ukP2G.

v
Hence by Lemma 4.3, we have
pkP~2G = S mod p.

Provided p is relatively prime to both 1 and k this is impossible, because the group ring element pkP~2G
contains some nonzero constant number of copies of each element of GG, while S®) can not do this. Hence,
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n # 0. Next, suppose n is not a square. Then there must exist some odd prime p > v such that
n(P~1/2 = —1 mod p ([3], Chapter 5, Theorem 3). Thus,

vSP = kG(kP™! — np%l) +on"z S
=kG(1 —(-1)) +v(—1)S mod p
= 2kG — vS mod p.
Now p > v implies that p > k, so p can not divide 2k. Thus every element of G \ S appears in the

expression 2kG — vS, taken modulo p. Also, as n # 0, we know 2k # v. It follows that every element of
G appears in the expression 2kG — v.S, taken modulo p. But by Lemma 4.3, we know that

2kG — vS = vS5® mod p.

As before, this is impossible, so we conclude that if S is a sum set in an abelian group, then n must be a
square.
If n is a square, then n is a square modulo p for any prime p. Consequently, if p > v,

k pP— p—1

SP =GP —n"T ) 40T S

S-S

G(1-1)+(1)S mod p
= S mod p.

Lemma 4.3 now says that S() = S mod p for any prime p > v. But clearly this is possible only if S = §.

Now we are ready to show that S = S(-1). Let 2 € S. By Dirichlet's Theorem on arithmetic
progressions, there exists a prime p > v such that p = —1 mod o(z). We know S =8 soaxP =z"1eS.
The proof is complete. L

In the case where G is nonabelian, we can not deduce so much. One reason is that Lemma 4.3, which
was our primary tool in proving Theorem 4.4, does not apply. Although nonabelian sum sets exhibit the
same higher-order regularity as abelian sum sets, it is unclear whether this fact can be exploited to gain as
much information about the structure of nonabelian sum sets.

We have already seen in Theorem 4.4 that every abelian sum set is necessarily reversible. Thus, we now
have

Corollary 4.5. An abelian sum set is a reversible difference set. In particular, there are no cyclic sum sets.

Proof. A reversible sum set is necessarily a difference set, by Theorem 2.2, so the first result is obvious. The
second result, first obtained by Lam [5], now follows immediately as there are no reversible cyclic difference
sets [6]. O

§5. General Constructions

In Section 3 we saw how the existence of normal subgroups of small index can affect the possible structure
of sum sets. Here we look at the opposite end of the spectrum — normal subgroups of order 2. While normal
subgroups of small index proved useful in developing nonexistence results for sum sets, normal subgroups
of small order allow for simple, generic construction techniques for sum sets.

If N ={1,z} is a normal subgroup of G, then z € Z(G). Clearly any sum set S C G meets each coset
of N in either 0, 1, or 2 elements. We highlight two possible situations which will be of importance to us.

Definition 5.1. Let N < G, o(N) = 2, and let S C G be a sum set. We say S is type 1 with respect
to N if it does not intersect N but intersects each other coset of N in either 0 or 1 element. We say S' is
type 2 with respect to N if it intersects N in one element and intersects each other coset of N in either
0 or 2 elements.
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The motivation for these definitions will become apparent as we develop techniques for constructing sum
sets.

If S is a sum set, then the translate Sg = {sg : s € S} is generally not a sum set. However, if z is a
central involution, then we can write a = zy as a product in S if and only if we can write a = (z2)(yz) in
Sz. Thus, if z is a central involution, then Sz is a sum set with the same parameters as S. We can say
slightly more in the case where S is either type 1 or type 2 with respect to the normal subgroup N = {1, z}.

Lemma 5.2. Let S be a sum set in G and suppose G possesses a normal subgroup N = {1,z}. If S is
type 1 with respect to N, then Sz is also a type 1 sum set, necessarily disjoint from S. If S is type 2 with
respect to N, then Sz is also a type 2 sum set, and Sz differs from S in precisely one element.

Proof. That Sz is a sum set is clear from the preceeding discussion. Multiplying the elements of G by z
fixes all cosets of V. Thus S and Sz intersect the same cosets of V. If S is type 1, S and Sz intersect
those cosets in distinct elements, by definition. If S is type 2, then Sz contains the same nontrivial cosets
of N as S, while if S contains 1, then Sz contains z. If S contains z, then Sz contains 1. O

We now present a technique for constructing type 2 sum sets. Essentially, the process involves “lifting”
a partial sum set P in the group K to a partial sum set in the group G = K x {1, z}, which can then be
completed to a sum set by adjoining either 1 or z.

Theorem 5.3. Let P be a (v,k, 8 — 1,5) partial sum set in K not containing 1. Then S = P U Pz is
a (2v,2k,2B — 2,28) partial sum set in G = K x {1,z} if and only if |P N P(-V| = 3. Consequently,
when |P N PV = B, SU{1} and S U {z} are both (2v,2k + 1,20) type 2 sum sets in G with respect
to N = {1, z}.

Proof. It is clear that |S| = 2k, so we need only prove that S exhibits the claimed additive regularity.
Consider any element a € G\ N. Either a € K or a = bz for some b € K. We prove the number of
ways to write a as a product in S is twice the number of ways to write a as a product in P.
First suppose a € K and let a = xy be a representation for a as a product in P. Then a = zy is also
a representation for a as a product in S as P C S. In addition, a = (zz)(yz) is a representation for a as a
product in S. Conversely, whenever we can write ¢ = zy as a product in S it must be the case that both
x and y are in P or both are in Pz. Hence,

286—-2 ifaesS
Cas| =2|C = '
(Cavs] = 21Ca.pl {25 ifag¢s.
Now suppose a = bz for some b € K. Whenever b = xy is a representation for b as a product in P,
a = (zz)y and a = x(yz) are representations for b as a product in S. Conversely, whenever we can write
b = xy as a product in S, we must have precisely one of = or y in P and the other in Pz. Hence,

26—-2 ifa€es,
(Ca.sl = 2(Co.p| = {25 ifags.

Thus, with the exception of z, all nonidentity elements of G are represented as products in S in the
number of ways claimed. Note z ¢ S so we require z to be represented as a product in S in precisely
23 ways. Suppose z = xy where z,y € S. If x € P, then y = 7'z € Pz, so necessarily 2= € P.
Hence the number of ways to write z = xy where 2,5 € S and = € P is precisely |P N P(—V)|. Similarly
if 2 ¢ P, then we must have y € P and x = y~'z. Again, the number of ways to write z = xy in this
situation is |P N P(—1)|. Thus z can be written as a product in S in precisely 2|P N P(~1)| ways, so S is a
(2v, 2k, 28 — 2,2f3) partial sum set if and only if [P N P(-1)| = 3.

Finally if S'is a (2v, 2k, 258 — 2,20) partial sum set, then adjoining 1 to S increases the number of ways
to write each element of S as a product in S by 2 while not affecting the number of ways to write elements
not in S as products in S. Hence SU {1} is a (2v,2k + 1,20) sum set which is clearly type 2 with respect
to N. By Lemma 5.2, SU{z} = (SU{1})z is also a type 2 (2v,2k + 1,203) sum set. O
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This lifting process can be reversed in the sense that if .S is a type 2 sum set in G with respect to
the normal subgroup N, then there exists a partial sum set P in the group G/N. Hence there is a 2-
to-1 correspondence between type 2 sum sets in groups of order 2v and partial sum sets with particular
parameters in groups of order v.

Theorem 5.4. Let S be a (2v,2k 4+ 1,2f3) sum set in G, type 2 with respect to the normal subgroup
N ={1,z}. Then P=(S\ N)/N isa (v,k,8 —1,5) partial sum set in G/N.

Proof. If S is type 2, then S intersects N in one element, and S\ N is a (2v,2k, 25 — 2,2/3) partial sum
set. Forany a € G\ N, if z € Cy 5 then xz € C, g as well. Under the canonical homomorphism g — gN,
the elements x and zz are both mapped to xN. Hence, |Con,p| = %\CQ’S\NL The result follows. O

§ 6. Dihedral Constructions

The preceding constructions are of a general nature, and to apply them one must already be in possession
of some additively regular set. Dihedral groups provide a wealth of additively regular sets and an easily
exploitable group structure for constructing them. For any a,b € G, we use the standard notation a® for
b~lab. Throughout this section, we use the presentation

Dj=(z,t|2 = =1,2" =271)

to denote the dihedral group of order 2j.

We present two constructions for sum sets in D; with parameters (27, — 1, %) These parameters
imply j is even, so that Z(D;) has order 2. The first construction yields type 1 sum sets with respect to
Z(Dj) while the sum sets of the second construction are type 2 with respect to Z (D).

Theorem 6.1. Let C; = (x) be the cyclic group of order j where j > 4 is even. Let M be a maximally
skew set in C'; containing precisely one element from each coset of (x%). Set S = M UMt C D;. Then
SU{t} and SU{x%t} are both (2,5 — 1,152) type 1 sum sets with respect to Z(D;).

Proof. Set z = x2. Let M be a maximally skew set in C; containing precisely one element from each coset
of (2). As j is even, z is the unique involution in C;. The remaining j — 2 nonidentity elements each have
inverses distinct from themselves, so |M| = %

Fix some y € C;. For each w € M, consider the element w™'y. There are four possibilities:

Luwly=1 (sw=y),
2 wly=2 (e w=yz2),
3. w_ly c M,

4. wlye MY,

If y =1 or y = %, the first two cases are impossible. Hence every w € M is in either Cy ps or A; az, and
in either C, ar or A, pr. As M is skew, Cy pr N Ag, vt = () for any a € C;. We therefore have
j—2
Crn| + AL ar | = [Cona | + Az | = [M] = == (6)
If y ¢ {1,z}, then either y or y~1 isiin M. If y € M, then yz ¢ M by construction, so case 2 does not
occur. Similarly, if y ¢ M, then yz € M so case 1 does not occur. In either situation we have
j—4
Cyma| + Ay el = [M| =1 ="——. ()
Now we move from the group C; to the group D; = C; U C;t. Form the set S = M U Mt, and form
all possible products ab in S. There are again four distinct situations:
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l.aeM,be M,
2. a € Mt, be Mt,
3. ae Mt, be M,
4. g€ M, be Mt.

Note in the first two cases, the product ab is in C}, while in the latter two cases ab € Cjt.

Multiplication in D; obeys the rule ty = y~'t, for any y € C;. So, for example, for wy,wy € M,
(wit)we = wy(twy) = (wlwgl)t, while wy (wat) = (wywe)t. Hence, the number of ways to write yt as a
product in S is the sum of the number of ways to write y as a product in M and the number of ways to
write y as a quotient in M. It follows from (6) and (7) that

Cos| = % if a € {1,¢, z, zt},
@S % if a ¢ {1,t,2,2t}.

If we adjoin the element ¢ to .S, what new products can be generated? The set S contains none of the
elements {1,¢, z, zt}, so none of {¢,z, 2t} gains any additional representations as products. The identity
gains one additional representation, since t? = 1. If a € Dj is any element other than these four, then
precisely one of at or a~'tisin S. If at € S, then (at)t = a is a new way to write a as a product in S. On
the other hand, if a=1t € S then t(a='t) = a is a new way to write a as a product in S. Hence,

fa=1
C, —{2 ’
Ca.s014)] { 2 ifgq£1.

. MO
N

Thus, SU{t} is a (24,5 — 1, %) sum set in D;. A similar argument shows adjoining zt to .S produces
a sum set with the same parameters. The construction guarantees that the resulting sum set misses the
center of D; while containing precisely one element from each nontrivial coset of {1,z} = Z(D;). Thus,

these sum sets are type 1 with respect to Z (D). O

While type 1 dihedral sum sets with parameters (23,7 — 1, %) can be constructed in D; for all even
j >4, there is an additional restriction for type 2 dihedral sum sets with these parameters:

Lemma 6.2. A type 2 sum set with parameters (25,7 — 1, %) may exist in D; only if j = 2 mod 4.

Proof. If there exists a (27,5 — 1,%) sum set in D;, then j is necessarily even, so we may rewrite
these parameters as (4m,2m — 1,m — 1). By Theorem 5.4, if there exists a type 2 dihedral sum set
with parameters (4m,2m — 1,m — 1), then there must exist a (2m, m — 1, mT’g, mT’l) partial sum set in
Dy, /Z(Day,). Consequently type 2 sum sets with these parameters may exist in Dy, only if m is odd,

i.e. only if 7 =2 mod 4. O

In the case where m is odd, Da,, & D,,, X Z(Day,). Hence Doy, /Z(Day,) =2 Dy, so the problem of
constructing type 2 dihedral sum sets in Ds,, is equivalent to the problem of constructing partial sum sets
in D,, with liftable parameters. We now show how one may construct these partial sum sets.

The procedure begins with a maximally skew set in a group G of odd order, which we “twist” into a
partial sum set in the generalized dihedral group of G. That our starting set is skew guarantees (see Lemma
2.1) the partial sum set has parameters amenable to the lifting process described by Theorem 5.3. When
the group in which we begin is cyclic of odd order m, then the twist yields a partial sum set in D,,, which
is then lifted to a sum set in Do,,.

Theorem 6.3. Let G be a group of odd order m with M a maximal skew set in G. Then S = M U Mt is
a (2m,m — 1,22 1) partial sum set in DihG = G x {1,t}. These partial sum sets can be lifted to

(4m,2m — 1,m — 1) sum sets in DihG x Cs.
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Proof. As |[M| = mT_l |S| = m — 1. Suppose g = ab is a representation for ¢ € G as a product in S.
Then either a,b € M or a,b € Mt. By definition there are |Cy4 ar| ways to write g = ab as a product in M.
If a,b € Mt, then we have, for wy,ws € M,

g = (wit)(wat) = wy (twa)t = wy (wy ')t = wiwy .

Hence there are | A, a7| ways to write g as a product in Mt. Combined, there are thus |Cy ar| + | Ag,ar]
ways to write g as a product in S.

Similarly, if y = gt for some g € G, then the number of ways to write y as a product in S is
|Cq.ni| + | Ag.as|. Note y € S if and only if g € M.

By Lemma 2.1, we have
m=3 ifycsS
C = 2 '
Cu.s] {m21 if y ¢ S.

Thus, Sisa (2m,m — 1, mT*?’, mT’l) partial sum set in DihG, as claimed. That M is skew implies 1 ¢ M

and [SN SV = |Mt| = =L By Theorem 5.3, S can be lifted into a (4m,2m — 1,m — 1) sum set in

DihG x Cs. O
The partial sum set S = M U Mt C DihG can also be used to construct sum sets in the group

Dy = (x,t | 2/ = th=1,2" =271,

Note that this group is defined by a presentation very similar to the standard presentation for D;, except
the element ¢ which acts by inversion on the cyclic group () has order 4 rather than order 2. It is easily
seen that when j is odd, this group has center Z(D}) = {1,#2}, and D;/Z(D}) = D;.

Suppose S C Dj is a (2j,j — 1,%, jgl) partial sum set as described in Theorem 6.3. Using the
natural correspondence between D; and D7/Z(Dj), define

S = Jxz(D;).

zeS

That S* is a (47,25 — 2,7 — 3,7 — 1) partial sum set follows from an argument almost identical to that
used in Theorem 5.3. Hence, adjoining either central element to S* creates a (45,25 — 1,5 — 1) sum set in
D7. We summarize the preceding discussion as a theorem:

Theorem 6.4. The group .
D; = (z,t|lz) = th=1,2" =271)

admits (45,2j — 1,j — 1) sum sets whenever j is odd. These sum sets are all type 2 with respect to the
center {1,1*} of Dj.

Sum sets in the groups D; and D appear as Examples 6.3 and 6.4 in [7].

§ 7. Frobenius Constructions

We have seen how normal subgroups of a group G affect the possible size and shape of sum sets in G. In
this section, we consider a family of groups that admits both sum sets and partial sum sets. Interestingly,
these sum sets and partial sum sets are constructed with respect to subgroups which are not normal.

The groups in question are all Frobenius groups, so before proceeding with the constructions, we collect
some relevant information about Frobenius groups. For a more detailed treatment see Gorenstein [2]. Let
H be a subgroup of the group G. For any g € G, we write HY to represent the conjugate of H by g, i.e.
H9 =g 'Hg. If No(H) = H and H9 N H9 = {1} whenever H9 and HY are distinct conjugates of H
in G, then GG is called a Frobenius group and the subgroup H is called a Frobenius complement. Note any
conjugate of H also functions as a Frobenius complement in G.
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If G is a Frobenius group, then GG possesses a proper, nontrivial normal subgroup K, called the Frobenius
kernel of G, such that G = K x H, where H is a Frobenius complement. It can be shown Cg(b) < K for
all nonidentity b € K. Consequently, for any nonidentity b € K and hy, hy € H, we have b = b"2 if and
only if hy = ha. It follows o(H) < o(K) — 1 for any Frobenius group K x H, with equality if and only if
H acts regularly (i.e. sharply transitively) on the nonidentity elements of K. This regular action is the key
to our construction of additively regular sets in Frobenius groups.

Theorem 7.1. Let G = K x H be a Frobenius group where H acts regularly on the nonidentity elements
of K. Then the union of any j nontrivial left cosets of H is a (o(G),jo(H),j? — j,j%) partial sum set.
Any j nontrivial left cosets of H together with H is a (o(G), (j + 1)o(H), j2 + o(H), j + j) partial sum
set.

Proof. Whenever an arbitrary element bh € G, with b € K, h € H, is expressed as a product in G, we
have

bh = (byhy)(bohs)
= by (h1bohy ) hiho

= (biba' )(h1ha).

(Here, and throughout this proof, b; € K, h; € H.) Hence we require b = blbgl ' and h = hihs.

Now K N H = {1}, so for by,by € K we have byH = byH if and only if by = bs. So the set of
left cosets of H in G is the set {bH : b € K}. Choose j nonidentity elements by,...,b; € K, and set
S=bHU---UbjH. We count the number of ways to write an arbitrary element of G as a product in S.

Let bh € G, with b € K, h € H. For each b; € K such that b;H C S, consider the element bi_lb.
Provided b; # b, bi_lb # 1. As H acts regularly on the nonidentity elements of K, for any b; € {b1,...,b;}
there is a unique h; € H such that

b = b,
—1
With hi now fixed, there is a unique hy € H such that h = hi1hy. We have b = bibfll and h = hyhs, so
bh = (bih1)(bihs).

If bh € S, then b is one of the elements by, ...,b;, so there are j — 1 choices for b; in the preceding
argument, and then j choices for b;. Hence bh can be written as a product in S in (j —1)j = j2 — j ways.
If bh ¢ S, then there are j choices for b;, so bh can be written as a product in S in 52 ways. Thus, S is a
(o(G),jo(H),j? — j,j%) partial sum set.

Next we consider the set S U H. We have already counted the number of ways to write any element in
G as a product in S, so now we must only consider writing an arbitrary element bh, with b € K, h € H,
as a product bh = h;(b;h;) and as a product bh = (b;h;)hy.

First suppose bh € SUH. If b =1, i.e. bh = h € H, then from the previous argument there are ;2
ways to write h as a product in S. There are an additional o(H) ways to write h as a product in H, and
there is no way to write h as a product where one factor lives in H and the other does not. Hence, there
are j2 + o(H) ways to write any h € H as a product in S U H.

-1

If b # 1, then bh = h;(b;hy) if and only if b = b? and h = h;h;. As before, the regular action of H on
the nonidentity elements of K allows us to choose b; freely from by, ...,b;, whereupon h; and hence h; are
uniquely determined. This contributes j additional ways to write bh € S as a product in SU H. Finally, to
write bh as a product (b;h;)h; in S U H, then b must equal b;, but h; may be chosen freely and uniquely
determines h;. Hence bh € S can be written as a product in SU H in (j2 —j) +j+ o(H) = j2 + o(H)
ways, the same as the number of ways to write h € H as a product in SU H.

Now suppose bh ¢ S U H. There are j2 ways to write bh as a product in S. As previously argued,
the regular action of H on nonidentity elements of K provides j ways to write bh = h;(b;h;) as a product
in SU H. To write bh as a product (b;h;)h; we require b = b;. But we are assuming bh ¢ S, so
b¢ {b1,...,b;}. Hence it is impossible to write bh as a product (b;h;)h;. Thus, the total number of ways
to write bh ¢ S U H as a product in SU H is j2 + j. This completes the proof. O
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To make use of Theorem 7.1, we first must possess a Frobenius group K x H where H acts regularly
on the nonidentity elements of K, or equivalently, where o(H) = o(K) — 1. A sufficient condition for the
existence of such a group is that o(K) is a prime power.

For any prime power ¢, the set of invertible affine transformations of the form = — ax + b of the field
GF(q) forms a group Aff(q) of order g(q — 1). The set of maps for which @ = 1 forms a normal subgroup
K isomorphic to the additive group EA(q) of the field, while those maps for which b = 0 form a subgroup
H isomorphic to the field's multiplicative group Cy_;. It is easily checked that Aff(g) is Frobenius with
kernel K and complement H, and that H acts regularly on K. Hence we may apply Theorem 7.1 to the
group Aff(g). In particular, by fixing certain values of ¢, we can use the partial sum sets of Theorem 7.1 to
construct sum sets in certain subgroups of Aff(g) and in extensions of Aff(g).

First, we consider a partial sum set P C Aff(q) consisting of a single nontrivial left coset of H. By
Theorem 7.1, Pis a (q(¢ —1),qg — 1,0,1) partial sum set. Note that every element not in P is generated
precisely once as a product in P. In particular, simple counting shows that 1 must be generated precisely
once as a product in P, so [P N P("Y| = 1. Hence P is amenable to the lifting procedure described in
Theorem 5.3. That is, if {1, z} is the cyclic group of order 2, then P U Pz is a (2¢(q — 1),2(q¢ — 1),0,2)
partial sum set in Aff(¢) x {1,z}. Adjoining either 1 or z to P U Pz yields a (2¢(¢ —1),2¢q — 1,2) sum set.
We state this conclusion as a corollary to Theorems 5.3 and 7.1.

Corollary 7.2. For any prime power q, there exist sum sets with parameters (2q(q¢ — 1),2q — 1,2) in the
group Aff(q) x Csy, where Cy is the cyclic group of order 2.

If K x H is a Frobenius group and J is a nontrivial subgroup of H, then K x J is a Frobenius group
with kernel K and complement .J (if J is the identity subgroup then K x J 2 K is not Frobenius). The
Frobenius group Aff(q) has complement H = GF(q)*, so the subgroups of H correspond to divisors of
g—1. If d| (¢ — 1), then the subgroup of H of order d is the cyclic group Cy of order d, so we write
E A(q) x Cy to denote the corresponding Frobenius subgroup of Aff(gq). We now demonstrate the existence
of sum sets in all Frobenius subgroups of Aff(q).

Theorem 7.3. For any divisor d > 2 of ¢ — 1, the Frobenius group EA(q) x Cy admits sum sets with
parameters (qd,2q — 1, @).

Proof. The proof is similar to the proof of Theorem 7.1, so we adopt consistent notation. Let K = EA(q)
denote the Frobenius kernel of Aff(q), and let H denote the Frobenius complement. Let d > 2 be a divisor
of g— 1, and set G = K x (Y.

We begin by constructing a partial sum set in Aff(g). The induced action of Cy < H on the nonidentity
elements of K has (¢—1)/d orbits each of length d. Choose two elements from each orbit, say b1, b2, ..., b;,
where j = 2(¢ —1)/d. Set S =byHU---bjH. By Theorem 7.1, S is a partial sum set in Aff(¢g) with
parameters

(alg—1),5(a—1).5(¢ = D[jlg - 1) = 1, 7*(¢ — 1)*)
We claim SN G is a partial sum set in G.

Let bh € G, with b € K, h € H. For each b; such that b; H C S, consider the element b;lb. Provided
b; does not equal b, b; 'b # 1, so b;lb lives in one of the (¢ — 1)/d orbits of K induced by C,. Let b; be
an element of this orbit satisfying b H C S. There is a unique hy € Cy such that

b = b,
With hi now fixed there is a unique hy € Cy4 such that h = h1hs. We have b = bib;11 ' and h = hihs, so
bh = (bih1)(bihs).

If bh € SN G, then b is one of the elements by, ..., b;, so there are j — 1 choices for b; in the preceding
argument. Since we chose precisely two elements from each orbit of the action of C,; on the nonidentity
elements of K, there are two choices for b;. Thus bh can be written as a product in S N G in precisely
2(j — 1) ways. If bh ¢ SN G, then there are j choices for b;, so bh can be written as a product in SN G
in 25 ways. Hence SN G is a (¢gd,2(q —1),2(j — 1),25) partial sum set in G. Adjoining 1 to SN G yields
a (gd,2q —1, 4(%1)) sum set. O
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A few remarks about Theorem 7.3 are helpful. The key step in the proof is choosing precisely two
elements from each orbit of the induced action of Cy on K. More generally, choosing some constant
number of elements, say ¢, from each orbit will induce a partial sum set in the subgroup G, but unless
¢ = 2 this partial sum set will not be completable to a sum set. If we do not choose some constant number
of elements from each orbit, then S N G will not be a partial sum set.

When ¢ is odd, d = 2 is always a divisor of ¢ — 1, but the resulting sum set in FA(q) x Cy is a trivial
(2¢,2q — 1,2q — 2) sum set. When d = g — 1 the resulting sum set is in Aff(q) itself, so we have the
following corollary.

Corollary 7.4. In the group Afflq) = EA(q) x Cy_1, any two nonidentity cosets of C,_; together with 1
form a (¢(q — 1),2q — 1,4) sum set.
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