
Journal ˇr mat˙matis˜en Ablehnungen
Pa»r No.27 (2012)

On the classification of planar monomials over fields of square order

Robert S. Coulter and Felix Lazebnik

Department of Mathematical Sciences, University of Delaware,
Newark DE, 19716, U.S.A.

AMS Subject class: 11T06, 12E10

Keywords: planar functions, planar monomials, permutation polynomials

Note: This is a personal preprint; for correct page numbering and references please see the original
paper, the proper citation for which is:

R.S. Coulter and F. Lazebnik, On the classification of planar monomials of square order, Finite Fields
Appl. 18 (2012), 316–336.

Abstract

Let Fq be a finite field of characteristic p and Fq [X] denote the ring of polynomials in X over Fq .
A polynomial f ∈ Fq [X] is called a permutation polynomial over Fq if f induces a bijection of Fq

under substitution. A polynomial f ∈ Fq [X] is said to be planar over Fq if for every non-zero a ∈ Fq ,
the polynomial f(X + a)− f(X) is a permutation polynomial over Fq . Planar polynomials have only
been classified over prime fields, whereas the problem of classifying planar monomials has only been
completely resolved over fields of order p and p2. In this article we study planar monomials over fields
of square order, obtaining a complete classification of planar monomials over fields of order p4.

§ 1. Introduction

Let p be a prime, e a natural number, q = pe and let Fq denote the finite field of order q. For any integer n

with 0 ≤ n < q, we write n = (ae−1ae−2 · · · a0)p to denote the base p expansion of n; so n =
∑e−1
i=0 aip

i.
The ring of polynomials in X over Fq is denoted Fq [X]. A polynomial f ∈ Fq [X] is called a permutation

polynomial over Fq if f induces a bijection of Fq under substitution. A polynomial f ∈ Fq [X] is said to be
planar over Fq if for every non-zero a ∈ Fq , the polynomial f(X + a)− f(X) is a permutation polynomial
over Fq . It is straightforward to show

• no planar polynomial can exist over fields of even characteristic; and

• the polynomial X2 is planar over any field of odd characteristic.

In light of the first point, we assume that p is an odd prime in all that follows.
The slightly more general concept of a planar function was introduced in 1968 by Dembowski and

Ostrom [3], the concept arising naturally from their study of projective planes with a collineation group
acting transitively on the affine points. At the end of their paper, they suggested that all planar polynomials
might be of a special form; their suggestion is nowadays attributed to them as a conjecture.
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Conjecture 1 (Dembowski and Ostrom, 1968). A planar polynomial is necessarily a Dembowski-Ostrom
polynomial; that is, a polynomial over a finite field of characteristic p of the shape∑

i,j

aijX
pi+pj .

The conjecture was proved for prime fields around 1989 and 1990, independently by Gluck [5], Hiramine
[7], and Rónyai and Szönyi [10]. Johnson [8] had already proved the conjecture for monomials over prime
fields in 1987, while Coulter [1] established the conjecture for monomials over fields of order p2 in 2006.
In 1997, Coulter and Matthews [2] showed the conjecture to be false in characteristic 3, the smallest
counterexample being X14 over F34 . However, the infinite class of counterexamples given in that article
remain the only ones known (up to equivalence), and the conjecture remains open for any characteristic
larger than 3.

In this paper we consider planar monomials over fields of square order. We prove Conjecture 1 for fields

of order p4 with p ≥ 5, and reduce the problem significantly for all fields of order p2
k

with p ≥ 5 and k ≥ 3.
Our main results are given in Section 3.

§ 2. Background results

For the convenience of the reader, we gather the most relevant background results together in this section.
Most critical to our approach is the classical criterion of Hermite for a polynomial to be a permutation

polynomial.

Lemma 2 (Hermite, [6]; Dickson, [4]). A polynomial f ∈ Fq [X], q = pe, is a permutation polynomial over
Fq if and only if

(i) f has exactly one root in Fq , and

(ii) the reduction of f t mod (Xq −X), with 0 < t < q− 1 and t 6≡ 0 mod p, has degree less than q− 1.

We will also need the following well known theorem of Lucas.

Lemma 3 (Lucas, [9]). Let p be a prime and α ≥ β be positive integers with α = (αt · · ·α0)p and
β = (βt · · ·β0)p. Then (

α

β

)
≡

t∏
i=0

(
αi
βi

)
mod p,

where we use the convention
(
n
k

)
= 0 if n < k.

The following lemma simplifies the planarity condition for monomials.

Lemma 4 (Coulter and Matthews, [2, Proposition 2.4]). The polynomial Xn is planar over Fq if and only
if (X+1)n−Xn is a permutation polynomial over Fq . Further, if Xn is a planar polynomial over Fq , then
n ≡ 2 mod p− 1 and (n, q − 1) = 2.

The following corollary of Lemma 4 is used often in this paper.

Lemma 5. If Xn is planar over Fq , then Xn is planar over every subfield of Fq .

We note that when q = pe = p2w and n = (ae−1 · · · a0)p,

n =

e−1∑
i=0

aip
i ≡

w−1∑
i=0

(ai + ai+w)p
i mod (pw − 1),

so that by Lemma 5 the w-tuple

(a0 + a0+w, a1 + a1+w, . . . , aw−1 + ae−1)

arises naturally when considering the planarity of Xn over Fq .
As already mentioned, the classification of planar monomials over prime fields was given by Johnson.
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Lemma 6 (Johnson, [8, Theorem 4.6]). The monomial Xn is planar over Fp , p an odd prime, if and only
if n ≡ 2 mod (p− 1).

The classification of planar monomials over fields of order p2 reads similarly.

Lemma 7 (Coulter, [1, Theorem 2.1]). The monomial Xn is planar over Fp2 , p an odd prime, if and only
if n ≡ 2pj mod (p2 − 1) for some integer 0 ≤ j < 2.

Finally, we will use the following important fact.

Lemma 8 (Coulter and Matthews, [2, Theorem 2.3]). The monomial Xn is planar over Fq if and only if

Xnpi is planar over Fq for any non-negative integer i.

The practical consequence of Lemma 8 is that when considering the planarity Xn over Fpe with n =
(ae−1 · · · a0)p, we can, to suit our needs, consider any Xk, where k = (ae−i−1 · · · a0ae−1 · · · ae−i)p is a
“cyclic shift” of n.

§ 3. Outline of article and main results

We now outline the logic of our approach and state the key theorems of this article. Since Xn and
Xn mod (q−1) are planar equivalent, we shall only consider monomials of degree less than q − 1.

Theorem 9. Let q = pe with p an odd prime and e = 2w with w ≥ 2. Suppose Xn is planar over Fq ,
n < q, and there exists an integer j, 0 ≤ j < w, for which n ≡ 2pj mod (pw − 1). If n = (ae−1 · · · a0)p,
then some cyclic shift of the w-tuple

(a0 + a0+w, a1 + a1+w, . . . , aw−1 + ae−1)

must be one of the following:
(0, 0, . . . , 0, 2),

(p− 1, p− 1, . . . , p− 1, p+ 1), or

(0, 0, . . . , 0︸ ︷︷ ︸
m≥0 times

, p, p− 1, p− 1, . . . , p− 1︸ ︷︷ ︸
w−2−m times

, 1).

We shall refer to the three possible w-tuples listed in the above theorem as Cases 1, 2 and 3, respectively.
The planarity of Cases 1 and 2 can be resolved completely.

Theorem 10. Let q = pe with p an odd prime and e = 2w with w ≥ 2. Let the natural number n < q be
given by n = (ae−1 · · · a0)p, and suppose

V = (a0 + a0+w, a1 + a1+w, . . . , aw−1 + ae−1) = (0, 0, . . . , 0, 2).

Then Xn is planar over Fq if and only if n = 2pj for some integer 0 ≤ j < e.

Theorem 11. Let q = pe with p an odd prime and e = 2w with w ≥ 2. Let the natural number n < q be
given by n = (ae−1 · · · a0)p, and suppose

V = (a0 + a0+w, a1 + a1+w, . . . , aw−1 + ae−1) = (p− 1, p− 1, . . . , p− 1, p+ 1).

Then Xn is not planar over Fq .

We note that Theorem 9 provides a way forward to proving Conjecture 1 for monomials over all fields
of order pe, p ≥ 5, with e = 2k. Using Lemmas 6 and 7 as base cases, an inductive argument on k can be
employed. If one could show, for arbitrary k ≥ 2, that Case 3 contains no examples of planar monomials,
then the conditions of Theorem 9 would be satisfied inductively, and Conjecture 1 would be established for
monomials over these fields. We are unable to do this in general, though we do complete the classification
of planar monomials when k = 2.
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Theorem 12. The polynomial Xn is planar over Fp4 , p ≥ 5 an odd prime, if and only if n ≡ 2pj mod (p4−
1) for some integer 0 ≤ j < 4.

Before we present our proofs, we feel it beneficial to give an outline of the proof of this last theorem,
as it encompasses most of the general ideas in this article.

Suppose Xn is planar over Fp4 , with n = (a3 a2 a1 a0)p. By Lemma 5, Xn must be planar over both
Fp and Fp2 . The classifications of planar monomials over these fields, see Lemmas 6 and 7, show that the
conditions of Theorem 9 are satisfied, and therefore a cyclic shift of the 2-tuple (a0 + a2, a1 + a3) must be
one of (0, 2), (p− 1, p+1), or (p, 1). Theorem 11 and two lemmas to be established – Lemmas 13 and 14
– exclude the latter two possibilities, while Theorem 10 confirms the form of n in the first case, completing
the proof.

Theorem 12 completes the classification of planar monomials over all fields of order p4 with p an odd
prime. The case p = 3 is easily checked via computation – the only additional planar monomials obtained
are equivalent to the monomial Xn with n = (3α + 1)/2, α odd. As mentioned in the introduction, these
constitute the smallest counterexamples to the Dembowski-Ostrom conjecture.

The remainder of the article consists of the proofs of Theorems 9, 10, 11 and 12. We note that our
method for establishing Theorem 12 does not appear to generalise in any natural way to a proof that Case
3 yields no further example of a planar monomial in any field of order pe where p ≥ 5 and e = 2k, k ≥ 3.

§ 4. Proof of Theorem 9

By hypothesis,
n ≡ 2pj mod (pw − 1),

with 0 ≤ j < w. Without loss of generality we may assume j = w− 1, as otherwise we may apply Lemma
8 to obtain n′ with the desired property. Such an application will result in a cyclic shift of the w-tuple

V = (a0 + a0+w, a1 + a1+w, . . . , aw−1 + ae−1).

We shall refer to the (i+ 1)st term of this tuple by V [i]. We have

n =

e−1∑
i=0

aip
i ≡

w−1∑
i=0

(ai + ai+w)p
i mod (pw − 1)

≡
w−1∑
i=0

V [i]pi mod (pw − 1)

≡ 2pw−1 mod (pw − 1),

where the last step follows from our initial comments above. Since 0 ≤ ai ≤ p− 1 for all i, it follows that

w−1∑
i=0

V [i]pi = t(pw − 1) + 2pw−1,

where t ∈ {0, 1}.
Suppose t = 1. Then

w−1∑
i=0

V [i]pi = pw − 1 + 2pw−1. (1)

Firstly, (1) modulo p yields V [0] ≡ −1 mod p. As 0 ≤ ai ≤ p−1 for all i, it follows that V [0] = a0+aw =
p− 1. Suppose for some integer j that V [i] = p− 1 for all 0 ≤ i < j < w − 1. Equation 1 modulo pj+1

yields
w−1∑
i=0

V [i]pi ≡ −1 mod pj+1.
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On the other hand,

w−1∑
i=0

V [i]pi ≡
j∑
i=0

V [i]pi mod pj+1

≡ (p− 1)
pj − 1

p− 1
+ V [j]pj mod pj+1

≡ −1 + pj(1 + V [j]) mod pj+1.

Thus
−1 + pj(1 + V [j]) ≡ −1 mod pj+1,

so that 1 + V [j] is a multiple of p. Hence V [j] = aj + aj+w = p− 1. By induction we have V [i] = p− 1
for 0 ≤ i < w − 1. Returning to (1) yields

pw − 1 + 2pw−1 =

w−1∑
i=0

V [i]pi

= (p− 1)
pw−1 − 1

p− 1
+ V [w − 1]pw−1

= −1 + pw−1(1 + V [w − 1]),

from which it follows that V [w − 1] = p+ 1. So when t = 1 we must have

V = (p− 1, p− 1, . . . , p− 1, p+ 1).

Now suppose t = 0, so that
w−1∑
i=0

V [i]pi = 2pw−1. (2)

We follow a similar procedure to the previous case. To begin, we have V [0] ≡ 0 mod p. It follows that
V [0] = a0 + aw = 0 or p. Suppose for some j, V [i] = 0 for all 0 ≤ i < j < w − 1. Then (2) modulo
pj+1 yields V [j]pj ≡ 0 mod pj+1, from which we have V [j] = 0 or p. In particular, if V [i] = 0 for all
0 ≤ i < w − 1, then (2) implies V [w − 1] = 2, so that

V = (0, 0, . . . , 0, 2).

Otherwise, there exists some integer m, 0 ≤ m < w − 1, for which V [i] = 0 for all 0 ≤ i < m and
V [m] = p. If m = w − 2, then we must have V [w − 1] = 1 by (2). Otherwise, taking (2) modulo pm+2

yields (1 + V [m+ 1])pm+1 ≡ 0 mod pm+2, so that V [m+ 1] = p− 1. Now an inductive argument shows
V [i] = p− 1 for all m+1 ≤ i < w− 1 and V [w− 1] = 1. (We omit the details as they are almost exactly
the same as our earlier induction.) Thus, in our final case we must have

V = (0, 0, . . . , 0︸ ︷︷ ︸
m≥0 times

, p, p− 1, p− 1, . . . , p− 1︸ ︷︷ ︸
w−2−m times

, 1).

§ 5. Resolution of Cases 1 and 2

Next we establish Theorems 10 and 11. The first proof is straightforward.

Proof of Theorem 10. Suppose V = (0, 0, . . . , 0, 2). Then either n = 2pw−1, 2p2w−1 or pw−1 + p2w−1.
Suppose n = 2pw−1 or 2p2w−1. An application of Lemma 8 to Xn shows that it is planar equivalent

to X2, and we have already noted X2 is planar over any field of odd characteristic.
On the other hand, since (pw−1 + p2w−1, q − 1) = pw + 1 > 2, Xn with n = pw−1 + p2w−1 cannot be

planar over Fq by Lemma 4.
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Case 2 is more involved; it is a direct generalisation of the proof of [1], Theorem 2.1.

Proof of Theorem 11. Set f(X) = (X+1)n−Xn andQ = pw. Note q = p2w = Q2. Since aw−1+a2w−1 =
p+ 1, we must have 2 ≤ aw−1 < p and 2 ≤ a2w−1 < p. Consider the polynomial

f(X)Q+1 = (X + 1)n(Q+1) +Xn(Q+1) −XnQ(X + 1)n −Xn(X + 1)nQ. (3)

We show that the reduction of f(X)Q+1 modulo Xq−X has degree q−1. It will then follow from Lemma
2 that f cannot be a permutation polynomial over Fq and so Xn is not planar over Fq , establishing the
result. We consider the reduction of each summand on the right hand side of (3) separately, determining
the coefficient of Xq−1 in each case.

Set h(X) = (X + 1)n. Since h ∈ Fp [X], it follows from Lemma 3 that

h(X) =

a0∑
α0=0

a1∑
α1=0

· · ·
a2w−1∑

α2w−1=0

(
2w−1∏
i=0

(
ai
αi

))
XF (α0,α1,...,α2w−1),

where F (α0, α1, . . . , α2w−1) =
∑2w−1
i=0 αip

i. We also have

h(X)Q ≡
a0∑

α0=0

a1∑
α1=0

· · ·
a2w−1∑

α2w−1=0

(
2w−1∏
i=0

(
ai
αi

))
XG(α0,α1,...,α2w−1) mod (Xq −X),

where G(α0, α1, . . . , α2w−1) =
∑w−1
i=0 αip

w+i + αw+ip
i. It follows that h(X)Q+1 mod (Xq −X) is

a0∑
α0=0

· · ·
a2w−1∑

α2w−1=0

a0∑
β0=0

· · ·
a2w−1∑
β2w−1=0

(
2w−1∏
i=0

(
ai
αi

)(
ai
βi

))
XF (α0,...,α2w−1)+G(β0,...,β2w−1).

It is clear from their general forms that both F and G are always less than q − 1. Consequently,

F (α0, . . . , α2w−1) +G(β0, . . . , β2w−1) =

w−1∑
i=0

(αi + βw+i)p
i + (αw+i + βi)p

w+i

< 2(q − 1).

Hence the only terms of degree q − 1 in h(X)Q+1 mod (Xq −X) are those terms where

F (α0, . . . , α2w−1) +G(β0, . . . , β2w−1) = q − 1. (4)

Since 0 ≤ αi, βi ≤ ai, we have αi + βw+i ≤ ai + aw+i and αw+i + βi ≤ aw+i + ai for all 0 ≤ i ≤ w − 1.
We note the form of V ,

V = (a0 + a0+w, a1 + a1+w, . . . , aw−1 + ae−1)

= (p− 1, p− 1, . . . , p− 1, p+ 1),

thus provides upper bounds on αi + βw+i and αw+i + βi.
For (4) to hold, the bounds just given imply αi+βw+i = αw+i+βi = p−1 for all 0 ≤ i ≤ w−1. Thus

we must have αi = βi = ai for 0 ≤ i ≤ w−2, w ≤ i ≤ 2w−2, and αw−1+β2w−1 = α2w−1+βw−1 = p−1.
However, both αw−1 + β2w−1 and α2w−1 + βw−1 are bounded by aw−1 + a2w−1 = p + 1. Therefore, we
have

aw−1 − 2 ≤ αw−1 ≤ aw−1,
aw−1 − 2 ≤ βw−1 ≤ aw−1,
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and selection of αw−1 and βw−1 completely determines β2w−1 and α2w−1, respectively. Thus the coefficient
of Xq−1 in h(X)Q+1 mod (Xq −X) is

c =

aw−1∑
αw−1=aw−1−2

aw−1∑
βw−1=aw−1−2

(
aw−1
αw−1

)(
a2w−1

p− 1− αw−1

)(
aw−1
βw−1

)(
a2w−1

p− 1− βw−1

)

=

 aw−1∑
αw−1=aw−1−2

(
aw−1
αw−1

)(
a2w−1

αw−1 + 2− aw−1

)2

.

Expanding yields

c =

((
aw−1
2

)
+

(
aw−1
1

)(
a2w−1

1

)
+

(
a2w−1

2

))2

=

(
aw−1(aw−1 − 1)

2
+ aw−1a2w−1 +

a2w−1(a2w−1 − 1)

2

)2

≡
(
aw−1(aw−1 − 1)

2
+ aw−1(1− aw−1) +

−aw−1(1− aw−1)
2

)2

mod p

≡ 0 mod p.

Hence we get no term of degree q − 1 from (X + 1)n(Q+1) mod (Xq −X).

The next summand is Xn(Q+1). Recalling n ≡ 2pw−1 mod (Q− 1), we see that n(Q+1) ≡ 2p2w−1 +

2pw−1 mod q − 1. It follows that Xn(Q+1) ≡ X2p2w−1+2pw−1

mod (Xq−X). So we get no term of degree
q − 1 from Xn(Q+1).

Considering the third summand, we have

XnQ(X + 1)n ≡ XG(a0,...,a2w−1)h(X) mod (Xq −X)

≡
a0∑

α0=0

a1∑
α1=0

· · ·
a2w−1∑

α2w−1=0

(
2w−1∏
i=0

(
ai
αi

))
XH(α0,α1,...,α2w−1) mod (Xq −X),

where H(α0, α1, . . . , α2w−1) =
∑w−1
i=0 (αi + aw+i)p

i + (αw+i + ai)p
w+i. The only term of degree q− 1 in

XnQ(X+1)n mod (Xq−X) is the term where αi = p−1−aw+i and αw+i = p−1−ai for 0 ≤ i ≤ w−1.
The coefficient of this term is (

aw−1
2

)(
a2w−1

2

)
.

Determining the coefficient of Xq−1 in the final summand Xn(X + 1)nQ is completely similar to the
previous one, and produces the same coefficient.

In summary, the coefficient of Xq−1 in f(X)Q+1 mod (Xq −X) is

−2
(
aw−1
2

)(
a2w−1

2

)
= −2

(
aw−1(aw−1 − 1)

2

)(
a2w−1(a2w−1 − 1)

2

)
≡ −2

(
aw−1(aw−1 − 1)

2

)2

mod p

6≡ 0 mod p,

as 2 ≤ aw−1 ≤ p− 1. Hence f(X)Q+1 mod (Xq −X) has degree q − 1, and by Hermite’s Criteria, f(X)
cannot be a permutation polynomial over Fq .
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§ 6. Case 3

In this final section, we prove Theorem 12. Though long and technical, the proof is straightforward. As
noted in Section 3, we need only deal with Case 3 of Theorem 9. Our proof involves two sub-cases,
dependent on whether or not the base p expansion of n has a digit of size p − 1. We first deal with the
case when it does not.

Lemma 13. Set p ≥ 5 and q = p4. Fix n = (a3 · · · a0)p and suppose

V = (a0 + a2, a1 + a3) = (p, 1).

If 0 ≤ ai < p− 1 for all 0 ≤ i < 4, then Xn is not planar over Fq .

Proof. Let h(X) = (X + 1)n. By Lemma 3, we have

h(X) =

a0∑
α0=0

a1∑
α1=0

a2∑
α2=0

a3∑
α3=0

(
3∏
i=0

(
ai
αi

))
Xα0+α1p+α2p

2+α3p
3

. (5)

Set g(X) = (h(X)−Xn)1+p+p
2+p3 mod (Xq −X). We shall prove g(X) has degree q − 1, thus proving

Xn is not planar. As

g(X) =

3∏
i=0

(
(X + 1)np

i

−Xnpi
)
,

there are 16 resulting polynomials in the expansion to be considered, and we group them into the following
cases:

(i) Xn(1+p+p2+p3),

(ii)

{(
h(X)Xn(p+p2+p3)

)pi
: i ∈ {0, 1, 2, 3}

}
,

(iii)

{(
h(X)1+p

2

Xn(p+p3)
)pi

: i ∈ {0, 1}
}

,

(iv)

{(
h(X)1+pXn(p2+p3)

)pi
: i ∈ {0, 1, 2, 3}

}
,

(v)

{(
h(X)1+p+p

2

Xnp3
)pi

: i ∈ {0, 1, 2, 3}
}

,

(vi) h(X)1+p+p
2+p3 .

We group them as such because the arguments used for determining the coefficient of any given term Xk

modulo Xq −X for any two polynomials in the same case will be alike, up to and including the coefficient
of the term of degree q − 1. Consequently, the actual coefficient of the degree q − 1 term is the same
for all polynomials within a given case. Before continuing, we mention that only Case (iv) will generate a
non-zero coefficient and it is only in this case that we need rely on the hypothesis that all p-digits of n are
strictly less than p− 1.

Since V = (p, 1), we know a0+a1+a2+a3 = p+1. It is worth noting that the maximum degree term we
must deal with in any of the polynomials in any of these cases is given by (1+p+p2+p3)(a0+a1+a2+a3) =
(1 + p+ p2 + p3)(p+ 1) < 2(q − 1). Consequently, the only term of degree q − 1 in a given case modulo
Xq − X will result precisely from the term of degree q − 1 without reduction in the final multiplication,
provided we have reduced the result of raising either h(X) or Xn to any given required power of p.

We now determine the coefficient of Xq−1 in each case modulo Xq −X.



R.S. Coulter and F. Lazebnik, On the classification of planar monomials over fields of square order 9

(i) Using the base p expansion of n, we see

Xnp mod (Xq −X) = Xa3+a0p+a1p
2+a2p

3

Xnp2 mod (Xq −X) = Xa2+a3p+a0p
2+a1p

3

(6)

Xnp3 mod (Xq −X) = Xa1+a2p+a3p
2+a0p

3

.

Consequently, Xn(1+p+p2+p3) ≡ Xk mod (Xq−X) where k = (1+p+p2+p3)(a0+a1+a2+a3) =
(1 + p + p2 + p3)(p + 1). Since q < k < 2(q − 1), it is clear this term does not reduce to Xq−1

modulo Xq −X.

(ii) We consider h(X)Xn(p+p2+p3) mod (Xq −X). As noted, we need only determine the coefficient of

the term of degree q − 1 in h(X)Xn(p+p2+p3). In the expansion of

h(X)XnpXnp2Xnp3 ,

by combining (5) and (6), we arrive at the equations

p− 1 = α0 + a3 + a2 + a1

= α1 + a0 + a3 + a2

= α2 + a1 + a0 + a3

= α3 + a2 + a1 + a0.

Here 0 ≤ αi ≤ ai for each i. However, there are no solutions to this system as a0 + a2 = p > p− 1.
So there is no term of degree q − 1 in any of the polynomials in this case.

(iii) We consider h(X)1+p
2

Xn(p+p3) mod (Xq −X). Proceeding as in the previous case, we obtain the
four equations

p− 1 = α0 + a3 + β2 + a1

= α1 + a0 + β3 + a2

= α2 + a1 + β0 + a3

= α3 + a2 + β1 + a0,

with 0 ≤ αi, βi ≤ ai for each i. Here, we use {αi} for the exponents in h(X) and {βi} for the

exponents in h(X)p
2

mod (Xq − X). Again, as with the previous case we find no solution to this
system because a0+a2 = p > p−1. Hence we get no term of degree q−1 in any of the polynomials
in this case.

(iv) We consider h(X)1+pXn(p2+p3) mod (Xq −X). The four equations which result in this case are

p− 1 = α0 + β3 + a2 + a1

= α1 + β0 + a3 + a2

= α2 + β1 + a0 + a3

= α3 + β2 + a1 + a0,

with 0 ≤ αi, βi ≤ ai for each i. There are two possible situations: either a1 = 0 and a3 = 1, or
a1 = 1 and a3 = 0. The two situations yield symmetric arguments, and so we deal with the case
where a1 = 0 and a3 = 1 only. It is immediate that α1 = β1 = 0 and 0 ≤ α3, β3 ≤ 1. Using the fact
a0 + a2 = p, the 4 equations reduce to

α0 = a0 − 1− β3
β0 = a0 − 2

α2 = a2 − 2

β2 = a2 − 1− α3.



10 J. math. Ablehnungen 27 (2012)

Thus, when a3 = 1, the coefficient of Xq−1 in h(X)1+pXn(p2+p3) mod (Xq −X) is given by(
a0
2

)(
a2
2

) 1∑
α3=0

1∑
β3=0

(
a0

β3 + 1

)(
a2

α3 + 1

)
=

(
a0a2(a0 + 1)(a2 + 1)

4

)(
a0
2

)(
a2
2

)
.

As mentioned, if a1 = 1 and a3 = 0, then we get a symmetric argument which yields the same
coefficient. There are 4 polynomials in this case with the same coefficient for Xq−1, and so the sum
total of this case’s contribution to the coefficient of the Xq−1 term in g(X) is

a0a2(a0 + 1)(a2 + 1)

(
a0
2

)(
a2
2

)
,

which is non-zero modulo p as ai < p− 1 by hypothesis.

(v) We consider h(X)1+p+p
2

Xnp3 mod (Xq −X). The four equations which result in this case are

p− 1 = α0 + β3 + γ2 + a1

= α1 + β0 + γ3 + a2

= α2 + β1 + γ0 + a3

= α3 + β2 + γ1 + a0,

with 0 ≤ αi, βi, γi ≤ ai for each i. As with the previous case, we deal with the situation where
a0 = 0, a3 = 1; the other case yielding a symmetric argument. Using a0+a2 = p where appropriate,
the four equations now reduce to

α0 + γ2 = p− 1− β3
β0 = a0 − 1− γ3

α2 + γ0 = p− 2

β2 = a2 − 1− α3.

Using our bounds on αi, βiγi, we may reduce the first and third equations further:

a0 − 1− β3 ≤ α0 ≤ a0
a2 − 2 ≤ α2 ≤ a2.

Thus the resulting coefficient of Xq−1 in this case, with a3 = 1, is given by

1∑
α3=0

1∑
β3=0

1∑
γ3=0

a0∑
α0=a0−1−β3

a2∑
α2=a2−2

(
a0
α0

)(
a2
α2

)(
a0

γ3 + 1

)(
a2

α3 + 1

)(
a0

p− 2− α2

)(
a2

p− 1− β3 − α0

)
.

This summation may be rewritten as the product S1S2S3S4 where

S1 =

1∑
β3=0

a0∑
α0=a0−1−β3

(
a0
α0

)(
a2

p− 1− α0 − β3

)
,

S2 =

a2∑
α2=a2−2

(
a2
α2

)(
a0

p− 2− α2

)
,

S3 =

1∑
α3=0

(
a2

α3 + 1

)
,

S4 =

1∑
γ3=0

(
a0

γ3 + 1

)
.
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Using a0 + a2 = p, one finds

S1 =

(
a0
1

)(
a2
a2

)
+

(
a0
a0

)(
a2
1

)
+

(
a0
2

)(
a2
a2

)
+

(
a0
1

)(
a2
1

)
+

(
a0
a0

)(
a2
2

)
= a0 + a2 + a0a2 +

a20 − a0 + a22 − a2
2

= p+
(a0 + a2)

2 − (a0 + a2)

2

= p+ p

(
p− 1

2

)
≡ 0 mod p.

Thus we get no term of degree q − 1 from any of the polynomials in this case.

(vi) For (X + 1)n(1+p+p
2+p3), following in much the same way as the previous cases, we obtain the four

equations

p− 1 = α0 + β3 + γ2 + δ1

= α1 + β0 + γ3 + δ2

= α2 + β1 + γ0 + δ3

= α3 + β2 + γ1 + δ0,

with 0 ≤ αi, βi, γi, δi ≤ ai for each i. Again we concentrate on the situation with a1 = 0 and a3 = 1,
knowing a similar argument produces the same results for the alternate possibility. Our four equations
simplify to

α0 + γ2 = p− 1− β3
β0 + δ2 = p− 1− γ3
α2 + γ0 = p− 1− δ3
β2 + δ0 = p− 1− α3.

In much the same way as the previous case, these equations force the following bounds:

a0 − 1− β3 ≤ α0 ≤ a0,
a0 − 1− γ3 ≤ β0 ≤ a0,
a2 − 1− δ3 ≤ α2 ≤ a2
a2 − 1− α3 ≤ β2 ≤ a2.

Thus the coefficient of Xq−1 in this case, with a3 = 1, is given by

1∑
α3=0

1∑
β3=0

1∑
γ3=0

1∑
δ3=0

a0∑
α0=a0−1−β3

a0∑
β0=a0−1−γ3

a2∑
α2=a2−1−δ3

a2∑
β2=a2−1−α3

(
a0
α0

)(
a2
α2

)
×

(
a0
β0

)(
a2
β2

)(
a0

p− 1− δ3 − α2

)(
a2

p− 1− β3 − α0

)(
a0

p− 1− α3 − β2

)(
a2

p− 1− γ3 − β0

)
.

Rearranging this sum, we extract the factor

1∑
β3=0

a0∑
α0=a0−1−β3

(
a0
α0

)(
a2

p− 1− β3 − α0

)
,

which is the same as S1 from the previous case. Again we may conclude that we obtain no term of
degree q − 1 in this case.
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We have completed our examination of the various cases. Only one of our cases yielded a non-zero coefficient
for Xq−1 in g(X), and thus g(X) has degree q − 1. By Hermite’s criteria we know (X + 1)n −Xn is not
a permutation polynomial over Fq , and thus Xn is not planar over Fq .

It remains to resolve the case where the base p expansion of n contains a digit of size p− 1.

Lemma 14. Set p ≥ 5 and q = p4. Fix n = (a3 · · · a0)p and suppose

V = (a0 + a2, a1 + a3) = (p, 1).

If there exists an integer i, 0 ≤ i < 4 for which ai = p− 1, then Xn is not planar over Fq .

Proof. Under the restrictions, there are only four possibilities for n:

n ∈ {(1 1 0 (p− 1))p, (0 1 1 (p− 1))p, (1 (p− 1) 0 1)p, (0 (p− 1) 1 1)p}.

Of these possibilities, the last is a cyclic shift of the 1st, while the 3rd is a cyclic shift of the 2nd. It
follows from Lemma 8 that we need only resolve the two cases n = (0 1 1 (p − 1))p = p2 + 2p − 1 and
n = (1 1 0 (p− 1))p = p3 + p2 + p− 1. We deal with the two possibilities separately, but in similar ways.

Let n = p2 + 2p − 1 and f(X) = (X + 1)n −Xn. We are interested in the coefficient C of Xq−1 in

g(X) = f(X)p
2−1 mod (Xq −X) – in fact, we wish to show C 6= 0. Since p4 < Deg(fp

2−1) < 2(p4 − 1),

the Xq−1 term in g(X) is actually the Xq−1 term in fp
2−1. First we verify by a direct computation that

for p = 5, C ≡ 1 mod 5, and for p = 7, C ≡ 3 mod 7. In what follows we assume that p ≥ 11.
We have

f(X)p
2−1 = [(X + 1)n −Xn]

p2−1

=

p2−1∑
i=0

(−1)i
(
p2 − 1

i

)
(X + 1)n(p

2−1−i)Xin

=

p2−1∑
i=0

(−1)i
(
p2 − 1

i

) n(p2−1−i)∑
j=0

(
n(p2 − 1− i)

j

)
Xn(p2−1−i)−jXin

=

p2−1∑
i=0

(−1)i
(
p2 − 1

i

) n(p2−1−i)∑
j=0

(
n(p2 − 1− i)

j

)
Xn(p2−1)−j . (7)

In order to find the coefficient C from (7), we set n(p2 − 1)− j = q − 1 = p4 − 1, which gives j = j0 =
n(p2 − 1) − (p4 − 1). The range of the index i can be found by solving the inequality n(p2 − 1 − i) ≥
n(p2 − 1)− (p4 − 1), which results in 0 ≤ i ≤ p2 − 2p+ 3. Therefore

C =

p2−2p+3∑
i=0

(−1)i
(
p2 − 1

i

)(
Ni
j0

)
,

where from now on Ni = n(p2 − 1− i). For ease of notation, we set Ci =
(
Ni

j0

)
.

As
(
p2−1
i

)
+
(
p2−1
i−1
)
=
(
p2

i

)
≡ 0 mod p for all 1 ≤ i < p2, and

(
p2−1

0

)
= 1, we obtain

(
p2−1
i

)
≡

(−1)i mod p. This implies

C ≡
p2−2p+3∑
i=0

Ci mod p.

We note

j0 = (p2 + 2p− 1)(p2 − 1)− (p4 − 1) = (1 (p− 3) (p− 2) 2)p.
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As 0 ≤ i ≤ p2 − 2p+ 3 = ((p− 2) 3)p, we can write i in the form i = (b a)p = a+ bp, where 0 ≤ a ≤ 3
for b = p− 2, and 0 ≤ a ≤ p− 1 for 0 ≤ b ≤ p− 3. Simplifying the notation Ni = N(b a)p to just N(a,b),
we obtain

Ni = N(a,b) = (1 + a) + (−2− 2a+ b)p+ (−2− a− 2b)p2 + (p+ 2− b)p3

= (1 + a) + (−2− 2a+ b)p+ (p− 2− a− 2b)p2 + (p+ 1− b)p3. (8)

Let x[k] denote the p-digit of a nonnegative integer x at pk, k ≥ 0. Since j0 = (1 (p − 3) (p − 2) 2)p,
applying Lemma 3 yields

Ci =

(
Ni
j0

)
≡
(
Ni[0]

2

)(
Ni[1]

p− 2

)(
Ni[2]

p− 3

)(
Ni[3]

1

)
mod p.

Note that Ci 6≡ 0 mod p if and only if the following four conditions are met:
2 ≤ Ni[0] ≤ p− 1

p− 2 ≤ Ni[1] ≤ p− 1
p− 3 ≤ Ni[2] ≤ p− 1

1 ≤ Ni[3] ≤ p− 1

 . (9)

We also have

C ≡
p2−2p+3∑
i=0

Ci mod p ≡
∑

Ci 6≡0 mod p

Ci mod p.

We now show that Ci ≡ 0 mod p for all but very few values of i = a+ bp.

Claim 1. Let 0 ≤ i = a+ bp ≤ p2 − 2p+ 3. Then

Ci 6≡ 0 mod p

{
for precisely six values of i if p ≡ 1, 2 mod 5, and

for precisely four values of i if p ≡ 3, 4 mod 5.

Proof of Claim 1. If a = 0 or a = p− 1, then Ni[0] < j0[0] and so Ci ≡ 0 mod p. For (a, b) = (a, p− 2)
with a = 1, 2, 3, direct substitution into Ni gives the following base p expansions for Ni:

N(1,p−2) = (2 1 (p− 6) 2)p

N(2,p−2) = (2 0 (p− 8) 3)p

N(3,p−2) = (1 (p− 1) (p− 10) 4)p.

We see that in all these cases Ni[1] does not satisfy the inequality in (9). Hence, for these i, Ci ≡ 0 mod p
also.

We now take a closer look at the base p expansions of Ni, assuming 1 ≤ a ≤ p− 2 and 0 ≤ b ≤ p− 3.
These inequalities imply that −2p+2 ≤ −2− 2a+ b ≤ p− 7 and −2p+6 ≤ p− 2− a− 2b ≤ p− 3. Then
(8) and (9) give that Ni[0] = 1 + a and

Ni[1] = −2− 2a+ b ≡ −1,−2 mod p.

This implies b ≡ 2a, 2a+ 1 mod p, or, more precisely,

b =

{
2a or 2a+ 1 if 1 ≤ a < p/2;

2a− p or 2a+ 1− p if p/2 < a ≤ p− 2.

Substituting corresponding values of a and b in (8), we obtain the following expressions for Ni:
(1 + a) + (−2)p+ (p− 2− 5a)p2 + (p+ 1− 2a)p3 if 1 ≤ a < p/2;

(1 + a) + (−1)p+ (p− 4− 5a)p2 + (p− 2a)p3 if 1 ≤ a < p/2;

(1 + a) + (p− 2)p+ (3p− 4− 5a)p2 + (2p+ 1− 2a)p3 if p/2 < a ≤ p− 2;

(1 + a) + (p− 1)p+ (3p− 6− 5a)p2 + (2p− 2a)p3 if p/2 < a ≤ p− 2.
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Now we rewrite these expressions in a way which exhibits the p-digits of the number by the usual “borrowing”
of digits from the greater powers of p. The exact form of the result depends on the congruence class of
p modulo 5. For example, for p = 5k + 1, we obtain the following expressions, where Ni[0] and Ni[3] are
given in terms of k, and Ni[1] and Ni[2] in terms of p. Each case represents at most two possibilities, as
1 ≤ a < p/2 gives a = k, 2k, and p/2 < a ≤ p − 2 gives a = 3k, 4k. We list only those cases where the
p-digits satisfy the inequalities (9).

(k + 1) + (p− 2)p+ (p− 2)p2 + (3k + 1)p3 if a = k, b = 2k;

(2k + 1) + (p− 2)p+ (p− 1)p2 + kp3 if a = 2k, b = 4k;

(2k + 1) + (p− 1)p+ (p− 3)p2 + (k − 1)p3 if a = 2k, b = 4k + 1;

(3k + 1) + (p− 2)p+ (p− 1)p2 + (4k + 2)p3 if a = 3k, b = k − 1;

(3k + 1) + (p− 1)p+ (p− 3)p2 + (4k + 1)p3 if a = 3k, b = k;

(4k + 1) + (p− 1)p+ (p− 2)p2 + 2kp3 if a = 4k, b = 3k.

(10)

In order to find all pairs (a, b), which satisfy these conditions and 1 ≤ a ≤ p − 2 and 0 ≤ b ≤ p − 3, we
consider separately each nonzero congruence class p modulo 5: p = 5k + r, 1 ≤ r ≤ 4. Within each such
class, the problem becomes trivial. Case r = 1 was considered above in (10). Proceeding this way, and
arranging all possible values of (a, b) in increasing order of i = a+ bp, we obtain the following pairs (a, b)
for which Ci 6≡ 0 mod p:

r = 1 : (a, b) = (3k, k − 1), (3k, k), (k, 2k), (4k, 3k), (2k, 4k), (2k, 4k + 1);

r = 2 : (a, b) = (3k + 1, k), (k, 2k), (k, 2k + 1), (4k + 1, 3k), (4k + 1, 3k + 1),

(2k, 4k + 1);

r = 3 : (a, b) = (3k + 1, k), (k, 2k + 1), (4k + 2, 3k + 1), (2k + 1, 4k + 2);

r = 4 : (a, b) = (3k + 2, k), (k, 2k + 1), (4k + 3, 3k + 2), (2k + 1, 4k + 3).

(11)

Claim 1 is established.

Observe that for each choice of r in (11), the pairs (a, b) and (p − 1 − a, p − 1 − b) are distinct and
appear simultaneously. They correspond to the numbers i and p2 − 1 − i. It is easy to check that for
any (a, b) from (11), C(a,b) ≡ C(p−1−a,p−1−b) mod p. For example, for r = 1, (a, b) = (3k, k − 1) and
(a, b) = (2k, 4k + 1), the p-digits can be taken from the fourth and the third line of (10), and we obtain

C(3k,k−1) ≡
(
3k + 1

2

)(
p− 2

p− 2

)(
p− 1

p− 3

)(
4k + 2

1

)
mod p

≡
(
(3k + 1)(3k)

2

)
(1)

(
(−1)(−2)

2

)
(4k + 2) mod p

≡
(
(p− 2k)(p− 2k − 1)

2

)
(p− (k − 1)) mod p

≡
(
2k + 1

2

)(
p− 1

p− 2

)(
p− 3

p− 3

)(
k − 1

1

)
mod p

≡ C(2k,4k+1) mod p.

A similar verification can be done in all cases.1 The values of p, a, b, the corresponding p-digits of
Ci 6≡ 0 mod p, and the simplified form of Ci mod p are collected in Table 1. Due to the symmetry
C(a,b) ≡ C(p−1−a,p−1−b) mod p, we exhibit data for i ≤ (p2 − 2p+ 3)/2 only.

1Here we decided against presenting a general argument, since the number of cases to verify is small, and each case is
trivial.
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p a b Ci[0] Ci[1] Ci[2] Ci[3] Ci = C(a,b) 6≡ 0 mod p

5k + 1 3k k − 1 3k + 1 p− 2 p− 1 4k + 2
(
3k+1

2

)
(4k + 2)

3k k 3k + 1 p− 1 p− 3 4k + 1 −
(
3k+1

2

)
(4k + 1)

k 2k k + 1 p− 2 p− 2 3k + 1 −2
(
k+1
2

)
(3k + 1)

5k + 2 3k + 1 k 3k + 2 p− 2 p− 3 4k + 2
(
3k+2

2

)
(4k + 2)

k 2k k + 1 p− 2 p− 1 3k + 2
(
k+1
2

)
(3k + 2)

k 2k + 1 k + 1 p− 1 p− 3 3k + 1 −
(
k+1
2

)
(3k + 1)

5k + 3 3k + 1 k 3k + 2 p− 1 p− 2 4k + 3 2
(
3k+2

2

)
(4k + 3)

k 2k + 1 k + 1 p− 1 p− 2 3k + 2 2
(
k+1
2

)
(3k + 2)

5k + 4 3k + 2 k 3k + 3 p− 2 p− 2 4k + 4 −2
(
3k+3

2

)
(4k + 4)

k 2k + 1 k + 1 p− 1 p− 1 3k + 3 −
(
k+1
2

)
(3k + 3)

Table 1.

We may now readily check that for each of the four congruency classes of p,

C ≡
∑

Ci 6≡0 mod p

Ci mod p 6≡ 0 mod p.

For p = 5k + 1, we have

C ≡ 2

[(
3k + 1

2

)
(4k + 2)−

(
3k + 1

2

)
(4k + 1)− 2

(
k + 1

2

)
(3k + 1)

]
mod p

≡ −k(2k − 1)(3k + 1) mod p

6≡ 0 mod p.

For p = 5k + 3, we have

C ≡ 2

[
2

(
3k + 2

2

)
(4k + 3) + 2

(
k + 1

2

)
(3k + 2)

]
mod p

≡ 2(3k + 2) [(3k + 1)(4k + 3) + (k + 1)k] mod p

≡ 2(3k + 2) [(3k + 1)(−k) + (k + 1)k] mod p

≡ −4k2(3k + 2) mod p

6≡ 0 mod p.

The remaining cases p = 5k+2 and p = 5k+4 are handled similarly. In each case, it follows from Lemma
2 that f(X) is not a permutation polynomial over Fp4 , and so Xn is not planar over Fp4 . This ends our
proof for n = p2 + 2p− 1.

Now we consider the case where n = p3 + p2 + p − 1. As in the first case, we will show that the
coefficient C of Xq−1 in f(X)p

2−1 mod (Xq −X) is not zero. The same computations as in (7), but this
time with n = p3 + p2 + p− 1, yield

f(X) =

p2−1∑
i=0

n(p2−1−i)∑
j=0

(
n(p2 − 1− i)

j

)
Xn(p2−1)−j ,

where we have again used
(
p2−1
i

)
≡ (−1)i mod p. For a positive integer m, Xm ≡ Xq−1 mod (Xq −X)

if and only if m = t(q− 1) for some positive integer t. In order to find C, we set n(p2 − 1)− j = t(q− 1),
which gives

j = jt = n(p2 − 1)− t(q − 1).
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The ranges of i and t can be found by solving the inequalities n(p2 − 1 − i) ≥ n(p2 − 1) − t(q − 1) ≥ 0,
which results in 1 ≤ t ≤ p and 0 ≤ i ≤ t(q − 1)/n ≤ bp(q − 1)/nc = p2 − p. Let Ct denote the coefficient

of Xt(q−1) in f(X)p
2−1. Then

C =

p∑
t=1

Ct.

As
(
a
b

)
= 0 for 0 ≤ a < b, we ignore the upper bound t(q − 1)/n on i, and obtain

Ct ≡
p2−1∑
i=0

(
Ni
jt

)
mod p,

where again Ni = n(p2 − 1− i).

Claim 2. Let 0 ≤ i ≤ p2 − 1. The following statements hold.

(i) If i 6= (p− 1)k or 1 ≤ t ≤ p− 2, then (
Ni
jt

)
≡ 0 mod p.

(ii) If i = (p− 1)k and 0 ≤ k ≤ p+1
2 , then(

Ni
jp−1

)
≡ p− k mod p and

(
Ni
jp

)
≡ p− k + 1 mod p.

(iii) If i = (p− 1)k and p+1
2 < k ≤ p, then(

Ni
jp−1

)
≡ k mod p and

(
Ni
jp

)
≡ k − 1 mod p.

Proof of Claim 2. Let i = (b a)p = a+ bp, 0 ≤ a, b ≤ p− 1. We again adopt the notation N(a,b) for Ni.
Then

N(a,b) = (1 + a) + (−1− a+ b)p+ (p− 2− (a+ b))p2 + (p− 1− (a+ b))p3 + (p− b)p4. (12)

We proceed by partitioning all values of Ni and jt into several classes, defined by their p-digits, and then
applying Lemma 3 in order to determine

(
Ni

jt

)
mod p. Rewriting

jt = n(p2 − 1)− t(q − 1) = (p+ 1− t)p4 − 2p2 − p+ (1 + t)

in base p we get

jt =


((p− t) (p− 1) (p− 3) (p− 1) (1 + t))p if 1 ≤ t ≤ p− 2;

(1 (p− 1) (p− 2) 0 0)p if t = p− 1;

((p− 1) (p− 2) 0 1)p if t = p.

For a = 0, substituting into (12) we obtain

N(0,b) = ((p− b) (p− 1− b) (p− 2− b) (b− 1) 1)p for 1 ≤ b ≤ p− 2,

N(0,0) = (1 0 (p− 1) (p− 3) (p− 1) 1)p,

N(0,p−1) = ((p− 1) (p− 1) (p− 2) 1)p.
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As jt[0] = 1+t > 1 for 1 ≤ t ≤ p−2, jp−1[2] = jp[2] = p−2, and jp−1[4] = 1, then
(N(0,b)

jt

)
≡ 0 mod p

for all (b, t) 6= (p− 1, p). Since(
N(0,p−1)

jp

)
≡
(
1

1

)(
p− 2

0

)(
p− 1

p− 2

)(
p− 1

p− 1

)
mod p

≡ p− 1 mod p,

the claim is proved for a = 0.
If a = p− 1, then N(p−1,p−1) = 0, while for 0 ≤ b ≤ p− 2,

N(p−1,b) = ((p− 1− b) (p− 1− b) (p− 2− b) (1 + b) 0)p.

As jt[0] ≥ 1 for t 6= p− 1, and(
N(p−1,0)
jp−1

)
≡
(
0

0

)(
1

0

)(
p− 2

p− 2

)(
p− 1

p− 1

)(
p− 1

1

)
mod p

≡ p− 1 mod p,

the claim is proved for a = p− 1 also.
Therefore, in what follows, we may assume 1 ≤ a ≤ p− 2. This implies that 1 ≤ a+ b ≤ 2p− 3. We

first note that when a+ b 6= p− 1, it follows from (12) that

Ni[3] =


p− 1− (a+ b) when 1 ≤ a+ b ≤ p− 3,

0 or 1 when a+ b = p− 2,

2p− 2− (a+ b) when p ≤ a+ b ≤ 2p− 3.

In each of these cases, jt[3] = p− 1 > Ni[3] for all t, and so
(
Ni

jt

)
≡ 0 mod p as claimed.

The only case which we have not yet considered is 1 ≤ a ≤ p − 2 and a + b = p − 1. Let k = p − a.
Then i = a+ bp = p− k + (k − 1)p = (p− 1)k, where 2 ≤ k ≤ p− 1. Now

Ni = N(p−1)k = (p− k + 1)p4 + (−2)p2 + (2k − 1)p2 + (1− k)
= (p− k)p4 + (p− 1)p3 + (p− 2)p2 + (2k − 2)p+ (p+ 1− k).

and writing N(p−1)k in base p we obtain

N(p−1)k =

{
((p− k) (p− 1) (p− 2) (2k − 2) (p+ 1− k))p if 2 ≤ k ≤ p+1

2 ;

((p− k) (p− 1) (p− 1) (2k − 2− p) (p+ 1− k))p if p+1
2 < k ≤ p.

Let 1 ≤ t ≤ p − 2. For
(N(p−1)k

jt

)
6≡ 0 mod p, we must have N(p−1)k[0] = p + 1 − k ≥ 1 + t = jt[0], and

N(p−1)k[4] = p − k ≥ p − t = jt[4]. These conditions give p − k ≥ t ≥ k, and so k ≤ (p − 1)/2. This

implies N(p−1)k[1] = 2k − 2 < p− 1 = jt[1], and so
(N(p−1)k

jt

)
≡ 0 mod p for all 1 ≤ t ≤ p− 2.

It remains to consider the cases t = p− 1, p. For 2 ≤ k ≤ (p+ 1)/2, we obtain(
N(p−1)k
jp−1

)
≡
(
p+ 1− k

0

)(
2k − 2

0

)(
p− 2

p− 2

)(
p− 1

p− 1

)(
p− k
1

)
mod p

≡ p− k mod p,(
N(p−1)k
jp

)
≡
(
p+ 1− k

1

)(
2k − 2

0

)(
p− 2

p− 2

)(
p− 1

p− 1

)(
p− k
0

)
mod p

≡ p+ 1− k mod p,
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while for (p+ 1)/2 < k ≤ p, we find(
N(p−1)k
jp−1

)
≡
(
p+ 1− k

0

)(
2k − 2− p

0

)(
p− 1

p− 2

)(
p− 1

p− 1

)(
p− k
1

)
mod p

≡ k mod p,(
N(p−1)k
jp

)
≡
(
p+ 1− k

1

)(
2k − 2− p

0

)(
p− 1

p− 2

)(
p− 1

p− 1

)(
p− k
0

)
mod p

≡ k − 1 mod p,

as claimed. This ends the proof of Claim 2.

We are ready to finish our proof for n = p3 + p2 + p− 1 by showing that C 6≡ 0 mod p. By Claim 2,

C =

p∑
t=1

Ct ≡ Cp−1 + Cp mod p

≡
p2−1∑
i=0

(
Ni
jp−1

)
+

p2−1∑
i=0

(
Ni
jp

)
mod p

≡ 4

(p+1)/2∑
k=2

(p− k + 1)− 1 mod p

≡ 4

(
p− 1 + (p+ 1)/2

2

)(
p− 1

2

)
− 1 mod p

≡ 3p2 − 1

2
mod p

6≡ 0 mod p.

Hence, by Lemma 2, f(X) is not a permutation polynomial and Xn is not planar over Fp4 .
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