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Abstract. This article introduces a new approach to studying difference sets
via their additive properties. We introduce the concept of special subsets,
which are interesting combinatorial objects in their own right, but also provide
a mechanism for measuring additive regularity. Skew Hadamard difference sets
are given special attention, and the structure of their special subsets leads to
several results on multipliers, including a categorisation of the full multiplier
group of an abelian skew Hadamard difference set. We also count the number
of ways to write elements as a product of any number of elements of a skew
Hadamard difference set.

1. Introduction

Let G be a group, written multiplicatively. Choose any subset D of G and
generate all quotients xy−1 with x, y ∈ D and x 6= y. It is quite likely that in
performing this task, some elements will be generated more often than others.
However, if every non-identity element of G is generated some constant number of
times, then we call D a difference set. Classically, D is called a (v, k, λ)-difference
set in G, where v = o(G), k = |D| and λ is the number of times each non-identity
element is generated. It is clear

k(k − 1) = λ(v − 1). (1)

For any integer n, we may define the set

D(n) := {dn : d ∈ D}.

In particular, with n = −1 we obtain the set D(−1) consisting of the inverses of
the elements of D. If D is a difference set, it is not generally true that D(n) is a
difference set.

Let D be a difference set in G. For any element g ∈ G, the set

Dg := {dg : d ∈ D}

is also a difference set with the same parameters as D. The sets Dg are called
translates of D. A multiplier for D is any automorphism of G that maps D onto
one of its translates. If r is an integer coprime to o(G) such that the automorphism
φr : x 7→ xr induced by r on G is a multiplier for D, then φr is a numerical multiplier
for D.

Difference sets arise naturally in the study of combinatorial designs. Specifically,
if a symmetric balanced incomplete block design with parameters (v, k, λ) admits
a regular automorphism group G, then the points of the design can be labelled by
the elements of G and any block of the design forms a (v, k, λ)-difference set in G.
Conversely, any difference set D gives rise to such a design, called the development
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2 ROBERT S. COULTER AND TODD GUTEKUNST

of D. The points of the design are the elements of G and the blocks of the design
are the translates of D. Discussion of combinatorial designs leads naturally to the
concept of equivalence of difference sets. Two difference sets D1 and D2 in G are
equivalent if one can be mapped onto the other by means of a group automorphism

and a translation: Dφ
1 g = D2 for some φ ∈ Aut(G) and g ∈ G.

Adjectives attached to difference sets often describe either the group in which
they live or the design they generate. For example, a difference set D ⊂ G is called
abelian or cyclic if the group G is abelian or cyclic, respectively. When λ = 1, the
development of a (v, k, 1)-difference set is a projective plane. Consequently, such
difference sets are called planar. A difference set is called skew if D ∩ D(−1) = ∅,
while it is called reversible if D = D(−1).

A classical example of a difference set is the set {1, 2, 4} in 〈Z7, +〉. This set
is cyclic, planar and skew. More generally, if q is any prime power congruent to
3 (mod 4), then the non-zero squares of the finite field Fq form a (q, q−1

2 , q−3
4 )-

difference set in 〈Fq , +〉. Known as the Paley difference sets, these skew difference
sets are particularly special, as they are examples of skew difference sets with k
as large as possible with respect to v. A difference set D in G is called a skew
Hadamard difference set (SHDS) if D ∪̇ D(−1) ∪̇ {1} = G.

For many years, the Paley difference sets were the only known abelian skew
Hadamard difference sets. However, in 2005 Ding and Yuan [4] discovered a new
class and showed them to be distinct from the Paley class in some small cases.
Further examples have since been found, see Ding, Wang and Xiang [3]. It is
known a skew Hadamard difference set can only exist in a group of order q = pm,
where p is a prime and q ≡ 3 mod 4; see Johnsen [6]. For a recent survey on
difference sets, see Xiang [9].

Let D be a subset of G, and let a be an arbitrary element of G. We define the
special subsets of D with respect to a by

Aa,D = {x ∈ D : a = xy−1 for some y ∈ D},

Ba,D = {y ∈ D : a = xy−1 for some x ∈ D},

Ca,D = {x ∈ D : a = xy for some y ∈ D}.

The set D will usually be clear from context, so we may omit the subscript D
when we write the special subsets. Intuitively, the cardinalities of the sets Aa

and Ca measure the number of ways to write a as a quotient and product in D,
respectively. In this context, a set D ⊂ G is a difference set if and only if |Aa| is
constant for all nonidentity elements a ∈ G.

The paper is set out as follows. In Section 2 we briefly consider special subsets
for an arbitrary set. We introduce the main body of theory concerning special
subsets of skew Hadamard difference sets in Section 3. In Section 4 we present
several results on multipliers, including a categorisation of the full multiplier group
of an abelian SHDS. We also establish that abelian SHDS satisfy the Multiplier
Conjecture using an unsuspected regularity of products within abelian SHDS. In
Section 5 we compute the product of all elements of an abelian skew Hadamard
difference set, as well as the products of all elements within each special subset.
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SPECIAL SUBSETS OF DIFFERENCE SETS 3

2. Initial observations on special subsets

Our first two results concerning special subsets are for arbitrary subsets of a
group G. Both, however, have implications to difference sets; the first to skew
Hadamard difference sets, and the second to reversible difference sets.

Lemma 2.1. Let D be a subset of G. Then Aa ∩ Ca = ∅ for all a ∈ G if and only
if D ∩ D(−1) = ∅.

Proof. If x ∈ Aa ∩Ca for some a ∈ G, then a = xy−1 and a = xz for some elements
y, z ∈ D. But then x−1a ∈ D ∩ D(−1). Conversely, if Aa ∩ Ca = ∅ for all a ∈ G,
then in particular we have A1 ∩ C1 = ∅. Now A1 = D and C1 ⊂ D, so C1 = ∅.
This implies D is skew. �

Lemma 2.2. Let D be a subset of G. Then Aa = Ca for all a ∈ G if and only if
D = D(−1).

Proof. Suppose D = D(−1). If a = xy−1 is a representation for a as a quotient in
D, then a = x(y−1) is also a representation for a as a product in D, since y−1 ∈ D
by hypothesis. Hence Aa = Ca for any a ∈ G. Now suppose Aa = Ca for all a ∈ G.
In particular, D = A1 = C1, which is equivalent to D = D(−1). �

We now consider how the values |Aa| and |Ca| are affected when we translate
the set D to the set Dg. If a = xy−1 is a representation for the element a as a
quotient in D, then clearly a = (xg)(yg)−1 is a representation for a as a quotient
in Dg. Conversely, any representation for a as a quotient in Dg corresponds to a
unique representation for a as a quotient in D. Equivalently, the numbers |Aa| are
invariant under translation. But what about the numbers |Ca|?

If G is nonabelian, then little can be said. But if G is abelian, then whenever
a = xy is a representation for a as a product in D, (xg)(yg) is a representation for
ag2 as a product in Dg. Conversely, any representation for ag2 as a product in Dg
corresponds to a unique representation for a as a product in D. Thus

|Ca,D| = |Cag2,Dg|.

So while the numbers |Ca| are in general not invariant under translation, it is clear
that the multiset

{{|Ca| : a ∈ G}}

is invariant under translation.
Now, if D is a subset of an abelian group G, what are the possible values |Ca,D|?

Again if G is nonabelian, then little can be said. If G is abelian, then we have the
following theorem.

Theorem 2.3. For any subset D of an abelian group G,

{|(Dg) ∩ (Dg)(−1)| : g ∈ G} ⊆ {|Ca,D| : a ∈ G}.

If o(G) is odd, then these sets are necessarily equal.

Proof. Let g ∈ G and suppose |(Dg) ∩ (Dg)(−1)| = t for some integer t. Then
|C1,Dg| = t. Whenever we can write 1 = (d1g)(d2g) as a product in Dg, then
g−2 = d1d2 and conversely. Hence |Cg−2,D| = t. In particular, when o(G) is odd,

then {g−2 : g ∈ G} = G, so every value |Ca,D| is also a value of |(Dg) ∩ (Dg)(−1)|
for some g ∈ G. �
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4 ROBERT S. COULTER AND TODD GUTEKUNST

We end this section with one final lemma concerning special subsets of a skew set
D. Clearly, for D ⊂ G to be skew, D cannot contain any pairs of inverses nor any
element which is its own inverse. If D is a skew set that is not properly contained
in any other skew set in G, then we call D a maximal skew set. If v = o(G) is odd,
any maximal skew set has size v−1

2 .

Lemma 2.4. Let G be a group of odd order v and let D be a maximal skew subset
of G. Then

|Aa| + |Ca| =

{

v−3
2 if a ∈ D,

v−1
2 if a /∈ D.

Proof. Since o(G) is odd, every nonidentity element a of G has an inverse distinct
from itself, so precisely one of a, a−1 is in D.

Let a ∈ D. For each x ∈ D, there is a unique y ∈ G such that a = xy. If y ∈ D,
then x ∈ Ca. If y /∈ D and x 6= a, then y−1 ∈ D, so x ∈ Aa. However, when x = a
we have y = 1, and 1 /∈ D. Hence |Aa| + |Ca| = |D| − 1 = v−3

2 .

Now let a /∈ D. Either a = 1 or a ∈ D(−1). If a = 1, then Aa = D while Ca = ∅,
so |Aa| + |Ca| = v−1

2 . If a ∈ D(−1), then by the same argument used above, every

x ∈ D is either in Aa or Ca. Hence |Aa| + |Ca| = v−1
2 . �

3. Special subsets of skew Hadamard difference sets

We now turn to skew Hadamard difference sets. Specifically, we outline the
fundamental role the special subsets play in their construction and behavior. The
first step in this approach is to recognise we may count the number of ways to
generate each group element as a product within a skew Hadamard difference set.

Theorem 3.1. If D is a (v, k, λ) skew Hadamard difference set, then every element
of D can be written in precisely λ ways as a product in D, while every element of
D(−1) can be written in λ + 1 ways as a product in D.

Proof. If D is a (v, k, λ) skew Hadamard difference set, then (v, k, λ) = (v, v−1
2 , v−3

4 ).

Since D is skew and |D| = v−1
2 , D is a maximally skew set in G. Hence we may

apply Lemma 2.4. Note |Aa| = v−3
4 for all a 6= 1. If a ∈ D, then

|Ca| =
v − 3

2
−

v − 3

4
= λ,

while if a ∈ D(−1), then

|Ca| =
v − 1

2
−

v − 3

4
= λ + 1.

�

Corollary 3.2. If D is an abelian skew Hadamard difference set, then every trans-
late Dg of D satisfies |(Dg) ∩ (Dg)(−1)| ∈ {λ, λ + 1}.

Proof. By Theorems 2.3 and 3.1, the quantity |(Dg) ∩ (Dg)(−1)| may take one of
only three values: 0, λ, or λ + 1. However, if |(Dg) ∩ (Dg)(−1)| = 0 then g−2

cannot be written as a product in D. If g 6= 1, then this is impossible, and thus
any nontrivial translate Dg of D satisfies |(Dg) ∩ (Dg)(−1)| ∈ {λ, λ + 1}. �
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SPECIAL SUBSETS OF DIFFERENCE SETS 5

If D is a (v, k, λ) skew Hadamard difference set, and if a ∈ D, then |Aa| = |Ca| =
λ = k−1

2 . Note a is not in either Aa nor Ca, since 1 /∈ D. By Lemma 2.1 the
sets Aa and Ca are disjoint, so by size considerations D must be the disjoint union
of Aa, Ca, and {a}. Similarly, if a ∈ D(−1), then D is the disjoint union of Aa

and Ca. In other words, any non-identity element a ∈ G induces a partition of D
by the special subsets Aa and Ca (and possibly the singleton {a}). We now show
that among difference sets, this property is characteristic only of skew Hadamard
difference sets.

Theorem 3.3. A (v, k, λ) difference set D is skew Hadamard if and only if the
following conditions hold:

(i) For any a ∈ D, D is the disjoint union of Aa, Ca, and {a}.
(ii) For any a /∈ D, D is the disjoint union of Aa and Ca.

Proof. A combination of Lemma 2.1 and Theorem 3.1 proves any skew Hadamard
difference set satisfies the two conditions. Conversely, any difference set D satisfying
these two conditions must be skew by Lemma 2.1, so C1 = ∅. Our task is to show
k = v−1

2 , as all else will then follow from Theorem 3.1. We have
∑

a∈G

|Ca| = |C1| +
∑

a∈D

|Ca| +
∑

a/∈(D∪{1})

|Ca|

= 0 + k(k − λ − 1) + (v − k − 1)(k − λ)

= k(v − 2) − λ(v − 1)

= k(v − 2) − k(k − 1)

= k(v − k − 1).

But for any x ∈ D, x ∈ Cxy for each y ∈ D. Letting x vary over D, we have
∑

a∈G

|Ca| = k2.

Hence k = v−1
2 , which completes the proof. �

While the sets Ba appear to play less of a role in this approach, they do exhibit a
predictable regularity in the abelian case: they split as evenly as possible between
the sets Aa and Ca.

Theorem 3.4. Let D be an abelian skew Hadamard difference set in G, and let
a ∈ G, a 6= 1. If λ is even, then |Aa ∩ Ba| = |Ba ∩ Ca| = λ

2 . If λ is odd and a ∈ D,

then |Aa ∩ Ba| = |Ba ∩ Ca| = λ−1
2 . If λ is odd and a /∈ D, then |Aa ∩ Ba| = λ−1

2

and |Ba ∩ Ca| = λ+1
2 .

Proof. Fix a 6= 1. Select any x ∈ Aa such that a = xy−1 for some y ∈ Ba.
For every xi ∈ Aa with x1 6= x satisfying a = xiy

−1
i for some yi ∈ Ba, we have

(xx−1
i )(yiy

−1) = 1. Since D is skew Hadamard, precisely one of xx−1
i or yiy

−1

must be in D. In the former case xx−1
i ∈ D and yiy

−1 ∈ D(−1), so xi ∈ Cx and
yi ∈ Cy. So, in this case, we find

|Aa ∩ Cx| = |Ba ∩ Cy|.

In the latter case xx−1
i ∈ D(−1) and yiy

−1 ∈ D, so xi ∈ Ax and yi ∈ Ay. Here we
conclude

|Aa ∩ Ax| = |Ba ∩ Ay|.
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6 ROBERT S. COULTER AND TODD GUTEKUNST

The conclusions of the two cases are equivalent by Lemma 2.1. Using a = a2a−1,
we therefore have

|Aa ∩ Ca2 | = |Ba ∩ Ca|

for any a 6= 1.
Select any pair x, y ∈ Ca satisfying a = xy. For any pair xi, yi ∈ Ca with xi 6= x

satisfying a = xiyi we have (xx−1
i )(yy−1

i ) = 1. Using a similar argument as above
we find

|Ca ∩ Cx| = |Ca ∩ Ay|.

Setting x = y = a shows

|Ca2 ∩ Ca| = |Ca2 ∩Aa| = |Ba ∩ Ca|. (2)

Now

|Ca2 | =

{

λ if a2 ∈ D,

λ + 1 if a2 ∈ D(−1).
(3)

The partition {Aa, Ca} of D and (2) shows

|Ca2 | =

{

2|Ca2 ∩ Ca| + 1 if a ∈ D,

2|Ca2 ∩ Ca| if a ∈ D(−1).

Solving for |Ba ∩ Ca| = |Ca2 ∩ Ca| via (3) yields the corresponding claims. �

4. Multiplier results for abelian skew Hadamard difference sets

We now consider how the additive structure of skew Hadamard difference sets
described in Section 3 affects the multiplier groups for abelian skew Hadamard
difference sets. Throughout this section p is a prime, p ≡ 3 mod 4, and D is an
abelian skew Hadamard difference set in G, with exp(G) = ps. The strongest result
known concerning the multiplier group of D was established by Camion and Mann
[1], who showed the quadratic residues modulo ps, Qps , are precisely the numerical
multipliers of D. Our first result on multipliers is a weaker, though often equivalent,
version of Camion and Mann’s result.

Theorem 4.1. Let D be an abelian (v, k, λ) skew Hadamard difference set in G.
If v ≡ 3 mod 8, then D(2) = D(−1), and hence D(4) = D. If v ≡ 7 mod 8, then
D(2) = D.

Proof. Let a ∈ D. If a = xy, then a = yx since G is abelian, so the ways to write
a ∈ D as a product of two distinct elements of D come in pairs.

If v ≡ 3 mod 8, then λ = v−3
4 is even. It follows from Theorem 3.1 that a 6= x2

for any x ∈ D, or equivalently, D ∩ D(2) = ∅. Hence D(2) = D(−1), as claimed.
If v ≡ 7 mod 8, then λ is odd, so there must exist some x ∈ D such that a = x2.

Hence D(2) = D. �

It is often true that for primes p ≡ 3 mod 8, 4 is a multiplicative generator for
all quadratic residues modulo pm. Likewise, for primes p ≡ 7 mod 8, 2 is often a
multiplicative generator of the quadratic residues modulo pm. For any such prime,
Theorem 4.1 is equivalent to the stronger result of Camion and Mann. However,
there are primes congruent to 3 mod 4, the smallest of which is 43, for which neither
2 nor 4 generate all quadratic residues. Thus, this result is clearly weaker. We
note, however, the fundamental nature of the proof, how it follows immediately
from Theorem 3.1, and how it does not rely on the assumption that G is a p-group.
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SPECIAL SUBSETS OF DIFFERENCE SETS 7

In this sense, one can view our proof as providing a fundamental reason as to why
the quadratic residues must be multipliers of a skew Hadamard difference set.

As the quadratic residues modulo ps comprise the numerical multiplier group of
D, they form a subgroup of the full multiplier group of D. Our next result is a
categorisation of the full multiplier group of an abelian skew Hadamard difference
set.

Theorem 4.2. Let D be an abelian skew Hadamard difference set in a group G
of exponent ps. The full multiplier group of D is precisely the stabilizer of D in
Aut(G). Furthermore, the quadratic residues modulo ps form a subgroup Qps of the
stabilizer of D. Consequently, D is the union of orbits of the action of Qps on G.

Proof. By Corollary 3.2, no translate of D is skew. As a multiplier for D is firstly an
automorphism, it must map skew sets to skew sets. Consequently, any multiplier
of D must in fact fix D and any automorphism which does so is clearly a multiplier.
The remaining claims are clear. �

Our final multiplier result, Theorem 4.5, will follow from the observation that
one may easily count the number of ways to write elements as the product of any
number of elements of a skew Hadamard difference set D. The computations are
most easily carried out in the group ring ZG.

Theorem 4.3. Let D ⊂ G be a (v, k, λ) skew Hadamard difference set. Set t =
(λ + 1)2 + λ(λ + 1)G. Then for any integer j ≥ 2, we have

Dj = ajD + (λ + 1)aj−1D
(−1) + aj−2t, (4)

where the sequence {ai} satisfies a0 = 0, a1 = 1, a2 = λ and ai = λai−1 + tai−3 for
i ≥ 3.

Proof. We induct on j. When j = 2 we have

D2 = λD + (λ + 1)D(−1),

which is correct by Theorem 3.1. Now suppose j ≥ 2 and the formula (4) is correct
for j. Then

Dj+1 = DDj = D(ajD + (λ + 1)aj−1D
(−1) + aj−2t)

= ajD
2 + (λ + 1)aj−1DD(−1) + aj−2tD

= aj(λD + (λ + 1)D(−1)) + (λ + 1)aj−1(λG + (λ + 1)) + aj−2tD

= (λaj + taj−2)D + (λ + 1)ajD
(−1) + aj−1[λ(λ + 1)G + (λ + 1)2]

= aj+1D + (λ + 1)ajD
(−1) + aj−1t.

This completes the induction. �

Introducing the sequence {aj} of coefficients in Theorem 4.3 allows for relatively
uncomplicated expressions for higher powers of a skew Hadamard difference set D.
The next lemma provides a closed formula for these coefficients.

Lemma 4.4. The sequence {aj} defined recursively by a0 = 0, a1 = 1, a2 = λ, and
aj = λaj−1 + taj−3 for i ≥ 3 satisfies

aj =
∑

i≥0

(

j − 2i − 1

i

)

λj−3i−1ti. (5)
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Proof. Base cases j = 0, 1, 2 are easily confirmed. Suppose the formula (5) holds
for all integers 0 ≤ j ≤ l for some integer l ≥ 2. We must prove the formula holds
for j = l + 1. We have

al+1 = λal + tal−2

= λ
∑

i≥0

(

l − 2i − 1

i

)

λl−3i−1ti + t
∑

i≥0

(

l − 2i − 3

i

)

λl−3i−3ti

=
∑

i≥0

(

l − 2i − 1

i

)

λl−3iti +
∑

i≥0

(

l − 2i − 3

i

)

λl−3i−3ti+1

=
∑

i≥0

(

l − 2i − 1

i

)

λl−3iti +
∑

m≥1

(

l − 2m − 1

m − 1

)

λl−3mtm,

where we have set m = i+1 in the second sum. Note that when m = 0,
(

l−2m−1
m−1

)

=
0, so we may let the second sum run over m ≥ 0 rather than m ≥ 1. Relabelling m
as i in the second sum, we have

al+1 =
∑

i≥0

(

l − 2i − 1

i

)

λl−3iti +
∑

i≥0

(

l − 2i − 1

i − 1

)

λl−3iti

=
∑

i≥0

[(

l − 2i − 1

i

)

+

(

l − 2i − 1

i − 1

)]

λl−3iti

=
∑

i≥0

(

l − 2i

i

)

λl−3iti,

which agrees with the formula. This completes the induction. �

Theorem 4.5. Let D ⊂ G be an abelian (v, k, λ) skew Hadamard difference set.
Then any odd prime divisor of λ + 1 is a multiplier of D.

Proof. Suppose q is an odd prime divisor of λ + 1. Then t ≡ 0 mod q, and hence
from Lemma 4.4 we see aj ≡ λj−1 mod q. We thus obtain

Dq = aqD + (λ + 1)aq−1D
(−1) + aq−2t

≡ λq−1D mod q

≡ D mod q.

Since Dp ≡ D(p) mod p for any prime p (see [7] Lemma 3.3), it follows D(q) ≡
D mod q. This is possible only if D(q) = D. Hence q is a multiplier for D. �

Theorem 4.5 is connected to one of the well-known problems of multiplier theory.
The parameters of a skew Hadamard difference set satisfy k = 2λ+1, so λ+1 = k−λ.
For any (v, k, λ) difference set, the quantity k − λ is typically called the order of
the difference set. A famous theorem of Hall [5] on cyclic groups, generalized to
abelian groups by Chowla and Ryser [2], states if D is an abelian difference set and
q > λ is a prime dividing k−λ but not v, then q is a multiplier of D. It is generally
believed, however, that the hypothesis q > λ is unnecessary. The “Multiplier
Conjecture” therefore states that any prime divisor of k − λ is a multiplier for the
abelian (v, k, λ) difference set D. Theorem 4.5 shows this conjecture is true for skew
Hadamard difference sets. This was shown by Xiang in [8, Corollary 2.2.6].
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SPECIAL SUBSETS OF DIFFERENCE SETS 9

5. Products of elements within special subsets

For any subset D of a group G, we may define a directed graph ΓD as follows:
the elements of D are the vertices, and the directed edge (x, y) is in ΓD if and only
if xy−1 ∈ D.

Lemma 5.1. If D is an abelian skew Hadamard difference set, then the directed
graph ΓD is a λ-regular tournament.

Proof. For distinct elements x, y of G, xy−1 ∈ D if and only if yx−1 /∈ D, since D
is skew Hadamard. It follows that ΓD is a tournament. Let x ∈ D, and suppose
(x, y) is an edge of ΓD. Then xy−1 = d for some d ∈ D, hence y ∈ Cx. Conversely,
any y ∈ Cx corresponds to an edge (x, y) of ΓD, so the outdegree of vertex x is |Cx|,
which equals λ. As x was arbitrary, we see ΓD is a λ-regular tournament. �

The graph ΓD provides a useful mechanism for proving results about certain
“large” products within D, which we now describe. As an edge (x, y) in ΓD is
naturally associated to the element xy−1, we can associate the walk x → y → z in
ΓD to the product (xy−1)(yz−1) = xz−1. In this fashion we may ascribe a value
vw−1 to a walk of any length from the vertex v to the vertex w. Clearly the value
of a walk from v to w is in D if and only if (v, w) is an edge of ΓD. Also clear is
the fact that any circuit has value 1.

Any regular tournament is necessarily Eulerian, so let C be an Euler circuit in
ΓD. Now C has value 1, but as we traverse C each element of D is generated
precisely λ times. As G is abelian, we have

∏

d∈D

dλ =

(

∏

d∈D

d

)λ

= 1.

But then
(

∏

d∈D

d

)gcd (v,λ)

= 1.

Recall that G is a p-group for some prime p ≡ 3 mod 4. It is easy to show

gcd (v, λ) =

{

3 if p = 3,

1 it p 6= 3.

We have proven the following:

Lemma 5.2. If D ⊂ G is an abelian skew Hadamard difference set with 3 ∤ o(G),
then

∏

d∈D

d = 1.

Under the hypotheses of Lemma 5.2, we may compute the product of all elements
in each of the special subsets of D. Let a ∈ D and suppose λ is even. Then
D(2) = D(−1), so there is no x ∈ D satisfying x2 = a. It follows

∏

z∈Ca

z = aλ/2 (6)
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By Lemma 5.2 we have

∏

d∈D

d = a

(

∏

z∈Ca

z

)(

∏

x∈Aa

x

)

= 1,

hence
∏

x∈Aa

x = a−λ
2
−1. (7)

It then follows
∏

y∈Ba

y = a−λ−λ
2
−1. (8)

If λ is odd, then there exists b ∈ D such that b2 = a. In this case, similar arguments
yield

∏

z∈Ca

z = a
λ−1

2 b, (9)

∏

x∈Aa

x = a−λ−1

2
−1b−1, (10)

∏

y∈Ba

y = a−λ−λ−1

2
−1b−1. (11)

One may easily derive similar expressions for special subsets with respect to an
element of D(−1).

In Section 3 we observed any non-identity element a induces a partition of a
skew Hadamard difference set D into its special subsets Aa and Ca (and possibly
the singleton {a}). Using the above products, we may now show that in the abelian
case, no two distinct elements may induce the same partition.

Theorem 5.3. If D ⊂ G is an abelian skew Hadamard difference set, then no two
distinct elements of G induce the same partition of D into special subsets.

Proof. If a, b ∈ D, then the partitions with respect to a and b are the same if and
only if a = b, as the singletons {a} and {b} are cells of their respective partitions.
Similarly, if a ∈ D and b ∈ D(−1), then their respective partitions are clearly not the
same. So suppose a−1 and b−1 are elements of D(−1) inducing the same partition
of D. Then Aa−1 = Ab−1 , which means Ba = Bb. If λ is even, then

a− 3
2
λ−1 =

∏

y∈Ba

y =
∏

y∈Bb

y = b−
3
2

λ−1,

hence a
3
2
λ+1 = b

3
2
λ+1.

Note o(G) = pm for some prime p, so if we can show gcd (3
2λ + 1, p) = 1, then we

may conclude a = b. To the contrary, suppose gcd (3
2λ + 1, p) > 1, or equivalently

suppose p divides 3
2λ + 1. With λ = pm−3

4 we have

3

8
(pm − 3) + 1 = tp

for some integer t. Thus 3pm − 8tp = 1, so p | 1, a contradiction. Hence
gcd (3

2λ + 1, p) = 1 and we conclude a = b.

Now suppose λ is odd. Then Ba = Bb implies a
λ+1

2 = b
λ+1

2 . As before, it suffices
to show gcd (λ+1

2 , p) = 1. If gcd (λ+1
2 , p) > 1 then p | (λ + 1), hence pm + 1 = tp

for some integer t. It follows that p | 1, a contradiction. Hence gcd (λ+1
2 , p) = 1, so

a = b. �



D
es

. C
o

d
es

 C
ry

to
g

r.
 5

3 
(2

00
9)

, 1
-1

2

SPECIAL SUBSETS OF DIFFERENCE SETS 11

We conclude with a strengthening of Lemma 5.2. Suppose D is an abelian skew
Hadamard difference set in the p-group G. Denote by Dpi the subset of all elements

of D of order pi.

Theorem 5.4. Let G be an abelian group of order pm, exponent ps, admitting a
skew Hadamard difference set D. If p 6= 3 then

∏

d∈Dps

d =
∏

d∈D\Dps

d = 1.

Proof. If p 6= 3, then by Lemma 5.2 we know

∏

d∈D

d =





∏

d∈D\Dps

d









∏

d∈Dps

d



 = 1.

Set
∏

d∈D\Dps

d = g−1,

and note o(g) ≤ ps−1. We have

g =
∏

d∈Dps

d.

Say Dps = {d1, . . . , dt}. Then gd−1
i = d1d2 · · ·dtd

−1
i for any i ∈ {1, . . . , t}. Since

o(gd−1
i ) = ps, we have o(d1 · · · dtd

−1
i ) = ps for all i = 1, . . . , t.

Suppose g 6= 1. Then d1 · · · dtd
−1
i is either in Dps or D

(−1)
ps . If d1 · · · dtd

−1
i ∈ Dps ,

then d1 · · · dtd
−1
i = dj for some j. Then didj = d1 · · · dt = g, so di, dj ∈ Cg. Note at

most one di can satisfy d2
i = g, so the number of values i such that d1 · · · dtd

−1
i ∈ Dps

can be no greater than λ+1
2 = pm+1

8 .

It is easy to show |Dps | = t ≥ pm−pm−1

2 . As there are t products of the form

d1 · · · dtd
−1
i and at most pm+1

8 of them are in Dps , there are at least

pm − pm−1

2
−

pm + 1

8
=

3pm − 4pm−1 − 1

8

such products in D
(−1)
ps . Now if d1 · · · dtd

−1
i = d−1

j , then g = did
−1
j . Since we

assume g 6= 1, we have i 6= j and hence dj ∈ Bg. Thus

|Ag| =
pm − 3

4
≥

3pm − 4pm−1 − 1

8
,

which implies

4 ≥ p +
5

pm−1
.

As p > 3, this is impossible. Hence g = 1, which proves the theorem. �
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