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Abstract. We consider the implications of the equivalence of commutative
semifields of odd order and planar Dembowski-Ostrom polynomials. This
equivalence was outlined recently by Coulter and Henderson. In particular,
following a more general statement concerning semifields we identify a form
of planar Dembowski-Ostrom polynomial which must define a commutative
semifield with the nuclei specified. Since any strong isotopy class of commuta-
tive semifields must contain at least one example of a commutative semifield
described by such a planar polynomial, to classify commutative semifields it
is enough to classify planar Dembowski-Ostrom polynomials of this form and
determine when they describe non-isotopic commutative semifields. We prove
several results along these lines. We end by introducing a new commutative
semifield of order 38 with left nucleus of order 3 and middle nucleus of order
32.

1. Introduction

A finite semifield R is a ring with no zero-divisors, a multiplicative identity and
left and right distributivity. If we do not insist on the existence of a multiplicative
identity, then we call the ring a presemifield. It is not assumed that R is commu-
tative or associative. Though the definition extends to infinite objects, this article
is only concerned with the finite case. The additive group of a semifield must be
elementary abelian and thus the order of any semifield is necessarily a prime power;
for a simple proof see Knuth [12, Section 2.4].

Finite fields satisfy these requirements and so the existence of semifields is clear.
Those semifields which are not fields are called proper semifields. The first proper
semifields identified were the commutative semifields of Dickson [7] which have
order q2 with q an odd prime power. Dickson may have been led to study semifields
following the publication of Wedderburn’s Theorem [20], which appeared the year
before [7] and which Dickson was the first person to provide a correct proof for (see
Parshall [18]). As no new structures are obtained by removing commutativity, it is
reasonable to investigate those structures which are non-associative instead.

The role of semifields in projective geometry was confirmed following the intro-
duction of coordinates in non-Desarguesian planes by Hall [8]. Subsequent to Hall’s
work, Lenz [13] developed and Barlotti [1] refined what is now known as the Lenz-
Barlotti classification, under which semifields correspond to projective planes of
Lenz-Barlotti type V.1. In some sense, modern interest in semifields can be traced
back to the important work of Knuth [12]. Presently, semifields are enjoying a true
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renaissance with well over fifty publications concerning them having appeared since
the year 2000.

Let R be a finite semifield. We define the left, middle and right nucleus of R,
denoted by Nl,Nm and Nr, respectively, as follows:

Nl(R) = {α ∈ R | (α ? x) ? y = α ? (x ? y) for all x, y ∈ R}

Nm(R) = {α ∈ R | (x ? α) ? y = x ? (α ? y) for all x, y ∈ R}

Nr(R) = {α ∈ R | (x ? y) ? α = x ? (y ? α) for all x, y ∈ R}.

It is easily shown that these sets are finite fields. The set N (R) = Nl ∩Nm ∩Nr is
called the nucleus of R. The nuclei are important objects in the study of semifields.
They measure how far R is from being associative. Additionally, as Knuth observed,
R can be represented as a right vector space over Nl, a left vector space over Nr

and both a left or right vector space over Nm.
Let R1 = (Zn

p , +, ◦) and R2 = (Zn
p , +, ?) be two semifields of order pn. We say

R1 and R2 are isotopic if there exists a triple of non-singular linear transformations
(M, N, L) satisfying

L(x ◦ y) = M(x) ? N(y)

for all x, y ∈ Z
n
p . This definition of equivalence, which is clearly much weaker

than the standard ring isomorphism, arises from projective geometry: two planes
coordinatised by semifields are isomorphic if and only if the corresponding semifields
are isotopic. A strong isotopy is an isotopy where M = N .

This article is mainly concerned with commutative semifields of odd order. Re-
cent work by Coulter and Henderson [4] has provided an alternate way to study
such objects. In Section 3 we set this new approach in a slightly more general con-
text by considering the semifield case first. We also note an equivalence between
the existence of a semifield and the existence of a set of Fq -complete mappings,
see Theorem 3.2. The essential ingredient of the approach of [4] is the class of
polynomials known as planar Dembowski-Ostrom polynomials, see Section 2. In
Section 4 we develop this new approach further, concentrating mainly on deter-
mining restrictions on the planar Dembowski-Ostrom polynomials, and further to
considering a special form of Dembowski-Ostrom polynomials. This allows us to
describe commutative semifields with specified nuclei in terms of the corresponding
planar Dembowski-Ostrom polynomials. We then consider isotopism issues, pro-
viding a strong restriction on the possible isotopisms between particular isotopes of
commutative semifields, as well as a necessary condition on the type of planar DO
polynomial which describes commutative semifields isotopic to a finite field. We
end with an application of our results by introducing a new commutative semifield
of order 38 with left nucleus of order 3 and middle nucleus of order 32.

2. Preliminaries

Throughout Fq is used to denote the finite field of q elements where q = pe for
some prime p and some e ∈ N. By F

∗
q we mean the non-zero elements of Fq . The

polynomial ring in indeterminate X over Fq will be denoted by Fq [X ]. Any two
polynomials f, h ∈ Fq [X ] representing the same function must satisfy f(X) ≡ h(X)
(mod Xq − X). Consequently, any function on Fq can be uniquely represented by
a polynomial of degree at most q−1 and this polynomial of smallest degree is often
referred to as reduced. This can be generalised to multivariate polynomials over Fq

with the degree of each variable being at most q − 1. A polynomial f ∈ Fq [X ] is
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COMMUTATIVE SEMIFIELDS WITH SPECIFIEC NUCLEI 3

called a permutation polynomial over Fq if f induces a bijection of the field under
evaluation. Planar functions were introduced by Dembowski and Ostrom in [6].
A sufficient definition for our purposes is as follows: a polynomial f ∈ Fq [X ] is a
planar function if the difference polynomial f(X+a)−f(X)−f(a) is a permutation
polynomial for each a ∈ F

∗
q .

A linearised polynomial L ∈ Fq [X ] is any polynomial of the shape

L(X) =

k
∑

i=0

aiX
pi

.

More accurately, the linearised polynomial L(X) is called a ps-polynomial for any
integer s for which ai = 0 whenever i 6= αs, α ∈ Z. Clearly, every linearised
polynomial is a p-polynomial but there are occasions where a more specific choice
of s is preferable. For examples of these situations, see the papers of Ore [15, 16,
17] or more recently, Henderson and Matthews [9]. The reduction of a linearised
polynomial modulo Xq − X is a linearised polynomial and L(x + y) = L(x) +
L(y) for all x, y ∈ Fq . The set of all reduced linearised polynomials represents
all linear transformations of Fq and forms an algebra under composition modulo
Xq − X , see Vaughan [19]. It is straightforward to show a linearised polynomial
is a permutation polynomial over Fq if and only if its only root in Fq is zero. The
set of all reduced linearised permutation polynomials represents the set of all non-
singular linear transformations over Fq . Moreover, if q = pe, then this set forms a
group under composition modulo Xq − X isomorphic to the general linear group
GL(p, e). There is an extensive literature concerning these polynomials and we refer
the interested reader to the book of Lidl and Niederreiter [14] for more information
and further references. A result we shall need but have not found a reference for is
the following.

Lemma 2.1. Let e, n ∈ N with n > 1 and p be a prime. Set q = pe and t(X) =
Xq −X. If L ∈ Fqn [X ] is a linearised polynomial and t divides L, then there exists
a linearised polynomial M such that L(X) = M(t(X)).

Proof. Set L(X) =
∑k

i=0 aiX
pi

for some k ≥ e and let d = pk. The case k = e is
clear. Assume k > e. Since t divides L, there exists a polynomial Q ∈ Fqn [X ] such
that L(X) = t(X)Q(X). Thus

L(X) = t(X)Q(X)

= (Xq − X)

(

d−q
∑

i=0

biX
i

)

= −

q−1
∑

i=1

bi−1X
i +

d−q+1
∑

i=q

(bi−q − bi−1)X
i +

d
∑

i=d−q+2

bi−qX
i

= −
e−1
∑

i=0

bpi−1X
pi

+
k−1
∑

i=e

(bpi−q − bpi−1)X
pi

+ bpk−qX
pk

,

where in the final step we have used the fact L is a p-polynomial to remove terms

not of the form biX
pi

. We claim bpi−q = bpi−e−1 for all integers e ≤ i ≤ k. If this
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claim were true, then the lemma would be established as we would have

L(X) = −
e−1
∑

i=0

bpi−1X
pi

+

k−1
∑

i=e

(bpi−e−1 − bpi−1)X
pi

+ bpk−e−1X
pk

=

k−e
∑

i=0

bpi−1(X
pe

− X)pi

=

k−e
∑

i=0

bpi−1t(X)pi

= M(t(X)),

as desired.
It remains to show bpi−q = bpi−e−1 for all integers e ≤ i ≤ k. Note first for any

e ≤ i ≤ k and 1 ≤ m ≤ pi−e − 1 the coefficient of Xpi−e+m(q−1) in the expansion
of t(X)Q(X) above is zero as this can never be a prime power for the range of m
specified. Hence bpi−e+(m−1)(q−1)−1 = bpi−e+m(q−1)−1 for all 1 ≤ m ≤ pi−e − 1.
In particular, using the extremes of the range for m yields bpi−e−1 = bpi−q for all
e ≤ i ≤ k, as desired. �

A Dembowski-Ostrom (DO) polynomial D ∈ Fq [X ] is any polynomial of the
shape

D(X) =

k
∑

i,j=0

aijX
pi+pj

.

DO polynomials were characterised via their difference polynomials by Coulter and
Matthews [5]: A polynomial f ∈ Fq [X ] is a DO polynomial if and only if every
difference polynomial f(X + a) − f(X) − f(a), a ∈ F

∗
q , is a linearised polynomial.

Results from Blokhuis et al [2] show that DO polynomials are closed under (left
or right) composition with linearised polynomials and, provided q is odd, under
reduction modulo Xq − X .

Most relevant for this article is the recent work of Coulter and Henderson [4]
who showed that there is a one-to-one correspondence between commutative pre-
semifields of odd order and planar DO polynomials. Formally, given a planar DO
polynomial f ∈ Fq [X ], q odd, then R = (Fq , +, ?) is a commutative presemifield
with the multiplication ? defined by

a ? b = f(a + b) − f(a) − f(b)

for all a, b ∈ Fq . We denote this presemifield by Rf . Conversely, given a commu-
tative presemifield R = (Fq , +, ?) of odd order, the polynomial given by f(X) =
1
2 (X ? X) is a planar DO polynomial and R = Rf .

3. Semifields

Let R be a semifield of order q = pe with middle nucleus Nm. As noted in
the introduction, the additive group of R is necessarily elementary abelian. Con-
sequently, we can view the multiplication of any R as a bivariate polynomial over
Fq of degree less than q in both variables. In fact, the relationship between the
bivariate polynomial and the semifield imposes additional restrictions upon the
polynomial.
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COMMUTATIVE SEMIFIELDS WITH SPECIFIEC NUCLEI 5

Theorem 3.1. Let n and e be natural numbers. Set q = pe for some prime p and
t(X) = Xq − X. For any semifield of order qn with middle nucleus containing Fq

there exists an isotopic semifield R = (Fqn , +, ?) and a polynomial K ∈ Fqn [X, Y ]
of the shape

K(X, Y ) =

(n−1)e−1
∑

i,j=0

aijX
pi

Y pj

such that x ? y = K(t(x), t(y)) + xy for all x, y ∈ Fqn .

Proof. The case n = 1 is clear as then R is isotopic to a finite field. Assume
n ≥ 2. Since a semifield can be viewed as a vector space over Nm, there must exist
isotopes of the semifield for which a ? x = ax for all x ∈ Fqn and a ∈ Nm. Let
R = (Fqn , +, ?) be one of these isotopes and M(X, Y ) be the bivariate polynomial
of degree less than qn satisfying x ? y = M(x, y) for all x, y ∈ Fqn . We can write
M(X, Y ) = L(X, Y )+XY so that L(x, a) = L(a, x) = 0 for all x ∈ Fqn and a ∈ Nm.
As the left and right distributive laws hold in R, M and so L only have terms of

the shape Xpi

Y pj

. Fix a 6∈ Nm. Then La(X) = L(X, a) and Ra(X) = L(a, X) are
linearised polynomials for which x ∈ Nm is a root. Let Fq be some subfield of Nm

and t(X) = Xq − X . Then t(X) must divide both Ly(X) and Ry(X). It follows
from Lemma 2.1 that t is necessarily a compositional factor of Ly and Ry for all
y ∈ Fq . It is clear this can be done sequentially so that L(X, Y ) = K(t(X), t(Y ))

for a suitable polynomial K(X, Y ) =
∑(n−1)e−1

i,j=0 aijX
pi

Y pj

. �

There are a large number of bijective maps defined by any semifield. Theorem
3.1 allows us to make a more restrictive statement concerning these bijections. Let
S be some subset of Fq . We call a polynomial f ∈ Fq [X ] a S-complete mapping
over Fq if f(X) + sX is a permutation polynomial over Fq for every s ∈ S. Clearly
every polynomial is an S-complete mapping for some set S, although it is clear that
in some cases S = ∅; for example when f(X) = Xq−1. Complete mappings, which
are essentially the case S = {0, 1}, have been studied in various areas. Semifields
define very specific types of S-complete mappings, as the following theorem shows.

Theorem 3.2. Let n > 1 be an integer and q = pe with p a prime. Set t(X) =
Xq − X and let K(X, Y ) ∈ Fqn [X, Y ] satisfy

K(X, Y ) =

(n−1)e−1
∑

i,j=0

aijX
pi

Y pj

.

Define a multiplication on Fqn by x ? y = K(t(x), t(y)) + xy for all x, y ∈ Fqn . For
each a ∈ Fqn set La(X) = X ? a and Ra(X) = a ? X. Set m = (qn−1 − 1)/(q − 1)
and let

B = {1}
m
⋃

i=1

{cβi : c ∈ F
∗
q}

form a complete set of coset representatives for (Fq , +) in (Fqn , +). Then R =
(Fqn , +, ?) is a semifield if and only if Lβi

(X) and Rβi
(X) are Fq -complete map-

pings for every 1 ≤ i ≤ m.

Proof. Suppose R = (Fqn , +, ?) is a semifield and note that Fq ⊆ Nm by Theorem
3.1. It follows that La(X) and Ra(X) are permutation polynomials for all a ∈ F

∗
qn .
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If a ∈ F
∗
q , then La(X) = Ra(X) = aX . If a ∈ Fqn \ Fq , then there exists a βi and

elements c, α ∈ Fq with c 6= 0 such that a = c(βi + α).

La(X) = X ? a

= X ? (c ? (βi + α))

= cX ? (βi + α)

= cX ? βi + cX ? α

= Lβi
(cX) + α(cX).

Similarly, Ra(X) = Rβi
(cX) + α(cX). As La(X) and Ra(X) are permutation

polynomials for all a ∈ F
∗
qn , it follows that Lβi

(X)+αX is a permutation polynomial
for all α ∈ Fq . Hence Lβi

(X) is an Fq -complete mapping. A similar argument shows
Rβi

(X) is an Fq -complete mapping also. The argument can be reversed to prove
the converse. �

Essentially, the theorem says the isotopy class of any semifield of order qn with
middle nucleus of order q is equivalent to the existence of 2(qn−1 − 1)/(q − 1)
Fq -complete maps – one simply considers the isotope of the form outlined in the
theorem. As noted by a referee, there is a much simpler argument which shows
any semifield of order qn with nucleus of order q is equivalent to the existence of
2(qn − 1)/(q − 1) Fq -complete maps. Our statement is therefore much stronger
whenever the nucleus and middle nucleus differ in cardinality.

We believe Fq -complete mappings could be interesting to study in their own
right. However, there is added motivation for studying them based on the above
observation. At present, there is no non-trivial upperbound known for the number
of semifields of any given order (non-trivial lower bounds for even order follow from
the work of Kantor [11]). It may be possible to provide non-trivial, possibly asymp-
totic, estimates on the number of Fq -complete mappings over Fqn . In particular,
if a non-trivial upperbound could be found for their number, then this may lead
to the first non-trivial upperbound for the number of semifields of a given order.
Some results along these lines have already been given in a more general context
by Hsiang, Hsu and Shieh [10].

4. Commutative semifields

We now turn to commutative semifields of odd order. In all of the following
we assume we are dealing with a commutative isotope R of a semifield in which
a ? x = ax for all x ∈ R and a ∈ Nm; that is to say precisely the type of isotope
considered in Theorem 3.1. Our motivation for doing so stems from the results of
[4], where it is shown that dealing with a commutative semifield of odd order is
equivalent to dealing with a planar DO polynomial over the finite field of the same
order. To summarise, for the remainder of this article

Rf denotes a commutative semifield of order qn (where q = pe, p
an odd prime), with middle nucleus Fq , in which a ? x = ax for all
a ∈ Fq and x ∈ Fqn . By Theorem 3.1, x ? y = K(t(x), t(y)) + xy
for all x, y ∈ Fqn , where K ∈ Fqn [X, Y ] is as outlined in The-
orem 3.1. The corresponding reduced planar DO polynomial is
f(X) = 1

2 (X ?X) and we write Rf to underline the correspondence
between the commutative semifield and the planar DO polynomial
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f which defines it. In all statements involving Rf the parameters
just described are assumed.

We will use the following lemma frequently. The proof is straightforward.

Lemma 4.1. For any commutative semifield R, the left (and therefore right)
nucleus of R is contained in the middle nucleus. Moreover, k divides e where
|Nl| = |Nr| = pk and |Nm| = pe.

We now turn to the implications of Theorem 3.1 to commutative semifields. We
begin with

Theorem 4.2. If the commutative semifield Rf has left nucleus Fpk with k|e, then
the bivariate polynomial K(X, Y ) by which f(X) is defined is symmetric in X and

Y and every term of K is of the shape aijX
pki

Y pki

.

Proof. Following the notation of Theorem 3.1 set

K(X, Y ) =

(n−1)e−1
∑

i,j=0

aijX
pi

Y pj

.

As Rf is commutative, we have

K(t(x), t(y)) = K(t(y), t(x)) (1)

for all x, y ∈ Fqn . In fact, for each y 6∈ Fq we have K(t(X), t(y)) = K(t(y), t(X))
as polynomials and we can thus equate coefficients. Now

K(t(X), t(y)) =

n−1−e
∑

i,j=0

aij t(X)pi

t(y)pj

=
n−1−e
∑

i,j=0

aij t(y)pj

(Xpi+e

− Xpi

)

=
e−1
∑

i=0

Xpi



−
n−1−e
∑

j=0

aijt(y)pj





+

n−1−2e
∑

i=e

Xpi





n−1−e
∑

j=0

(a(i−e)j − aij)t(y)pj





+

n−1−e
∑

i=n−2e

Xpi





n−1−e
∑

j=0

aijt(y)pj



 .

Setting Bi(X) =
∑n−1−e

j=0 aijX
pj

we obtain

K(t(X), t(y)) =
e−1
∑

i=0

−Bi(t(y))Xpi

+
n−1−e
∑

i=n−2e

Bi(t(y))Xpi

+
n−1−2e
∑

i=e

(

Bi−e(t(y)) − Bi(t(y))
)

Xpi

.
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Likewise, we have

K(t(y), t(X)) =

e−1
∑

i=0

−Ci(t(y))Xpi

+

n−1−e
∑

i=n−2e

Ci(t(y))Xpi

+

n−1−2e
∑

i=e

(

Ci−e(t(y)) − Ci(t(y))
)

Xpi

,

where Ci(X) =
∑n−1−e

j=0 ajiX
pj

. Equating coefficients in (1) for all y ∈ Fqn reveals

Bi(t(X)) = Ci(t(X)) for all i ∈ {0, 1, . . . , n−e−1}. Expanding much as above and
equating coefficients we immediately have aij = aji for any i with 0 ≤ j ≤ e − 1
and n− 2e ≤ j ≤ n− 1− e. On the other hand for any i and e ≤ j ≤ n− 1− 2e we
have ai (j−e) −aij = a(j−e) i −aji. Strong induction on j for e ≤ j ≤ n−1−2e now
yields the remaining cases, so that aij = aji for all i, j and K is indeed symmetric.

It remains to prove K(X, Y ) is a pk-polynomial in both X and Y . Since K
is symmetric, we need only prove this for X . For any α ∈ Fpk ⊆ Nl we have
α ? (X ? y) = (α ? X) ? y for all y ∈ Fqn . Now

α ? (X ? y) = αyX + αK(t(X), t(y)) + K(t(α), t(yX)) + K(t(α), t(K(t(X), t(y)))),

while

(α ? X) ? y = αyX + yK(t(X), t(α)) + K(t(y), t(αX)) + K(t(y), t(K(t(X), t(α)))).

By Lemma 4.1 we know α ∈ Nm and so t(α) = 0. Fixing y ∈ Fqn \ Fq and
equating we find αK(t(X), t(y)) = K(t(αX), t(y)) holds for all α ∈ Fpk . Setting

Ly(X) = K(t(X), t(y)) =
∑

j bjX
pj

yields αpj

= α whenever bj 6= 0. Since this

holds for all α ∈ Fpk , it follows that Ly is a pk-polynomial. Hence K(X, Y ) is a

pk-polynomial in X . �

Since any nuclei of any commutative semifield must contain an isotopic copy of Fp

our result always holds for t(X) = Xp − X , that is when e = k = 1.
It is tempting to conclude from Theorem 4.2 that every planar DO polynomial

f describing a commutative semifield Rf must be of the special form f(X) =
L(t2(X)) + 1

2X2. In fact this is not the case. We illustrate with a counterexample.

Take f(X) = X10 + X6 − X2. This polynomial is planar over Fpe if and only if
p = 3 and either e = 2 or is odd, see Coulter and Matthews [5]. For the case
p = 3, e = 5, it is easy to compute an isotope satisfying a ? x = ax for all x ∈ F35

and a ∈ F3 . However, the planar DO polynomial corresponding to this isotope is
f(X) = M(t(X))N(t(X)) + 1

2X2, where t(X) = X3 −X, M(X) = −X9 + X3 −X

and N(X) = X27 + X9 − X3. This yields K(X, Y ) = M(X)N(Y ) + M(Y )N(X)
with K(X, X) 6= L(X2) for any linearised polynomial L ∈ F35 [X ]. We can, however,
determine the shape of the planar DO polynomials describing the commutative
semifields Rf .

Theorem 4.3. If the commutative semifield Rf has left nucleus Fpk with k|e and
either e = 1 and n = 2, or e > 1 and n arbitrary, then

f(X) = L(t2(X)) + D(t(X)) +
1

2
X2, (2)
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COMMUTATIVE SEMIFIELDS WITH SPECIFIEC NUCLEI 9

where L ∈ Fqn [X ] is a linearised polynomial and D ∈ Fqn [X ] is a Dembowski-
Ostrom polynomial of the shape

D(X) =

[e/k]−1
∑

j=0

n−2
∑

i=1

cji

(

Xqi+1
)pjk

.

Conversely, any planar polynomial f of the shape (2) defines a commutative semi-
field R with x ? y = f(x + y)− f(x) − f(y) and where the middle nucleus contains
Fq and the left nucleus contains Fpk .

Proof. If f(X) = L(t2(X)) + D(t(X)) + 1
2X2 is planar over Fqn and L and D are

of the claimed form, then clearly Fq ⊆ Nm(R) and Fpk ⊆ Nl(R).
Now suppose Rf has left nucleus Fpk . By Theorem 4.2 we may write K(X, Y )

as

K(X, Y ) =

[(n−1)e/k]−1
∑

i=0

ai(XY )pik

+
∑

0≤i<j<(n−1)e/k

bij(X
pik

Y pjk

+ Xpjk

Y pik

).

If e = 1 and n = 2, then the second sum is zero and we are done. For the
remainder let e > 1. For any α ∈ Fq we have αX ? Y = X ? αY . In particular
K(t(αX), t(Y )) = K(t(X), t(αY )). Equating coefficients and gathering terms we
find

∑

0≤i<j<(n−1)e/k

bij(α
pik

− αpjk

)(t(X)pik

t(Y )pjk

− t(X)pjk

t(Y )pik

) = 0.

The left hand side of this equation is a bivariate polynomial over Fqn of degree less
than qn in each variable (in fact, the total degree is less than qn), and for this to
be the zero polynomial we can only conclude bij = 0 whenever e does not divide
k(j − i). Hence

K(X, Y ) =

[(n−1)e/k]−1
∑

i=0

ai(XY )pik

+

[e/k]−1
∑

j=0

n−2
∑

i=1

cji

(

Xqi

Y + XY qi
)pjk

,

from which the claimed shape for f(X) now follows. �

Note that for n = 2 we find the corresponding DO polynomial is exactly of the
special form L(t2(X)) + 1

2X2.

5. On Isotopy for Commutative Semifields

One of the main problems with commutative semifields is distinguishing between
non-isotopic examples. We now consider the problem for the specific commutative
semifields Rf . Our first result establishes restrictions on the possible strong iso-
topisms between any two such commutative semifield isotopes.

Theorem 5.1. Suppose Rf and Rh are strongly isotopic with a strong isotopism
given by (N, N, M) where M, N are linearised permutation polynomials over Fqn .
Then

N(X) =

(

n−1
∑

i=0

niX
qi

)pk

for some integer 0 ≤ k < e and M(X) ≡ N(1) ? N(X) (mod Xqn

− X).
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Proof. By assumption a ◦ x = ax and a ? x = ax for all a ∈ Fq and x ∈ Fqn .
Also, M(a ◦ b) = N(a) ? N(b) for all a, b ∈ Fqn . In particular, M(x ◦ 1) = M(x) =

N(x) ? N(1) for all x ∈ Fqn and so M(X) ≡ N(1) ? N(X) (mod Xqn

− X).
Let β ∈ Fqn satisfy N(β) = 1, so that M(x ◦ β) = N(x) ? N(β) = N(x) for all

x ∈ Fqn . For a ∈ Fq and any x, y ∈ Fqn we have

N(x) ? N(ay) = M(x ◦ ay)

= M(xa ◦ y)

= N(ax) ? N(y).

In particular, N(ax) = N(x) ? N(aβ). It follows that

N(x) ? N(ay) = N(x) ? (N(aβ) ? N(y))

= (N(x) ? N(aβ)) ? N(y) = N(ax) ? N(y)

for all a ∈ Fq and x, y ∈ Fqn . Hence N(aβ) ∈ Nm(Rh) = Fq for all a ∈ Fq . It
now follows that N(ax) = N(aβ)N(x) for all a ∈ Fq and x ∈ Fqn , and since N is a
reduced linearised permutation polynomial, we have N(aX) = N(aβ)N(X) for all

a ∈ Fq . Set N(X) =
∑ne−1

i=0 niX
pi

with ni ∈ Fqn . Equating coefficients yields the
system of equations

nja
pj

= njN(aβ)

for all a ∈ Fq and 0 ≤ j < ne. Either N(X) = nkXpk

for some integer k, in which
case N is certainly in the form claimed, or N has at least two non-zero coefficients.
Take any two such coefficients nk and nl with k < l and nknl 6= 0. Then we may

cancel the nk and nl in the equations corresponding to nkapk

and nla
pl

and find

apk

= N(aβ) = apl

,

for all a ∈ Fq . It follows that e divides l − k and since this holds for any two
non-zero coefficients of N , we can only have N in the form claimed. �

We return to our examination of planar DO polynomials of the shape f(X) =
L(t2(X)) + 1

2X2 by considering the situation where such polynomials yield an iso-
tope of a finite field.

Theorem 5.2. Consider the commutative semifield Rf with f(X) = L(t2(X)) +
1
2X2, L ∈ Fqn [X ] a linearised polynomial. If L(X) = aX with a 6= 0, then Rf is
isotopic to Fqn . Conversely, if Rf is isotopic to Fqn , then L is a q-polynomial.

Proof. Suppose L(X) = aX with a ∈ Fqn . Consider the two equations associated
with the middle nucleus of Rf :

x ? (α ? y) = xαy + 2xL(t(α)t(y)) + 2L(t(x)t(αy)) + 4L(t(x)L(t(α)t(y))), (3)

(x ? α) ? y = xαy + 2yL(t(α)t(x)) + 2L(t(y)t(αx)) + 4L(t(y)L(t(α)t(x))). (4)

For any α ∈ Fq , t(α) = 0. So (x ? α) ? y = x ? (α ? y) for all x, y ∈ Fqn and we have
Fq ⊆ Nm. Next consider α ∈ Fqn \Fq . Let t(α) = β 6= 0. Now t(αx) = αt(x)+βxq .
Returning to (3) and (4), we have

x ? (α ? y) = αxy + 2aβxt(y) + 2aαt(x)t(y) + 2aβyqt(x) + 4a2βt(x)t(y),

(x ? α) ? y = αxy + 2aβyt(x) + 2aαt(x)t(y) + 2aβxqt(y) + 4a2βt(x)t(y).

Now
xt(y) + yqt(x) = yt(x) + xqt(y) (5)
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holds for all x, y ∈ Fqn and it is easily observed that this is equivalent to (x?α)?y =
x? (α?y) holding for all x, y ∈ Fqn . Since (5) is not dependent on α, it follows that
Fqn ⊆ Nm and so Rf is isotopic to Fqn .

Now suppose Rf is isotopic to Fqn . Then returning to (3) and (4) let us fix
α ∈ Fqn \ Fq with t(α) = β 6= 0. Equating, we find in particular that for y ∈ Fq we
have

L(yβt(X)) = yL(βt(X)).

Setting L(X) =
∑

i aiX
pi

and recalling L is reduced, we can equate coefficients

and find ypi

= y whenever ai 6= 0. Since this holds for all y ∈ Fq , we conclude L is
a q-polynomial. �

We note in particular the implications of this result for the case n = 2, where the
shape of f(X) assumed in Theorem 5.2 is forced by Theorem 4.3.

Corollary 5.3. Let Rf be a commutative semifield of order q2, so that f(X) =
L(t2(X)) + 1

2X2 where L ∈ Fq2 [X ] is a linearised polynomial. Then Rf is isotopic
to Fq2 if and only if L(X) = aX with a 6= 0.

Proof. Given Theorem 5.2, we need only show L is linear if Rf is isotopic to Fq2 .

However, since f(X) = L(t2(X)) + 1
2X2 has degree less than q2, we see

Deg(L(t2)) = 2q Deg(L) < q2.

Hence Deg(L) < q and since L is a q-polynomial, the result now follows. �

We end this paper with an illustration of the effectiveness of Theorem 4.2. To
our knowledge, there is no example known of a commutative semifield of order 38

with left nucleus of order 3 and middle nucleus of size 32. Set L(X) = X243 + X9

and D(X) = X246 + X82 − X10, and consider the polynomial f(X) = L(t2(X)) +
D(t(X)) + 1

2X2, where t(X) = X9 − X . Using the Magma algebra package [3],
it is easy to check f(X) is planar over F38 and so yields a commutative semifield
Rf of order 38 with left nucleus of order at least 3 and middle nucleus of order
at least 32. Again, a little computing in Magma shows the left and middle nuclei
are F3 and F9 , respectively. We note that present geometric techniques work well
when considering commutative semifields of dimension two over one of the nuclei;
however they have so far proved to be less effective when the dimension is larger.
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