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The number of rational points of a class of Artin-Schreier curves*
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We determine the number of Fq -rational points of a class of Artin-Schreier
curves by using recent results concerning evaluations of some exponential sums.
In particular, we determine infinitely many new examples of maximal and
minimal plane curves in the context of the Hasse-Weil bound.

1. INTRODUCTION

Let Fq denote the finite field with q = pe elements and Pn(Fq ) be
the n-dimensional projective space over Fq . For any f ∈ Fq [X1, . . . , Xn]
of degree d, define the homogenous polynomial f ∗ ∈ Fq[X0, . . . , Xn] by
f∗(X0, . . . , Xn) = Xd

0f(X1/X0, . . . , Xn/X0). The set of Fq -rational points
of an algebraic hypersurface Xf is the set of all points P ∈ Pn(Fq ) satis-
fying f∗(P ) = 0. The hypersurface Xf is called a plane curve if n = 2. If
g denotes the genus of the curve and N denotes the number of Fq -rational
points on the curve, then we have the classical Hasse-Weil bound

|N − (q + 1)| ≤ 2g
√

q,

provided the polynomial f(X1, X2) is absolutely irreducible. In the two
extremes, where |N−(q+1)| = 2g

√
q, a curve is called maximal or minimal

in the obvious way.
An Artin-Schreier curve is a plane curve with equation of the form

yq + δy = f(x)

with δ in some finite extension field K of Fq and f ∈ K[X ]. Artin-Schreier
curves have been studied extensively in several contexts, see for example the
articles [5, 6, 7, 8, 10, 14]. Note also that the Hermitian curve, yq+y = xq+1

over Fq2 , is an Artin-Schreier curve. This curve has genus q(q − 1)/2.
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2 R.S. COULTER

Stichtenoth, see [13, Chapter V.3], showed that curves over Fq2 of genus
> q(q − 1)/2 could not be maximal. Rück and Stichtenoth [12] have since
shown that the Hermitian curve is the only maximal curve over Fq2 of genus
q(q − 1)/2, see also [4].

The solution to the problem of determining the number of points on a
plane curve often relies on the explicit evaluation of an exponential sum
(or vice versa). For a, b ∈ Fq and any integer α, we define Sα(a, b) by

Sα(a, b) =
∑

x∈Fq

χ1(axpα+1 + bx).

The explicit evaluation of Sα(a, b) was carried out in the articles [1, 2, 3].
It is the purpose of this article to use these evaluations to determine the
number of Fq -rational points on the Artin-Schreier curve

ypn − y = axpα+1 + L(x)

where a ∈ F
∗

q , t = gcd(n, e) = (n, e) divides d = (α, e), and L ∈ Fq [X ] is a
pt-polynomial. This is accomplished by reducing the problem to a formula
involving Sα(a, b) and then determining the value of this formula under the
various conditions which arise. In so doing, we determine infinitely many
new examples of both maximal and minimal curves, for any choice of t.

2. DEFINITIONS AND PRELIMINARIES

Throughout this article Fq denotes the finite field of q = pe elements
where p is a prime, α is a natural number, d = (α, e) and n is any natural
number such that t = (n, e) divides d. We denote by F

∗

q the non-zero
elements of Fq and identify a generator of F

∗

q by ζ. For any k dividing e
we can define the trace function Trk : Fq → Fpk by

Trk(x) = x + xpk

+ xp2k

+ . . . + xpk(e/k−1)

for all x ∈ Fq . The trace function satisfies Trk(x + y) = Trk(x) + Trk(y),

Trk(xpk

) = Trk(x) and Trk(βx) = βTrk(x) for all x, y ∈ Fq and β ∈ Fpk .
We shall denote the absolute trace, Tr1, simply by Tr.

A ps-polynomial is any polynomial L ∈ Fq [X ] of the shape

L(X) =
∑

i

aiX
psi

.

Every ps-polynomial is a p-polynomial. Also known as linearised or additive
polynomials, p-polynomials satisfy L(x+y) = L(x)+L(y) for all x, y ∈ Fq .
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RATIONAL POINTS OF A CLASS OF ARTIN-SCHREIER CURVES 3

We recall that a polynomial is called a permutation polynomial over Fq if it
induces a permutation of Fq under evaluation. It is easy to establish that
a linearised polynomial L is a permutation polynomial over Fq if and only
if L(x) = 0 implies x = 0.

There are two classes of characters associated with a finite field: the
additive characters defined on Fq and the multiplicative characters defined
on F

∗

q . The canonical additive character of Fq , denoted χ1, is defined by

χ1(x) = exp (2πiTr(x)/p)

for all x ∈ Fq . Every additive character, χc with c ∈ Fq , can be obtained
from the canonical character by χc(x) = χ1(cx) for all x ∈ Fq . The proper-
ties of the trace function imply χ1(x+y) = χ1(x)χ1(y) and χ1(x

p) = χ1(x)
for all x, y ∈ Fq . A proof of the following lemma is provided in [9, Lemma
7.1.3].

Lemma 2.1. Denote by χ1 the canonical additive character of Fq with
q = pe. Let a ∈ Fq be arbitrary and let k be some integer dividing e. Then

∑

β∈F
pk

χ1(cβ) =

{

pk if Trk(c) = 0,

0 otherwise.

For 0 ≤ j ≤ q − 2, we define a multiplicative character λj of Fq by

λj(ζ
k) = exp (2πijk/(q − 1))

for k = 0, . . . , q − 2. When p is odd we shall use η to denote the quadratic
character of Fq . That is η = λ(q−1)/2.

For any additive character χ and any multiplicative character λ of Fq we
can define the classical Gaussian sum G(λ, χ) by

G(λ, χ) =
∑

x∈F∗

q

λ(x)χ(x).

Introduced by Gauss, these sums are used to consider the interaction be-
tween the additive and multiplicative groups of a finite field. They have
been studied extensively, see [11, Chapter 5] for further information. We
shall require the following result on Gaussian sums.

Lemma 2.2 ([11, Theorem 5.15]). For Fq a finite field of odd charac-
teristic we have

G(η, χ1) =

{

(−1)e−1√q if p ≡ 1 mod 4,

(−1)e−1ie
√

q if p ≡ 3 mod 4.
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4 R.S. COULTER

The following lemma on greatest common divisors will prove useful. A
proof is given in [1, 3].

Lemma 2.3. Let d = (α, e) and p be a prime. If e/d is odd then

(pα + 1, pe − 1) =

{

1 if p = 2,

2 otherwise.

If e/d is even then (pα + 1, pe − 1) = pd + 1.

Finally, we will need several results concerning the question of when two
related equations are solvable.

Theorem 2.1 ([1, Theorem 4.1]). Let p be odd. For any a ∈ F
∗

q , the

equation apα

xp2α

+ ax = 0 is solvable for x ∈ F
∗

q if and only if e/d is even
with e = 2m and

a(q−1)/(pd+1) = (−1)m/d.

In such cases there are p2d − 1 non-zero solutions.

Theorem 2.2 ([3, Theorem 3.1]). Let q = 2e. For any a ∈ F
∗

q con-

sider the equation a2α

x22α

+ ax = 0 over Fq .

(i)If e/d is odd then there are 2d solutions to this equation for any
choice of a ∈ F

∗

q .

(ii)If e/d is even then there are two possible cases. If a = ζk(2d+1) for

some k then there are 22d solutions to the equation. If a 6= ζk(2d+1) for any
k then there exists one solution only, x = 0.

The polynomial apα

Xp2α

+aX is a linearised polynomial. Thanks to the
simple statement for when a linearised polynomial is a permutation polyno-
mial, it can be seen that Theorems 2.1 and 2.2 provide explicit descriptions
for when this polynomial is a permutation polynomial over Fq .

3. WHEN IS AP
α

XP
2α

+ AX + BP
α

= 0 SOLVABLE?

As mentioned earlier, the value of Sα(a, b) was explicitly determined
in the articles [1, 2, 3]. Unfortunately, in some cases the results rely on
knowing when the equation

apα

xp2α

+ ax + bpα

= 0
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RATIONAL POINTS OF A CLASS OF ARTIN-SCHREIER CURVES 5

with a, b ∈ Fq and α ∈ N, can be solved for x ∈ Fq , in particular when e/d
is even. In this section we determine necessary and sufficient conditions for
solving this equation when e/d is even.

Let fa(X) = apα

Xp2α

+aX with a ∈ F
∗

q and suppose e/d is even with e =

2m. We wish to consider when the equation fa(x) = −bpα

has solutions x ∈
Fq . Clearly it has a unique solution when fa is a permutation polynomial.
In the remaining cases we now derive conditions on a and b for when the
equation is solvable. The following proposition follows from Theorems 2.1
and 2.2.

Proposition 3.1. Let e/d be even with e = 2m. The polynomial fa

is not a permutation polynomial over Fq if and only if a = ζk+i(pd+1) for
some integer i and fixed k given by

k =

{

0 if p = 2 or p odd and m/d even

(pd + 1)/2 if p odd and m/d odd.

Proposition 3.2. Let e/d be even with e = 2m. Set

a0 =

{

1 if p = 2

ζ(q−1)/2(pd
−1) if p odd.

Then a0 ∈ F
∗

p2d and fa0 is not a permutation polynomial.

Proof. It is a simple matter to confirm a0 ∈ F
∗

p2d . If p = 2, then fa0

is not a permutation polynomial by the previous proposition. If p is odd,
then

a
(q−1)/(pd+1)
0 = (ζ(q−1)/2(pd

−1))(q−1)/(pd+1)

= (ζ(q−1)/2)(q−1)/(p2d
−1)

= (−1)1+p2d+...+p2d((m/d)−1)

= (−1)m/d.

By Theorem 2.1, fa0 is not a permutation polynomial.

Note that if fa is not a permutation polynomial, we can always write

a as a = a0ζ
i(pd+1) for some integer i. We define aj = a0ζ

j(pd+1) for all
integers j.
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6 R.S. COULTER

Proposition 3.3. Let e/d be even. Set t = (pα + 1)/(pd + 1). There

exists a unique element γ ∈ F
∗

q such that γt = ζ and ζi(pd+1) = γi(pα+1)

for all integers i. Thus aj = a0γ
j(pα+1) for all integers j.

Proof. As (pα+1, q−1) = pd+1, the monomial X t is a permutation poly-
nomial. So we can solve uniquely for γt = g. The remainder of the proposi-

tion follows immediately.

Theorem 3.3. Let e/d be even so that e = 2m for some integer m.
Define

a0 =

{

1 if p = 2

ζ(q−1)/2(pd
−1) if p odd.

For a ∈ F
∗

q , set fa(X) = apα

Xp2α

+ aX and consider the equation

fa(x) + bpα

= 0.

(i)If a 6= a0ζ
s(pd+1) for any integer s, then the equation can be solved

uniquely in x for any choice of b ∈ Fq .

(ii)If a = a0ζ
s(pd+1) for some integer s, then the equation is solvable

if and only if Tr2d(bγ
−s) = 0 where γ ∈ F

∗

q is the unique element satisfying

γ(pα+1)/(pd+1) = ζ.

The proof will require the following lemma.

Lemma 3.4. Let K be a finite extension of Fq , q = pe, with [K : Fq ] = k.

Then for v ∈ K we have TrK/Fq
(v) = 0 if and only if v = wqt − w, with t

any integer satisfying (t, k) = 1, for some w ∈ K dependent on t.

Proof. There are qk−1 distinct elements v ∈ K satisfying TrK/Fq
(v) =

0. Fix an integer t satisfying (t, k) = 1. For any element w ∈ K it is

clear from the properties of the trace function that TrK/Fq
(wqt − w) = 0.

Furthermore, the polynomial Xqt − X has qk−1 distinct images over K

as xqt − x = yqt − y if and only if x − y ∈ Fq . Hence every v ∈ K

which satisfies TrK/Fq
(v) = 0 can be written in the form v = wqt − w.

This lemma is an extension of [11, Theorem 2.25].

Proof (Proof of Theorem 3.3). Part (i) follows trivially from Theorems

2.1 and 2.2. We need to establish (ii). Note first that apα
−1

0 = −1 in any
characteristic, as a0 = 1 in characteristic 2 while odd characteristic follows
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RATIONAL POINTS OF A CLASS OF ARTIN-SCHREIER CURVES 7

from α/d being odd. Fix aj = a0ζ
j(pd+1) = a0γ

j(pα+1). Then the equation
faj (x) + bpα

= 0 can be simplified to

−bpα

= −a0γ
jpα

(γjx)p2α

+ a0γ
jpα

γjx.

Dividing through by −a0γ
jpα

and making a change of variable by setting
y = γjx we obtain the equation

yp2α − y = a−1
0 (bγ−j)pα

.

By Lemma 3.4, this equation is solvable in y if and only if

Tr2d(a
−1
0 (bγ−j)pα

) = 0.

Since a0 ∈ F
∗

p2d , this trace mapping is zero if and only if Tr2d(bγ
−j) = 0.

Thus the equation faj (x) + bpα

= 0 is solvable in x ∈ F
∗

q if and only if
Tr2d(bγ

−j) = 0.

4. PREVIOUS RESULTS

We shall now review the previous results on the evaluation of Sα(a, b).
This recall, along with the previous section, will allow us to provide a more
unified treatment of the evaluation of Sα(a, b), especially when e/d is even.
Throughout a 6= 0. The following results come from the articles [1, 2, 3].

4.1. When e/d is odd

Theorem 4.4. Let e/d be odd. Then

Sα(a, 0) =











0 if p = 2,

(−1)e−1√q η(a) if p ≡ 1 mod 4,

(−1)e−1ie
√

q η(a) if p ≡ 3 mod 4,

where η denotes the multiplicative quadratic character.

Theorem 4.5. Let p = 2, b ∈ F
∗

q and suppose e/d is odd. Then

Sα(a, b) = Sα(1, bc−1)

where c ∈ F
∗

q is the unique element satisfying c2α+1 = a. If Trd(b) 6= 1
then Sα(1, b) = 0. If Trd(b) = 1 then there exists some element w ∈ Fq
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8 R.S. COULTER

such that b = w22α

+ w + 1 and

Sα(1, b) = χ1(w
2α+1 + w)

(

2

e/d

)d

2(e+d)/2

where
(

2
s

)

is the Jacobi symbol.

Theorem 4.6. Let q and e/d be odd, and set f(X) = apα

Xp2α

+ aX.
Let x0 be the unique solution of the equation f(x) = −bpα

, b 6= 0. Then

Sα(a, b) =

{

(−1)e−1√q η(−a) χ1(axpα+1
0 ) if p ≡ 1 mod 4

(−1)e−1i3e√q η(−a) χ1(axpα+1
0 ) if p ≡ 3 mod 4.

4.2. When e/d is even

Theorem 4.7. Let e/d be even with e = 2m. Set f(X) = apα

Xp2α

+aX.
Define

a0 =

{

1 if p = 2

ζ(q−1)/2(pd
−1) if p odd.

Then Sα(a, b) = 0 unless the equation f(x) = −bpα

is solvable. There are
two possibilities.

(i)If a 6= a0ζ
s(pd+1) for any integer s, then, for any choice of b ∈ Fq ,

the equation has a unique solution x0 and

Sα(a, b) = (−1)m/dpmχ1(axpα+1
0 ).

(ii)If a = a0ζ
s(pd+1) for some integer s, then the equation is solvable

if and only if Tr2d(bγ
−s) = 0 where γ ∈ F

∗

q is the unique element satisfying

γ(pα+1)/(pd+1) = ζ. In such cases

Sα(a, b) = −(−1)m/dpm+dχ1(axpα+1
0 ),

where x0 is any solution to f(x) = −bpα

.

While the statements of those results concerning e/d odd do not war-
rant further discussion (than that given in the previous articles), the same
cannot be said for this single statement for e/d even. Firstly, the cases
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RATIONAL POINTS OF A CLASS OF ARTIN-SCHREIER CURVES 9

b = 0 and b 6= 0 have previously been dealt with separately. Secondly, it
will be seen from a comparison of [2, Theorem 2] and [3, Theorem 5.3(ii)]
that, for b 6= 0, there appears to be a second possibility in characteristic 2.
In fact, this second possibility can be removed. For this reason, we give an
abridged proof of this theorem.

Proof (Abridged proof of Theorem 4.7). If a 6= ζk+s(pd+1), then [3,
Theorem 5.3(i)] and [2, Theorem 1(ii)] coincide for b 6= 0. If b = 0 then

x0 = 0, and χ1(axpα+1
0 ) = 1. The results [1, Theorem 2] and [3, Theorem

5.2] for Sα(a, 0) can be seen to match the statement given above.

Let a = ζk+s(pd+1) for a set integer i. For Sα(a, 0), it is easily seen
that [1, Theorem 2] and [3, Theorem 5.2] coincide. For b 6= 0, [2, Theo-
rem 1(ii)] shows that our result holds for odd characteristic. Although it
is assumed throughout [2] that p is odd, only a single part of the entire
proof of [2, Theorem 1(ii)] does not hold in characteristic 2. To com-
plete the proof for characteristic 2, we need to show Trd(ac2α+1) = 0

where c is any root of f . Any such c 6= 0 satisfies c22α
−1 = a1−2α

from which we can see that any root of f satisfies c2α+1 = βa−1 where
β ∈ F2d . Hence Trd(ac2α+1) = Trd(β) = 0 as e/d is even. It remains
to show that the case b = 0 can be absorbed by the more general state-

ment. So, suppose b = 0 and a = a0ζ
s(pd+1) = a0γ

s(pα+1). We need
to show that χ1(axpα+1

0 ) = 1 (or, equivalently, Tr(axpα+1
0 ) = 0) for any

root x0 of f (as f(0) = 0 and χ1(0) = 1). Characteristic 2 follows

from the preceding argument as Tr(axpα+1
0 ) = TrF

pd/Fp
(Trd(axpα+1

0 )) =

TrF
pd/Fp

(0) = 0. In odd characteristic, as apα

0 = −a0, any root x0 of f satis-

fies (γjx0)
p2α

= γjx0. So Tr(axpα+1
0 ) = Tr(axpα+1

0 )pα

= −Tr(axpα+1
0 ) =

0.

5. FIRST EXAMINATION

Set n to be any positive integer and t = (n, e). Let f ∈ Fq [X ] and define
Nn(f) to be the number of solutions (x, y) ∈ Fq × Fq of the equation

f(x) = ypn − y.
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10 R.S. COULTER

By the orthogonality relations of characters we have

qNn(f) =
∑

h,x,y∈Fq

χ1

(

hf(x) − h(ypn − y)
)

=
∑

h,x∈Fq



χ1

(

hf(x)
)

∑

y∈Fq

χ1(−hypn

+ hy)





=
∑

h,x∈Fq



χ1

(

hf(x)
)

∑

y∈Fq

χ1

(

ypn

(hpn − h)
)



 .

The inner sum is q if hpn − h = 0 (so that h ∈ Fpt), otherwise the inner
sum is zero.

Lemma 5.5. With notation as above,

Nn(f) =
∑

h∈Fpt

∑

x∈Fq

χ1 (hf(x)) .

In this article, we wish to determine Nn(f) where f(X) = aXpα+1 +
L(X) and t = (n, e) divides (α, e).

For any integer t dividing d = (α, e), define Nα,t(a, b) = Nt(aXpα+1+bX)
to be the number of solutions (x, y) ∈ Fq × Fq of the equation

axpα+1 + bx = ypt − y,

where a, b ∈ Fq with a 6= 0. We now show that our general problem is
equivalent to determining Nα,t(a, b) for a particular b which is dependent
on the pt-polynomial L.

Theorem 5.8. Let n be any integer such that t = (n, e) divides d = (α, e)
and L ∈ Fq [X ] be a pt-polynomial given by

L(X) =

e/t−1
∑

i=0

biX
pti

.

Set b =
∑e/t−1

i=0 bpe−ti

i and fα(X) = aXpα+1 + L(X). Then Nn(fα) =
Nα,t(a, b).



F
in

it
e 

F
ie

ld
s 

A
p

p
l. 

8 
(2

00
2)

, 3
97

-4
13

RATIONAL POINTS OF A CLASS OF ARTIN-SCHREIER CURVES 11

Proof. From Lemma 5.5 we have

Nn(fα) =
∑

h∈Fpt

∑

x∈Fq

χ1 (hfα(x))

=
∑

h∈Fpt

∑

x∈Fq



χ1(haxpα+1)

e/t−1
∏

i=0

χ1(hbix
pti

)





=
∑

h∈Fpt

∑

x∈Fq



χ1(haxpα+1)

e/t−1
∏

i=0

χ1

(

x(hbi)
pe−ti

)





=
∑

h∈Fpt

∑

x∈Fq



χ1(haxpα+1)

e/t−1
∏

i=0

χ1(hxbpe−ti

i )





=
∑

h∈Fpt

∑

x∈Fq

χ1(haxpα+1 + hbx)

= Nα,t(a, b).

Sections 6 and 7 will be concerned with determining Nα,t(a, b). Section
8 identifies some curves which meet the Hasse-Weil bound.

6. THE NUMBER OF SOLUTIONS WHEN E/D IS ODD

Throughout this section we assume e/d is odd. We deal with character-
istic 2 first.

Theorem 6.9. Set p = 2. Let e/d be odd and let c ∈ F
∗

q be the unique

element satisfying c2α+1 = a. Then Nα,t(a, b) = Nα,t(1, bc−1). If Trd(b) 6∈
F
∗

2t then Nα,t(1, b) = q. If Trd(b) ∈ F
∗

2t then Nα,t(1, b) = q + Sα(1, bβ)
where β ∈ F

∗

2t satisfies β = Trd(b)
−1.



F
in

it
e 

F
ie

ld
s 

A
p

p
l. 

8 
(2

00
2)

, 3
97

-4
13

12 R.S. COULTER

Proof. By Lemma 5.5, we have

Nα,t(a, b) = q +
∑

h∈F
∗

2t

∑

x∈Fq

χ1(hax2α+1 + hbx)

= q +
∑

h∈F
∗

2t

∑

x∈Fq

χ1

(

h(cx)2
α+1 + hbc−1(cx)

)

= q +
∑

h∈F
∗

2t

∑

y∈Fq

χ1(hy2α+1 + hbc−1y)

= Nα,t(1, bc−1).

For each h ∈ F
∗

2t there exists a unique element γ ∈ F
∗

2t satisfying γ2α+1 = h.
Hence, by Lemma 5.5,

Nα,t(1, b) = q +
∑

h∈F
∗

2t

∑

x∈Fq

χ1(hx2α+1 + hbx)

= q +
∑

γ∈F
∗

2t

∑

x∈Fq

χ1

(

(γx)2
α+1 + bγ2α

(γx)
)

= q +
∑

γ∈F
∗

2t

Sα(1, bγ).

By Theorems 4.4 and 4.5, Sα(1, bγ) = 0 unless Trd(bγ) = γTrd(b) = 1. If
Trd(b) 6∈ F

∗

2t then γTrd(b) 6= 1 for all γ ∈ F
∗

2t and so Nα,t(1, b) = q. If
Trd(b) ∈ F

∗

2t then there exists a unique element β ∈ F
∗

2t satisfying β =
Trd(b)

−1. For all γ ∈ F
∗

2t \ {β} we still have Sα(1, bγ) = 0. The result fol-

lows.

Before continuing to odd characteristic, we make the following observa-
tions. Firstly, let η denote the quadratic character of Fq and η′ denote the
quadratic character of Fpt . Then for any h ∈ F

∗

pt we have

η(h) =

{

1 if e/t is even,

η′(h) if e/t is odd.

Secondly, denote by µ1 the canonical additive character of Fpt . Then we
have

χ1(x) = µ1 (Trt(x))

for all x ∈ Fq .

Theorem 6.10. Let q = pe be odd and f(X) = apα

Xp2α

+ aX. Let e/d
be odd and define x0 to be the unique solution of the equation f(x) = −bpα

.
There are two possibilities.
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(i)If e/t is odd then Nα,t(a, b) = q provided Trt(axpα+1
0 ) = 0. If

Trt(axpα+1
0 ) 6= 0 then

Nα,t(a, b) = q +

{

η
(

aTrt(axpα+1
0 )

)

p(e+t)/2 if p ≡ 1 mod 4,

η
(

aTrt(axpα+1
0 )

)

(−1)(3e+t)/2p(e+t)/2 if p ≡ 3 mod 4.

(ii)If e/t is even then e = 2m. If Trt(axpα+1
0 ) = 0, then

Nα,t(a, 0) = q −
{

pm(pt − 1) η(a) if p ≡ 1 mod 4,

(−1)mpm(pt − 1) η(a) if p ≡ 3 mod 4.

If Trt(axpα+1
0 ) 6= 0, then

Nα,t(a, b) = q +

{

pm η(a) if p ≡ 1 mod 4,

(−1)mpm η(a) if p ≡ 3 mod 4.

Proof. Set S =
∑

h∈F
∗

pt
η(h). Combining Lemma 5.5 and Theorem 4.4

we have

Nα,t(a, 0) = q +

{

Sη(a)(−1)e−1pe/2 if p ≡ 1 mod 4,

Sη(a)(−1)e−1iepe/2 if p ≡ 3 mod 4,

while combining Lemma 5.5 and Theorem 4.6 yields

Nα,t(a, b) = q +

(

∑

h∈F
∗

pt

η(−ha)χ1(haxpα+1
0 )

)

(−1)e−1pe/2 (1)

if p ≡ 1 mod 4, and

Nα,t(a, b) = q +

(

∑

h∈F
∗

pt

η(−ha)χ1(haxpα+1
0 )

)

(−1)e−1i3epe/2 (2)

if p ≡ 3 mod 4.
Suppose e/t is odd. As η(h) = η′(h) for all h ∈ F

∗

pt , then S = 0
and we obtain the claimed result (b = 0 implies x0 = 0). Let µ1 be
the canonical additive character of Fpt and µ = µTrt(axpα+1

0 ). Recall also

η(xy) = η(x)η(y) for all x, y ∈ F
∗

q . We can identify the sum in (1) and (2)
as

∑

h∈F
∗

pt

η(−ha)χ1(−haxpα+1
0 ) = η(a)G(η′, µ),
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14 R.S. COULTER

where G(η′, µ) is the Gaussian sum on F
∗

pt . If Trt(axpα+1
0 ) = 0 then

G(η′, µ) = 0 as µ is the trivial additive character. If Trt(axpα+1
0 ) 6= 0

then

G(η′, µ) = η′

(

Trt(axpα+1
0 )

)

G(η′, µ1),

see [11, Theorem 5.12(i)]. Lemma 2.2 can now be used to determine the
value of G(η′, µ1). Also, as e/t is odd and Trt(x) ∈ Fpt for all x ∈ Fq ,

we have η′

(

Trt(axpα+1
0 )

)

= η
(

Trt(axpα+1
0 )

)

. Combining these comments

with (1) and (2) completes the proof for e/t odd.
Now suppose e/t is even. Then e = 2m and η(h) = 1 for all h ∈ F

∗

pt . In

this case S = pt − 1, giving the result. For b 6= 0, the sum in Equations 1
and 2 can be simplified to

η(a)
∑

h∈F
∗

pt

χ1(haxpα+1
0 ).

Lemma 2.1 can be used to obtain the explicit value of this sum:

∑

h∈F
∗

pt

χ1(haxpα+1
0 ) =

{

pt − 1 if Trt(axpα+1
0 ) = 0,

−1 otherwise.

The result follows.

7. THE NUMBER OF SOLUTIONS WHEN E/D IS EVEN

It remains to deal with the case e/d even. Unlike the case e/d odd, here
we are able to give a single treatment for all characteristics.

Theorem 7.11. Let e/d be even so that e = 2m for some integer m.
Define

a0 =

{

1 if p = 2

ζ(q−1)/2(pd
−1) if p odd.

Then Nα,t(a, b) = q unless the equation

apα

xp2α

+ ax + bpα

= 0 (3)

is solvable. There are two possibilities.
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(i)If a 6= a0ζ
s(pd+1) for any integer s then Equation 3 is always solvable

with unique solution x0. Under this scenario we have

Nα,t(a, b) = q +

{

(−1)m/dpm(pt − 1) if Trt(axpα+1
0 ) = 0,

−(−1)m/dpm if Trt(axpα+1
0 ) 6= 0.

(ii)If a = a0ζ
s(pd+1) for some integer s, then Equation 3 is solvable if

and only if Tr2d(bγ
−s) = 0 where γ ∈ F

∗

q is the unique element satisfying

γ(pα+1)/(pd+1) = ζ. In such cases we have

Nα,t(a, b) = q +

{

−(−1)m/dpm+d(pt − 1) if Trt(axpα+1
0 ) = 0,

(−1)m/dpm+d if Trt(axpα+1
0 ) 6= 0,

where x0 is any solution to Equation 3.

Proof. To apply Theorem 4.7 we need to consider the equation

(ha)pα

xp2α

+ hax + (hb)pα

= 0.

However, as h ∈ F
∗

pt , this equation is equivalent to

apα

xp2α

+ ax + bpα

= 0.

(Note that this does not imply that Sα(ha, hb) = Sα(a, b).) By Theorem 4.7
we have Sα(ha, hb) = 0 if (3) is not solvable, in which case Nα,t(a, b) = q.
For the rest of the proof we assume that (3) is solvable. There are two
cases.

If a 6= a0ζ
s(pd+1) for any integer s, then Equation 3 is always solvable

with unique solution x0. Combining Theorem 4.7 with Lemma 5.5 gives

Nα,t(a, b) = q + (−1)m/dpm
∑

h∈F
∗

pt

χ1(haxpα+1
0 )

= q + (−1)m/dpm
∑

h∈F
∗

pt

χ1(−haxpα+1
0 )

= q + (−1)m/dpm
∑

h∈F
∗

pt

χ1(haxpα+1
0 ). (4)

Applying Lemma 2.1 yields the result.
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16 R.S. COULTER

If a = a0ζ
s(pd+1 for some integer s, then Theorem 3.3 states that Equa-

tion 3 is solvable if and only if Tr2d(bγ
−s) = 0. When this holds, Theorem

4.7 tells us that

Sα(ha, hb) = −(−1)m/dpm+d χ1(haxpα+1
0 ).

Following a similar method to our first case we can derive the result.

8. EXAMPLES OF CURVES WHICH MEET THE

HASSE-WEIL BOUND

Let us define the curve

C(X, Y ) = aXpα+1 + L(X) + Y − Y pn

over Fq , q = pe, t = (n, e) dividing (α, e), and L a pt-polynomial. If
degree(L)≤ pα then [13, Proposition VI.4.1] provides us with the following
important facts:

• the curve is absolutely irreducible,

• the genus of the curve is g = pα(pn − 1)/2.

It is a simple matter to show there is only one point at infinity for this
curve and that all points of the curve are non-singular. Thus the number
of Fq -rational points defined by the curve C is 1 + Nα,t(a, b) for a suitable
choice of b ∈ Fq . Our results allow us to determine those curves within
the class of Artin-Schreier curves considered in this paper which attain the
Hasse-Weil bound and so are either maximal or minimal curves.

Theorem 8.12. Let q = pe and select integers n and α such that t =
(n, e) divides (α, e). Let L ∈ Fq [X ] be a pt-polynomial given by

L(X) =

e/t−1
∑

i=0

biX
pti

with bi = 0 for all i > α/t. Set b =
∑e/t−1

i=0 bpe−ti

i . The number of Fq -
rational points on the Artin-Schreier curve described by the equation

ypn − y = axpα+1 + L(x)

attains the Hasse-Weil bound if and only if all of the following conditions
are met.
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(i)e = 2m.

(ii)n divides α and α divides m.

(iii)a = a0ζ
s(pα+1) for some integer s where a0 is given by

a0 =

{

1 if p = 2

ζ(q−1)/2(pα
−1) if p odd.

(iv)Tr2α(bζ−s) = 0 (so that the equation apα

xp2α

+ ax + bpα

= 0 is
solvable with solution x0 say).

(v)Trt(axpα+1
0 ) = 0.

In all cases, the curve is maximal if m/α is odd and minimal if m/α is
even.

Suppose b = 0 and let x0 be any solution of the equation apα

xp2α

+ax =
0. Then (axpα+1

0 )pα

= −axpα+1
0 . If p is odd, then

Trt(axpα+1
0 ) = Trt

(

(axpα+1
0 )pα

)

= Trt(−axpα+1
0 )

and so Trt(axpα+1
0 ) = 0. If p = 2, then axpα+1

0 ∈ F2α . As e/α is even,

Trα(axpα+1
0 ) = 0 and

Trt(ax2α+1
0 ) = TrF2α/F2t

(

Trα(ax2α+1
0 )

)

= 0.

So, if b = 0, then (iv) and (v) hold trivially.
We end with some comments on the results of Wolfmann in [14]. Let

q = pt and k a positive integer. Wolfmann considered the number of
rational points on the Artin-Schreier curve defined over Fqk by the equation

yq − y = axs + b

where a, b ∈ Fqk , a 6= 0 and s is any positive integer relatively prime to p.
One need only consider the case s dividing qk − 1. Wolfmann succeeded in
calculating the number of rational points on these curves in the following
scenario:

(i) k = 2t.

(ii) there exists a divisor r of t such that qr ≡ −1 mod s.
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18 R.S. COULTER

A careful check of the two sets of conditions reveals that, when L(X) = 0,
the conditions described by Theorem 8.12 satisfy the conditions considered
by Wolfmann. There is therefore some overlap between Theorem 8.12 and
Corollaries 1,2 and 3 of [14]. The two results are, however, not equivalent.
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