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Abstract

We give an alternative proof of the fact that a planar function cannot exist on groups
of even order. The argument involved leads us to define a class of functions which we
call semi-planar. Through the introduction of an incidence structure we construct
semi-biplanes using semi-planar functions. The method involved represents a new
approach to constructing semi-biplanes and provides infinite classes of semi-biplanes
unlike any known to the authors. For a particular class of semi-planar functions, we
provide a method to construct association schemes with two associate classes. Such
an association scheme is equivalent to a strongly regular graph.
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1 Planar functions revisited

Let G and H be finite groups written additively but not necessarily abelian. A
function f : G → H is called a planar function if for every non-identity a ∈ G
the functions ∆f,a : x 7→ f(a + x) − f(x) and ∇f,a : x 7→ −f(x) + f(x + a)
are bijections. Due to a result of Dembowski and Ostrom [5, Lemma 12], ∇f,a

will be a bijection if and only if ∆f,a is a bijection. Therefore we only need
look at one of these two functions.
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Planar functions were introduced by Dembowski and Ostrom [5] to describe
affine planes with certain properties. Using a geometric argument Dembowski
and Ostrom showed that planar functions could not exist over any finite group
of even order. Here we prove the same result using only standard group theory,
without any reliance on the assumed structure of the associated plane.

Theorem 1 (Dembowski and Ostrom, 1968) Let G and H be finite
groups of even order written additively but not necessarily abelian. Then there
exist no planar functions mapping G to H.

PROOF. Suppose the mapping f : G → H is a planar function. Then
∆f,a(x) = f(x + a) − f(x) is a bijection for each non-identity a ∈ G. For
any finite group G of even order there exists a non-zero g ∈ G satisfying
g + g = 0 so that g is its own inverse. Consider ∆f,g. As f is planar there
exists a unique element x0 ∈ G satisfying ∆f,g(x0) = f(g + x0) − f(x0) = 0.
From this we also have f(x0) − f(g + x0) = 0. However

∆f,g(g + x0) = f(g + g + x0) − f(g + x0)

= f(x0) − f(g + x0)

= 0

contradicting the uniqueness of x0. 2

Effectively, this proof can be viewed as a generalisation of the simple argu-
ment used to show there are no planar functions over any finite field of even
characteristic, see [14, Proposition 1].

2 Semi-planar functions

An interesting property revealed in the proof just given is this: when dealing
with groups of even order, if we have a solution to the equation f(x + a) −
f(x) = y then we can always obtain a second. This suggests the following
definition.

Definition 2 Let G and H be finite groups of the same even order written
additively but not necessarily abelian. We call a function f : G → H a semi-
planar function if for every non-identity a ∈ G the equation

f(x + a) − f(x) = y,

with y ∈ H, has either 0 or 2 solutions x ∈ G.

2
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These functions have also been called almost perfect non-linear functions, see
[13], and differentially 2-uniform functions, see [12]. In both cases, the moti-
vation for studying these functions lies with their interesting cross-correlation
and non-linear properties. Such properties are of interest in cryptography. Here
our motivation stems from combinatorial aspects. As a result of the earlier def-
initions there are several classes of semi-planar functions already known.

Theorem 3 Let f(X) = Xn, q = 2e and denote by Fq the finite field contain-
ing q elements. Let us denote by Fq the additive group of Fq too.

(i) If n = 1 then f is semi-planar on Fq if and only if e = 1.
(ii) If n = 2α + 1 then f is semi-planar on Fq if and only if (α, e) = 1.
(iii) If n = 2e−1 − 1 then f is semi-planar on Fq if and only if e is odd.
(iv) If n = (23α + 1)/(2α + 1) then f is semi-planar on Fq if (α, e) = 1.
(v) If n = 2(e+1)/2 − 1 then f is semi-planar on Fq if and only if e is odd.
(vi) If n = 2(e−1)/2 + 3 then f is semi-planar on Fq if and only if e is odd.

Remarks on proof. The case (i) is trivial. For (ii) see [12, Proposition 3]. Case
(iii) follows from [1, Theorem 13]. When e is odd, (iv) is effectively due to
the combined results of Kasami [10] and Cusick [4]. For e even, the case (iv)
was established recently by Dobbertin in [6]. For a direct proof of (v) see [8,
Theorem 1] (an indirect proof is described below). Finally, (vi) is shown in [6].

The monomials described in class (ii) are members of a larger class of polyno-
mials known as Dembowski-Ostrom (DO) polynomials. DO polynomials were
introduced in [5] in connection with planar polynomials. They can be described
as being any polynomial f ∈ Fq[X] (with q = pe) of the shape

f(X) =
e−1
∑

i,j=0

aijX
pi+pj

.

It was shown in [3, Theorem 3.2] that the DO polynomials are precisely those
polynomials whose difference polynomials ∆f,a(X) = f(X + a) − f(X) are
affine polynomials for all non-zero a ∈ Fq. Further semi-planar polynomials
can be generated using either of the following results.

Proposition 4 ([12, Proposition 1]) Let G and H be finite abelian groups.
Let A : G → G and B : H → H be group isomorphisms and let f : G → H be
a semi-planar function. Then B ◦ f ◦ A is semi-planar.

Proposition 5 ([12, Proposition 2]) Let G and H be finite abelian groups
and let f : G → H be a semi-planar bijection. Then the inverse of f is semi-
planar.

In the finite field case, Proposition 4 equates to composing with linearised
permutation polynomials, see [11, Section 3.4]. It can be seen from Proposition

3
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5 that Theorem 3(v) is a consequence of Theorem 3(ii) since, for e odd and
n = 2(e+1)/2 + 1, we have ((e + 1)/2, e) = 1, f(X) = Xn is bijective and its
inverse is f−1(X) = Xm, m = 2(e+1)/2 − 1.

3 An incidence structure

In [5] Dembowski and Ostrom introduced a functionally dependent incidence
structure. They showed that the existence of a planar function was equivalent
to the corresponding incidence structure representing an affine plane with
particular properties. Motivated by their results we now introduce an incidence
structure which we will use to construct combinatorial structures using semi-
planar functions.

Definition 6 Let G and H be finite abelian groups of the same even order
written additively and let f : G → H. We define the incidence structure
S(G, H; f) by:

Points: (x, y) with x ∈ G and y ∈ H

Lines: L(a, b) with a ∈ G and b ∈ H

Incidence: (x, y) I L(a, b) ⇔ y = f(x − a) + b.

When G and H are the additive group of Fq for some q = 2e we will denote
the incidence structure simply by S(f).

This incidence structure is modelled on the one used by Dembowski and Os-
trom in [5]. If we consider this structure in the case where f is a semi-planar
function we have the following theorem.

Theorem 7 Let G and H be finite abelian groups written additively and of
the same even order k. Let f : G → H be a semi-planar function. Then
S(G, H; f) has the following properties.

(i) It has k2 points and k2 lines.
(ii) Each line contains k points and each point is on k lines.
(iii) It is self-dual.
(iv) Every pair of points occur on 0 or 2 lines and every pair of lines intersect

in 0 or 2 points.
(v) For every point there are exactly k(k − 1)/2 other points defined by the

lines through it.

PROOF. (i) Trivial as |G × H| = k2.

4
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(ii) Let L(a, b) be some line of the incidence structure. Then

L(a, b) =
{(

x, f(x − a) + b
)

| x ∈ G
}

and so |L(a, b)| = k. Now choose some point (x, y). Then for each a ∈ G we
can solve for b ∈ H in the equation

y = f(x − a) + b

and so the point (x, y) must lie on k lines.

(iii) To see that S(G, H; f) is self-dual simply observe that if y = f(x− a)+ b
then −b = f(−a + x) − y. Thus (x, y) ∈ L(a, b) if and only if (−a,−b) ∈
L(−x,−y). So we can always interchange lines and points. In other words,
S(G, H; f) is self-dual.

(iv) Consider the distinct lines L(a, b) and L(c, d) for a, c ∈ G and b, d ∈ H.
If a = c then b 6= d and it can be seen that the two lines do not intersect. So
there exist lines which do not have common points. Now suppose that the two
lines do have a common point (x, y). Then a 6= c and f(x−a)+b = f(x−c)+d
or, equivalently, f(x − a) − f(x− c) = d− b. By assumption f is semi-planar
and so this equation will have either two solutions or none at all. Since we
already have a single solution there must be a second solution. Thus the lines
L(a, b) and L(c, d) intersect in exactly two points. Note that a 6= c does not
imply L(a, b) and L(c, d) intersect. It is clear that some lines must intersect.
That every pair of points occur on 0 or 2 lines follows from duality.

(v) Let P be a point of our incident structure. We wish to show that the
number of points defined by lines through P is a constant independent of the
point P chosen. By part (ii) there are k lines through P and each of these
lines contains k−1 points other than P. This gives an overall total of k(k−1)
points. However, every pair of lines through P intersect at P and so must
have a second point of intersection which is uniquely defined by the pair of
lines chosen. So every point has been counted twice. Thus there are k(k−1)/2
points overall. 2

In light of the above result the following definition is clearly relevant.

Definition 8 A connected incidence structure is called a semi-biplane if

(i) any two points are incident with 0 or 2 common blocks;
(ii) any two blocks are incident with 0 or 2 common points.

A semi-biplane has v points, v blocks, each block contains k points and each
point is on k blocks. We denote this structure sbp(v, k).

5



D
is

cr
et

e 
M

at
h

. 2
02

 (
19

99
),

 2
1-

31

Proposition 9 Let G and H be finite abelian groups written additively and
of the same even order k. Let f : G → H be a semi-planar function. If
S(G, H; f) is connected then it is a sbp(k2, k). If S(G, H; f) is not connected
then S(G, H; f) splits into two sub-structures; both are sbp(k2/2, k).

PROOF. By the previous theorem the only requirement to consider is
whether the incidence structure is connected or not. From Theorem 7(v) ev-
ery point is connected to at least k(k − 1)/2 other points and so there can be
at most 2 connected sub-structures contained in S(G, H; f). Clearly, if it is
connected then we have an sbp(k2, k). Suppose S(G, H; f) is not connected.
Then we have two sub-structures. By Theorem 7(v) the minimum number of
points a sub-structure can contain is 1 + k(k − 1)/2. Define a parallel class to
be any set {L(a, b) | b ∈ H} where a ∈ G. (Note that this is not necessarily
a description of the full parallel classes.) It is clear that all lines in a parallel
class are parallel. Let t be the number of lines from a parallel class in one of
the sub-structures. Each of these t lines contains k points. Hence

k(k − 1)

2
+ 1 ≤ tk ≤ k2 −

k(k − 1)

2
− 1

and dividing through by k we have

k − 1

2
+

1

k
≤ t ≤

k + 1

2
−

1

k
.

Thus
k − 1

2
< t <

k + 1

2
and since t is an integer we must have t = k/2. Thus each sub-structure
contains exactly one half of the lines from every parallel class and must be a
sbp(k2/2, k). 2

By [15, Proposition 14], in the case where f(X) = X3 and G and H are the
additive group of F4, S(f) must split into two sub-structures of 8 points each.
Further these sub-structures are identical copies of the same semi-biplane, the
hypercube H(4) as described in [15]. We note that this is the only case this
construction method will produce the hypercube structure. If there exists a
semi-planar function over an abelian group of order 6 then, by [15, Proposition
16], the incidence structure must again split into two sub-structures as there
does not exist a sbp(36, 6). The two sub-structures will again be copies of the
same semi-biplane, denoted Sa(18) in [15]. The argument involving parallel
classes from the proof of the corollary excludes the other two possible sbp(18, 6)
structures listed in [15, Proposition 16]. We now consider, in more detail, the
problem of whether S(G, H; f) is or is not connected.

6
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Theorem 10 Let G and H be finite abelian groups written additively and of
the same even order k. Let f : G → H be a semi-planar function. If f is a
bijection then S(G, H; f) is connected unless k = 2.

PROOF. Suppose S(G, H; f) splits and f is a bijection. In such cases, for
distinct a, c ∈ G the lines L(a, b) and L(c, b) cannot intersect. Consider one of
the sub-structures. In our sub-structure the sets Pa = {L(a, b) | some b ∈ H}
form the parallel line-classes. Any line in Pa intersects every line not in Pa (this
follows from Theorem 7(v)) and never intersects any line in the class. By our
earlier arguments, |Pa| = k/2. Let Ha = {b ∈ H | L(a, b) ∈ Pa}. Obviously,
|Ha| = k/2. For distinct a, c ∈ G, every line in Pa intersects every line in Pc.
Since f is bijective then Ha ∩Hc = ∅ and Ha ∪Hc = H. If there exists a third
parallel line-class, i.e. k > 2, we have a contradiction since | ∪a∈G Ha| > k.
2

In the trivial case, where k = 2, the identity function is the only semi-planar
function and the incidence structure does indeed split into two sub-structures.
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Diagram 1: The trivial structure generated by the identity when k = 2

In regards to the known semi-planar functions listed in Theorem 3, all are
bijections apart from case (ii) when e is even. All of the other semi-planar
functions listed in Theorem 3 will therefore generate connected incidence struc-
tures. As already noted, the DO monomial X3 defines, over F4, an incidence
structure which is not connected. In fact, this is the only case where this
occurs.

Lemma 11 Let e be even, α be some natural number satisfying (α, e) = 1,
and set q = 2e and n = 2α + 1. Let f(X) = Xn. Then the incidence structure
S(f) is connected unless q = 4.

PROOF. Fix b ∈ Fq. Consider a line L(a, b). Every point (x, y) ∈ L(a, b) is
contained in a line L(c, b) with c 6= a, if and only if f(x − a) = f(x − c). For
fixed x ∈ Fq, x 6= a, there will be (n, q−1) = 3 choices of c ∈ Fq for which this
equation holds (one of which will be c = a). So for each point (x, y) ∈ L(a, b),

7
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x 6= a, there are two distinct lines of the form L(c, b) with c 6= a containing
it. Each of the lines L(c, b), c 6= a, intersecting L(a, b) do so twice. A simple
counting argument now shows that all q − 1 lines L(c, b) with c 6= a intersect
L(a, b). An equivalent statement is that the equation f(x − z) − f(x) = 0
is solvable for all non-zero z ∈ Fq. By dividing by f(z) this is equivalent to
showing the equation x2α

+x = 1 is solvable. The polynomial X2α

+X has 2e−1

distinct images and there are 2e−1 elements x ∈ Fq which satisfy Tr(x) = 0.
Since Tr(x2α

+ x) = 0 for all x ∈ Fq it is clear that x2α

+ x = 1 is solvable if
and only if Tr(1) = 0. This holds as e is even.

Suppose the structure S(f) splits into two semi-biplanes. We use the notation
from the previous proof. Consider any b ∈ Ha. From the argument above, all
q lines L(c, b) must be in this sub-structure. By considering all b ∈ Ha, we
can account for q2/2 lines in this way. As this is all of the possible lines in the
sub-structure, we have Ha = Hc for all a, c ∈ Fq. Therefore, for every point
(x, y) in our sub-structure and every b ∈ Ha, b 6= y, there are 3 lines of the
form L(c, b) which contain (x, y). There is a further one line through (x, y)
which is L(x, y). As there are q lines through any point, we have

q = 3
(q

2
− 1

)

+ 1

whereby q = 4. 2

Theorem 10 and Lemma 11 show that all of the known semi-planar monomials
listed in Theorem 3 describe sbp(q2, q) unless q = 2 or q = 4 (high school
algebra triumphs once again!). All methods of constructing infinite classes
of semi-biplanes listed in [9,16,7] generate semi-biplanes whose parameters
are never sbp(k2, k) (there are constructions which yield sbp(k2/2, k) but the
methods are not the same). We note that, by generalising the definition of
semi-planar function, the construction method can be generalised to construct
semi-symmetric designs. This generalisation will be dealt with in a separate
paper. In the current article, we can achieve tighter results by restricting
ourselves to the present definition of semi-planar.

4 An association scheme with two associate classes

Definition 12 An association scheme with m associate classes on a v-set X
is a family of m symmetric anti-reflexive binary relations on X such that:

(i) any two distinct elements of X are ith associates for exactly one value of
i, where 1 ≤ i ≤ m.

(ii) each element of X has ni ith associates, 1 ≤ i ≤ m.

8



D
is

cr
et

e 
M

at
h

. 2
02

 (
19

99
),

 2
1-

31

(iii) for each i, 1 ≤ i ≤ m, if x and y are ith associates, then there are pi
jl

elements of X which are both jth associates of x and lth associates of y.

The numbers v, ni (1 ≤ i ≤ m), and pi
jl (1 ≤ i, j, l ≤ m) are called the

parameters of the association scheme. We see that pi
jl = pi

lj and often write
Pi = (pi

jl).

We now define two binary relations on the points of S(f) which we label R1

and R2. For points P,Q ∈ Fq × Fq we have

PR1Q ⇔ P and Q are co-incident on exactly 2 lines

PR2Q ⇔ P and Q are never co-incident.

We now prove that S(f) and the relations R1 and R2 define an association
scheme provided the polynomial f is a semi-planar Dembowski-Ostrom mono-
mial which permutes Fq.

Theorem 13 Let f(X) = X2α+1 be a semi-planar function over Fq where
q = 2e with e odd. Then the relations R1 and R2 define an association scheme
on the points of S(f). The parameters of the association scheme are:

n1 = q(q − 1)/2

n2 = (q + 2)(q − 1)/2

P1 =
1

4







q(q − 2) q2 − 4

q2 − 4 q(q + 2)







P2 =
1

4







q(q − 2) q2

q2 (q + 4)(q − 2)





 .

PROOF. We prove the result by following the definition of an association
scheme as given above. Firstly, it is clear that R1 and R2 are symmetric and
anti-reflexive. As e is odd we have (2α +1, q−1) = 1 and so f is a permutation
polynomial over Fq.

(i) It is obvious that for any two distinct points P and Q of S(f) we will have
either PR1Q or PR2Q but never both.

(ii) See Theorem 7(v) for a proof of n1 and hence n2.

(iii) For given points P and Q, we wish to determine the number of points
that are first associates of both of them and to show that it is independent of
the points chosen. We do this by first determining the number of intersection
points any line through P has with lines through Q. To simplify the proof, we
let P = (0, 0) and the line through P be L(0, 0). To see that we can do this

9
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without loss of generality observe that, throughout the following argument,
we could choose any point and line through that point by making a change of
variable.

Let Q = (x0, y0) be the arbitrary second point. The lines through Q are

{L
(

a, f(x0 +a)+ y0

)

| a ∈ Fq}. The line in this set with a = 0 is parallel with

L(0, 0) and so we assume a ∈ F
∗

q. Any intersection point (x, y) of L(0, 0) and

L
(

a, f(x0 + a) + y0

)

must satisfy

y = x2α+1 = f(x)

y = f(x + a) + f(x0 + a) + y0.

So we have

0 = f(x + a) − f(x) + f(x0 + a) + y0

= ax2α

+ a2α

x + f(a) + f(x0 + a) + y0

= ax2α

+ a2α

x + ax2α

0 + a2α

x0 + f(x0) + y0

= a2α

(x + x0) + a(x + x0)
2α

+ c

where c = f(x0)+ y0 is a constant (as x0 and y0 are fixed). Letting z = x+x0

we have

a2α

z + az2α

= c.

Note for the rest of the proof we require z 6= 0 and z 6= x0 as we only wish to
count those intersection points distinct from P and Q. If c = 0 then y0 = f(x0)
and so Q is on the line L(0, 0). Thus the line L(0, 0) will intersect every line
through Q and will define q − 2 points of intersection other than P and Q.

Now suppose c 6= 0. We wish to determine for how many a is f(z+a)−f(z) =
c + f(a) solvable in z. Dividing by f(a) we obtain ∆f,1(z/a) = 1 + c/f(a). As
f is a permutation polynomial and f(0) = 0 we have c/f(a) is a permutation
function on F

∗

q. So our problem reduces to determining for how many β 6= 1
is the equation ∆f,1(z/a) = β solvable in z and how many distinct solutions
are there in such cases. For β ∈ Fq there are q/2 choices of β for which
∆f,1(z/a) = β has 2 solutions and q/2 for which it has none. Now the case
β = 1 has the solutions z/a = 0, 1. So for β ∈ Fq \ {1} there are (q − 2)/2
choices for which the equation will have a solution. When P and Q are 1st
associates z = x0 will be a solution. In this case we must remove that β for
which z = x0 is a solution (this will not be β = 1). This leaves (q − 4)/2
possible choices of β in this case. For each of the possible choices of β there
will be two solutions (i.e., two lines with which L(0, 0) intersects) and so this
gives a total of q − 4 intersection points if P and Q are 1st associates and
q − 2 if they are not. If they are first associates then there will be two lines
through Q intersecting L(0, 0) at P. Each will intersect L(0, 0) at a second
distinct point. These two points have been removed in the previous argument

10
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and so we must now add these two points back in. So overall any line through
P defines q − 2 intersection points with lines through Q, whether P and Q
are 1st associates or not.

It remains to determine the number of times we count each intersection point.
For chosen arbitrary points P and Q we count from the perspective of P. Each
of the q lines through P defines q − 2 intersection points with lines through
Q giving a count of q(q − 2) points. However, each of these points will have
been counted 4 times giving an overall count of q(q − 2)/4 first associates of
P and Q regardless of whether P and Q are first associates or not.

.

..
...
...
..
...
..
...
...
...
...
..

..

..
..
...
..
...
...
..
...
..
...
.

..
..
..
..
..
..
..
..
..
..
..
..
..
.

..

..

..

..

..
..
..
..
..
..
..
..
..

..

..

..

..

..

..

..

..

..

..

..

.

..

.

..

..

..

..

.

..

..

.

..

..

.

..

..

..

..

..

.

..

.

..

.

..

.

..

.

..

.

..

..

..

.

..

.

.

..

..

..

.

.

..

.

..

..

.

..

..

..

.

..

..

.

.

.

...

..

...

..

..

...

..

...

.

...

..

..

.

...
...
....
...
...
...
...
...
..

.....
....
.....
.....
.....
...

....
...........

..........
.

..........................

...........................

............................

.............................

.

.............................

............................

...........................

..........................

.........
...........

......

...
.....
....
.....
.....
.....

..

...

...

...
...
...
....
...
...
.

.

...

..

...

..

...

..

..

...

..

...

..

.

.

..

..

..

.

..

..

.

..

..

..

.

..

..

.

..

..

.

..

..

.

..

.

..

..

..

.

..

.

..

.

..

.

..

.

.

.

..

..

.

..

..

.

..

..

.

..

..

..

..

.

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..
..
..
..
..
..
..
..
..
..

..
..
..
..
..
..
..
..
..
..
..
..
..
.

...
...
..
...
..
...
..
...
...
..
..

..
...
..
...
...
...
..
...
..
...
...

.

.

...

..

...

..

..

...

..

...

.

...

..

..

.

...

...

....
...
...
...
...
...
..

.....
....
.....
.....
.....
...

....
...........

..........
.

..........................

...........................

............................

.............................

.

.............................

............................

...........................

..........................

.........
...........

......

...
.....
....
.....
.....
.....

..

...

...

...

...

...
....
...
...
.

.

...

..

...

..

...

..

..

...

..

...

..

.

P Q P Q
rrrrrrrrrr
rrrrrrr

rrrrrrrrrr
rrrrrrr

rrrrrrrrrr
rrrrrrr rrrrrrrrrr

rrrrrrr

rrrrrrrrrr
rrrrrrr

rrrrrrrrrr
rrrrrrr

Diagram 2: Showing how any point that is a first associate of P and Q is
counted four times in our counting argument.

Diagram 2 shows how any point of intersection between a line of P and a line
of Q is counted 4 times. Any point that is a first associate of a point T is
uniquely defined as the intersection point of a pair of lines passing through
T . Hence we have, for a chosen line through P and a chosen point which is a
first associate of P and Q, two lines through Q which uniquely define it. The
chosen line through P must intersect both of these lines at the same point so
counting the point twice. Further, as this point is also a first associate of P
there is a second line through P which will also count this intersection point
twice. We give a second diagram depicting what happens in the case when
P and Q are on the line chosen although we note it is essentially the same.
The key to seeing this is to remember that, in this case, the line chosen going
through P is also a line through Q and intersects itself. With this in mind it
is easy to construct the same argument as for the case shown in Diagram 2.
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Diagram 3: Depicting the special case where Q is on the line chosen passing
through P.

Finally, having determined p1
11, p2

11 and n1 it is a simple matter to determine
the remaining parameters of the scheme. 2
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By letting q = 2k in the description of the association scheme given in the
above theorem one arrives at the parameters (4k2, 2k2 − k, k2 − k, k2 − k)
corresponding to a class of designs which, under the classification of [2], are
known as Menon Designs.
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