
EXTENDING ABELIAN GROUPS TO RINGS

LYNN M. BATTEN, ROBERT S. COULTER, AND MARIE HENDERSON

Abstract. For any abelian group G and any function f : G → G

we define a commutative binary operation or “multiplication” on G

in terms of f . We give necessary and sufficient conditions on f for
G to extend to a commutative ring with the new multiplication. In
the case where G is an elementary abelian p-group of odd order, we
classify those functions which extend G to a ring and show, under
an equivalence relation we call weak isomorphism, that there are
precisely six distinct classes of rings constructed using this method
with additive group the elementary abelian p-group of odd order
p2.

1. Introduction

The classification of finite simple groups was primarily motivated by
the fact that simple groups are the essential building blocks of finite
groups. For finite ring theory, the rings of prime power order assume
the role of simple groups as the prime objects. Recently, the problem of
classifying finite associative rings has received considerable attention,
see [5, 6, 20] for example. Meanwhile, work on non-associative rings
has tended to concentrate more on construction methods, though there
have been some results on the classification problem, such as [11]. In
their broadest sense, rings can be viewed as additive groups with an
additional bivariate mapping satisfying specific properties used for mul-
tiplication. Here we provide a method for constructing non-associative
rings based on this viewpoint and then consider the classification prob-
lem for the resulting rings, concentrating specifically on the elemen-
tary abelian case. In particular, a complete classification is achieved
for those rings constructed using our method and elementary abelian
groups of odd prime square order. It should be noted that our classifi-
cation method does not use standard ring isomorphism, but a weaker
equivalence relation which is certainly more natural for our problem
and may be significant in the study of non-associative commutative
rings in general.
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2 BATTEN, COULTER, AND HENDERSON

In this article, rings are not assumed to be associative, nor to contain
an identity. In general, the multiplication of a ring R = {G,+, ·} can
be viewed as a bivariate function defined on the group G = {G,+}
which is both left and right distributive. It is easily seen that, given
any ring R and any bivariate function L(x, y) defined on G×G which
satisfies L(x+y, z) = L(x, z)+L(y, z) and L(x, y+z) = L(x, y)+L(x, z)
for all x, y, z ∈ G, it is possible to define a multiplication ? on G× G
by x ? y = L(x, y) resulting in a, possibly new, ring {G,+, ?}.

We now let G = {G,+} be an abelian group and define an additional
operation on G by constructing a function L as above, but by using
a univariate function. Let f : G → G be any function. Define ?f on
G×G by

x ?f y = f(x+ y) − f(x) − f(y)

for all x, y ∈ G. Note that ?f is commutative since G is assumed to
be abelian. (Note that the definition can be extended to non-abelian
groups using x ?f y = −f(x) + f(x+ y)− f(y), but we do not consider
them in the current article.) This definition is motivated by results
concerning planar functions in projective geometry, see [9], and we
return to this topic in Section 5.

A natural question is when does {G,+, ?f} define a ring? An ex-
ample can be seen through reverse engineering: let R = {G,+, ·} be a
commutative ring with identity e in which e+e = 2e is a unit. Then the
function f given by f : x 7→ (2e)−1 ·x ·x defines a ring Rf = {G,+, ?f}
with Rf = R.

We give necessary and sufficient conditions on the function f so
that {G,+, ?f} defines a ring. Further, we classify all functions which
extend an elementary abelian p-group G to a ring.

Following this, we define weak isomorphism, a concept which sits
between isomorphism of ring theory and isotopism of projective ge-
ometry. As with isomorphism and isotopism, weak isomorphism is an
equivalence relation and in the context of our construction, appears to
be the most natural and useful one to consider. We show there are
precisely six non-weakly isomorphic classes of rings constructed using
our method when G = Cp⊕Cp with p an odd prime. Thus the number
of non-weakly isomorphic rings in this case is independent of p. It can
be shown that this is not the case with the usual ring isomorphism.

We end the article by using our results to show that the only pla-
nar Dembowski-Ostrom polynomials over Fp2 are precisely those which
can be written in the form L1(L

2
2(X)) where L1 and L2 are linearised

permutation polynomials.
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EXTENDING ABELIAN GROUPS TO RINGS 3

2. Extending Abelian Groups to Rings

Throughout this article G denotes an abelian group written addi-
tively. For any integer n ≥ 1 and any a ∈ G we write na as the
addition of n copies of a. By a ring R = {G,+, ·} we mean (G,+) is
an abelian group and

(i) (a+ b) · c = (a · c) + (b · c), and
(ii) a · (b + c) = (a · b) + (a · c),

for all a, b, c ∈ G.
For any function f : G → G, define the difference operator ?f of f

on G by
?f(x, y) = x ?f y = f(x+ y) − f(x) − f(y)

for all x, y ∈ G.
We view the operator ?f as a type of multiplication on G and note

that it is necessarily commutative by definition. We now consider prop-
erties of {G,+, ?f}. The following result is immediate.

Theorem 2.1. Rf = {G,+, ?f} is a ring if and only if

f(a+ b+ c) = f(a+ b) + f(a+ c) + f(b+ c)− f(a)− f(b)− f(c) (1)

holds for all a, b, c ∈ G.

Proof. Left distributivity follows from the definition, and right distribu-
tivity by commutativity. �

In general, such a ring will have zero-divisors as a ?f b = 0 precisely
when f(a + b) = f(a) + f(b). The example given in the introduction
shows there are many rings which can be constructed in this way.

Theorem 2.2. Let {Rf ,+, ?f} be a ring. Then the following state-

ments hold.

(i) f(0) = 0.
(ii) a ?f 0 = 0 ?f a = 0 for all a ∈ G.

(iii) a ?f (−b) = (−a) ?f b = −(a ?f b) for all a, b ∈ G.

(iv) (−a) ?f (−b) = a ?f b for all a, b ∈ G.

Proof. For (i), set a = b = c = 0 in (1). The definition of ?f along with
(i) yields (ii). By (1)

f(a) = f(a+ b + (−b)) = f(a+ b) + f(a− b) − f(a) − f(b) − f(−b)

so that

a ?f (−b) = f(a− b) − f(a) − f(−b)

= −f(a+ b) + f(a) + f(b)

= −(a ?f b).
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4 BATTEN, COULTER, AND HENDERSON

Similarly, (−a) ?f b = −(a ?f b), yielding (iii), while (iv) is immediate
from (iii). �

Recall that two rings R and S are isomorphic if there exists a bijec-
tive mapping φ : R → S satisfying (i) φ(x+ y) = φ(x) + φ(y), and (ii)
φ(xy) = φ(x)φ(y) for all x, y ∈ R.

Theorem 2.3. Let Rf = {G,+, ?f} and Rh = {G,+, ?h} be rings

determined by the two functions f and h on G, respectively. Then Rf

and Rh are isomorphic if and only if there exists a group automorphism

φ on {G,+} such that x ?f◦φ y = x ?φ◦h y for all x, y ∈ G.

Proof. For any automorphism φ on {G,+}, we have

φ(x) ?f φ(y) = f(φ(x) + φ(y)) − f(φ(x)) − f(φ(y))

= f(φ(x+ y)) − f(φ(x)) − f(φ(y))

= x ?f◦φ y,

and

φ(x ?h y) = φ(h(x+ y) − h(x) − h(y))

= φ(h(x+ y)) − φ(h(x)) − φ(h(y))

= x ?φ◦h y.

If Rf and Rh are isomorphic, then there exists an automorphism φ on
{G,+} such that φ(x) ?f φ(y) = φ(x ?h y), and so x ?f◦φ y = x ?φ◦h y
for all x, y ∈ G. Conversely, if there exists a group automorphism φ
on {G,+} such that x ?f◦φ y = x ?φ◦h y for all x, y ∈ G, then clearly
φ(x) ?f φ(y) = φ(x ?h y) and φ(x + y) = φ(x) + φ(y) for all x, y ∈ G,
and so Rf and Rh are isomorphic. �

Lemma 2.4. Let Rf = {G,+, ?f} and Rh = {G,+, ?h} be rings deter-

mined by the two functions f and h on G, respectively. Then Rf = Rh

if and only if f − h is a group homomorphism on G.

Proof. As both rings have the same additive group, we need only show
their multiplication operations are identical. Define ψ(x) = f(x)−h(x).
Then ψ is a group homomorphism on G if and only if, for all x, y ∈ G,
ψ(x+ y) = ψ(x) + ψ(y), or equivalently, f(x+ y)− h(x+ y) = f(x)−
h(x)+ f(y)−h(y). Therefore ψ is a group homomorphism on G if and
only if f(x+y)−f(x)−f(y) = h(x+y)−h(x)−h(y). In other words,
the multiplication operations ?f and ?h are the same. �

The example given in the introduction coupled with the previous
lemma yields the following corollary.
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EXTENDING ABELIAN GROUPS TO RINGS 5

Corollary 2.5. Let R = {G,+, ·} be a commutative ring with identity

ε and such that 2ε is a unit in R. Then Rf = {G,+, ?f} = R if and

only if f : x 7→ ((2ε)−1 ·x ·x)+φ(x) where φ is a group homomorphism

on G.

Lemma 2.6. Let Rf = {G,+, ?f} be a ring with identity ε. Then

(i) ε = f(ε) + f(−ε).
(ii) For any integer n ≥ 1, f(nε) = nf(ε) + (n(n− 1)/2)ε.

Proof. We have x = x ?f ε = f(x + ε) − f(x) − f(ε) for all x ∈ G.
Setting x = −ε gives (i). An equivalent equation is

f(x+ ε) = x+ f(x) + f(ε) (2)

If x = ε, then f(2ε) = 2f(ε) + ε. We proceed by induction. Suppose
f(nε) = nf(ε)+ (n(n− 1)/2)ε holds for some integer n ≥ 1. Using (2),
we have

f((n+ 1)ε) = nε + f(ε) + f(nε)

= nε + f(ε) + nf(ε) + (n(n− 1)/2)ε

= (n+ 1)f(ε) + (n(n + 1)/2)ε.

Thus (ii) follows by induction. �

Corollary 2.7. Let G = 〈g〉 be a finite cyclic group and Rf = {G,+, ?f}
define a ring with identity g. Then |G| is odd.

Proof. Let |G| = k be even. Then ka = 0 for all a ∈ G. By Lemma 2.6
(ii), f(kg) = kf(g)+(k(k−1)/2)g = 0+(k/2)(k−1)g 6= 0 contradicting
Theorem 2.2(i). �

3. Extending Elementary Abelian Groups to Rings

For the remainder of the article we let G be an elementary abelian
p-group of order q = pn with p a prime and n a positive integer. It
is immediate that we can extend G to a finite field and by Lagrange
interpolation we can associate the function f on G with a unique poly-
nomial f of degree less than q on the finite field of q elements. The key
result of this section is Theorem 3.3 which for this case classifies those
functions which extend G to a ring.

Before continuing we require some additional notation and defini-
tions pertaining to finite fields. Further details can be found in [16].
We denote the finite field of q elements by Fq and the non-zero ele-
ments by F

∗

q . The symbol g will always represent a primitive element
of Fq . The ring of polynomials in indeterminate X will be denoted by
Fq [X]. We define the difference operator of a polynomial f ∈ Fq [X]
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6 BATTEN, COULTER, AND HENDERSON

to be the bivariate polynomial ∆f(X, Y ) = f(X + Y ) − f(X) − f(Y )
and identify the polynomial ∆f(X, Y ) with the bivariate function ?f .
For polynomials f1, f2, we write f1(f2) = f1 ◦ f2 for the composition of
f1 with f2. Recall a permutation polynomial over Fq is any polynomial
which permutes the elements of Fq under evaluation.

A linear transformation over Fq can be described by a polynomial
L ∈ Fq [X], called a p-polynomial (also known as a linearised or additive
polynomial), with shape

L(X) =

n−1
∑

i=0

aiX
pi

.

Any p-polynomial L satisfies L(x+y) = L(x)+L(y) and L(ax) = aL(x)
for all x, y ∈ Fq and a ∈ Fp. It is immediate from the first of these
two properties that L is a permutation polynomial over Fq if and only
if x = 0 is the only root of L in Fq .

A particularly important p-polynomial is the absolute trace mapping,
denoted Tr, which is defined to be the polynomial

Tr(X) =

n−1
∑

i=0

Xpi

.

A key property of the trace mapping is Tr(x) ∈ Fp for all x ∈ Fq . The
trace mapping is also equidistributive by which we mean that every
element a ∈ Fp has pn−1 pre-images.

The set of all p-polynomials which are permutations over Fq form a
group, under composition modulo Xq −X, isomorphic to the general
linear group GL(n, p). We shall denote this group by G throughout.
For notational simplicity, we write L ∈ G to mean L ∈ Fq [X] is a
permutation polynomial. For the following result, see [16, Chapter 7].

Lemma 3.1. The polynomial L(X) = aXq + bX ∈ Fq2[X] is a permu-

tation polynomial over Fq2 if and only if aq+1 6= bq+1.

A Dembowski-Ostrom (DO) polynomial is any polynomial f ∈ Fq [X]
of the shape

f(X) =
n−1
∑

i,j=0

aijX
pi+pj

.

More precisely, we shall call f a ps-DO polynomial if aij = 0 whenever i
or j are not divisible by s. DO polynomials play a key role in the study
of planar functions; see Section 5. The following result characterises
DO polynomials in terms of their difference operator.
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EXTENDING ABELIAN GROUPS TO RINGS 7

Theorem 3.2. Let f ∈ Fq [X] with deg(f) < q. Then the following

conditions are equivalent.

(i) f = D+L, where D is a Dembowski-Ostrom polynomial and L
is a p-polynomial.

(ii) For each a ∈ F
∗

q , ∆f(X, a) = La(X) where La is a p-polynomial

depending on a.

For the proof, see [7, Theorem 3.2]. We note that the statement of this
result differs slightly from that given in [7] because we are dealing with
a slightly different definition of the difference operator. However, it is
easily seen that the proof as given there suffices.

We now classify those functions which extend an elementary abelian
p-group to a ring.

Theorem 3.3. Let G be an elementary abelian p-group and f ∈ Fq [X].
Then Rf = {G,+, ?f} is a ring if and only if f satisfies f(X) =
D(X) + L(X) where D is a DO polynomial and L is a p-polynomial.

Proof. Let f ∈ Fq [X] satisfy f(X) = D(X) + L(X). Now ∆f is sym-
metric in X and Y . It follows from Theorem 3.2 that ∆f (X, Y ) is a
p-polynomial in both X and Y . In particular, we have ∆f (a + b, c) =
∆(a, c) + ∆(b, c) for all a, b, c ∈ Fq . Hence ∆f yields both distributive
laws, and so Rf is a ring. Now suppose Rf is a ring. Then ?f and hence
∆f are left and right distributive as mappings. Thus ∆f(X, a) must be
a p-polynomial for all a ∈ F

∗

q . By Theorem 3.2, f(X) = D(X) +L(X)
for some DO polynomial D and some p-polynomial L. �

We now consider an example. Let q = pn with n a positive inte-
ger and define f(X) = Xpα+1 where α ≥ 0. It is easy to see that
∆f(X, Y ) = Xpα

Y + XY pα

= X ?f Y . For x, y, z ∈ F
∗

q , a short calcu-
lation reveals

(x ?f y) ?f z = xp2α

ypα

z + xpα

yp2α

z + xpα

yzpα

+ xypα

zpα

x ?f (y ?f z) = xpα

ypα

z + xpα

yzpα

+ xyp2α

zpα

+ xypα

zp2α

.

Suppose Rf is associative. Fix x, y ∈ F
∗

q and consider the two mul-
tiplications above as polynomials in the indeterminate Z by replacing
z with Z. Then the two polynomials, one of degree pα, and one of
degree p2α are identical under evaluation, which is impossible unless
α ≡ 0 mod n or n = 2. If n = 2 then the two polynomials become
(under reduction modulo Zp2

− Z)

(x ?f y) ?f Z = (Z + Zpα

)(xypα

+ xpα

y)

x ?f (y ?f Z) = Z(xpα

ypα

+ xypα

) + Zpα

(xpα

y + xy).
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8 BATTEN, COULTER, AND HENDERSON

It follows that y = ypα

for all y ∈ Fp2, implying α ≡ 0 mod n. Thus
Rf is an associative ring if and only if α ≡ 0 mod n, in which case
f(X) mod (Xq−X) = kX2 for some k ∈ Fq . A similar argument shows
that Rf has a multiplicative identity ε if and only if α ≡ 0 mod n.

Note that it is not true in general that Rf has a multiplicative iden-
tity if and only if f(X) ≡ kX2 mod (Xq − X). For example, the ring

Rf with DO polynomial f(X) = X2 + 2Xp2+p −X2p −X2p2

has mul-
tiplicative identity ε = (p+ 1)/2 over any finite field Fpn, p odd.

It is also the case, for f = D + L as in Theorem 3.3, that if Rf has
an identity ε, then it is a root of the polynomial D(X)−X, by Lemma
2.6(i).

4. The number of non-equivalent rings

Our next objective is to describe machinery which will allow us to
determine if two rings constructed from the same elementary abelian
group but using different DO polynomials are equivalent. As an ap-
plication, we show that relevant to weak isomorphism (defined below)
there are six distinct rings of odd order p2 constructed in this way
(effectively there is only one DO polynomial, X3, to consider over F22).

The class of DO polynomials is closed under composition with p-
polynomials. More particularly, one can define an equivalence relation
on DO polynomials in the following manner: two DO polynomials f1, f2

are called equivalent, written f1 ∼ f2, if there exist L1, L2 ∈ G such
that L1 ◦ f1 ◦ L2 ≡ f2 mod (Xq − X). Generally, we make use of
the equivalent statement: f1 ∼ f2 if there exist L1, L2 ∈ G such that
L1 ◦ f1 ≡ f2 ◦ L2 mod (Xq −X).

This equivalence relation can be defined more generally, both in the
choice of the group G and for all polynomials over Fq . It appears the
study of such equivalence relations and the related problem of modular
invariants began with Dickson in [10], and has since been taken up in
various forms by Carlitz, [1, 2], Cavior, [3, 4], and Mullen [17, 18, 19].

For two DO polynomials f, h ∈ Fq [X], we shall call the rings Rf =
{Fq ,+, ?f} and Rh = {Fq ,+, ?h} weakly isomorphic if there exist two
linear transformations L1, L2 ∈ G such that

L1(x) ?f L1(y) = L2(x ?h y)

for all x, y ∈ Fq . This lies between the concept of ring isomorphism, see
[12, page 133], and the concept of semifield isotopism, see [8, page 135].
(This definition could be extended to general rings but we will not need
it here.) This definition is motivated by the equivalence relation for DO
polynomials, as illustrated in our next result. The proof is trivial.
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EXTENDING ABELIAN GROUPS TO RINGS 9

Lemma 4.1. Let f, h ∈ Fq [X] be DO polynomials. The rings Rf and

Rh are weakly isomorphic if and only if there exist L1, L2 ∈ G such that

f = L1 ◦ h ◦ L2 mod (Xq −X).

Let q = pn and set d < n to be a positive divisor of n. Suppose
f ∈ Fq [X] is a DO polynomial such that f(X) ≡ cX2 mod (Xpd

−X),
for some c ∈ F

∗

q . Note that this can happen if and only if f is a pd-DO
polynomial. So Rf contains a weakly isomorphic copy of Fpd. We note
that, in particular, for any DO polynomial f , the ring Rf must contain
a weakly homomorphic copy of Fp. More precisely, f(X) mod (Xp −
X) = cX2 for some c ∈ Fq and if c 6= 0, then Rf contains a weakly
isomorphic copy of Fp, otherwise x ?f y = 0 for all x, y ∈ Fp.

A weak automorphism of a polynomial f is a pair of polynomials
(L1, L2) ∈ G×G such that L1 ◦f ≡ f ◦L2 mod (Xq−X). The set Ω(f)
of all weak automorphisms of f forms a group under the operation of
pairwise composition: (L1, L2) · (M1,M2) = (L1 ◦M1, L2 ◦M2). More
importantly, the cardinality of Ω(f) is invariant for polynomials f in
the same equivalence class. An application of [19, Theorem 2.4] yields
the following lemma.

Lemma 4.2. Let Ω(f) denote the group of weak automorphisms of the

DO polynomial f and let C(f) denote the equivalence class containing

f . Then

|C(f)| =
|G|2

|Ω(f)|
.

We now restrict ourselves specifically to the case where the elemen-
tary abelian p-group G has odd order p2. Our aim is to determine the
number of non-weakly isomorphic rings which can be constructed from
G using our method. We take a constructive approach and determine a
DO polynomial which acts as the class representative for each class as
well as the number of elements in each class. To determine the number
of elements in each class we use the result of Mullen from [19] (given
above as Lemma 4.2), and determine the number of weak automor-
phisms of each polynomial instead. The following lemma will be used
extensively in what follows. The proof is purely mechanical and so we
omit it.

Lemma 4.3. Let L1(X) = aXp + bX and L2(X) = cXp + dX with

a, b, c, d ∈ Fq . Define f(X) = αX2 +βXp+1 +γX2p to be a general DO
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10 BATTEN, COULTER, AND HENDERSON

polynomial defined over Fp2 . Then we have

L1(X) ◦ f(X) mod (Xp2

−X) = (aγp + bα)X2

+ (aβp + bβ)Xp+1

+ (aαp + bγ)X2p

and

f(X) ◦ L2(X) mod (Xp2

−X) = (αd2 + βcpd+ γc2p)X2

+ (2αcd+ β(cp+1 + dp+1) + 2γcpdp)Xp+1

+ (αc2 + βdpc+ γd2p)X2p.

4.1. Equivalence classes of DO monomials. We first consider the
equivalence classes containing the DO monomials. For Fp2 there are
only three DO monomials: X2, Xp+1 and X2p. Clearly X2p ∈ C(X2).

Lemma 4.4. We have

|Ω(X2)| = 2(p2 − 1) and

|Ω(Xp+1)| = 2p(p− 1)(p2 − 1).

Proof. Set f(X) = X2. We need to determine the number of pairs
(L1, L2) ∈ G × G such that L1 ◦ f ≡ f ◦ L2 mod (Xq − X). Using
Lemma 4.3 and equating terms we have the three equations

a = c2

0 = 2cd

b = d2.

Thus cd = 0, from which it follows that L1 and L2 are necessarily
monomials. In fact, either a = c2 and b = d = 0 or b = d2 and
a = c = 0, and

Ω(X2) = {(c2Xp, cXp) | c ∈ F
∗

p2} ∪ {(d2X, dX) | d ∈ F
∗

p2}.

Thus |Ω(X2)| = 2(p2 − 1).
Now let f(X) = Xp+1. From Lemma 4.3 we again obtain three

equations:

0 = cdp

a+ b = cp+1 + dp+1

0 = cpd.

So cd = 0 and either c = 0 and a+ b = dp+1, or d = 0 and a+ b = cp+1.
As the cases are symmetric, we count only for the second case. There
are p2 − 1 choices of c 6= 0. In each case cp+1 ∈ F

∗

p. For every a ∈ Fp2,
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EXTENDING ABELIAN GROUPS TO RINGS 11

there is exactly one choice of b such that a+b = cp+1. However, we need
to test that L1(X) = aXp + bX is invertible as well. With b = cp+1−a,
L1 is not invertible if and only if ap + a = cp+1, see Lemma 3.1. As the
trace mapping Tr is equidistributive, there are exactly p choices of a
for each chosen c such that L1 is not invertible. Hence, there are p2−1
choices for c and p2 − p choices for a. Including the symmetry, we have
shown

|Ω(Xp+1)| = 2p(p− 1)(p2 − 1)

as required. �

4.2. Equivalence classes of DO binomials. We now deal with two
DO binomials: Xp+1 +X2, and X2p−X2. By determining the number
of weak automorphisms for each of these binomials, we shall show that
they cannot be equivalent to each other, or to the two monomial classes
of the previous section.

Lemma 4.5. We have

|Ω(Xp+1 +X2)| = p(p− 1)2 and

|Ω(X2p −X2)| = 2p(p− 1)3.

Proof. Setting f(X) = Xp+1 +X2, and applying Lemma 4.3, we obtain
the three equations

a = c2 + cdp (3)

a+ b = 2cd+ cp+1 + dp+1 (4)

b = d2 + cpd. (5)

Adding (3) with (5) and equating with (4) eventually gives

(c− d)2 = (c− d)p+1.

It follows that c − d ∈ F
∗

p (as we may omit c = d). Substituting

dp = cp − c+ d into (5) we obtain a = cp+1 + cd. A similar calculation
with (3) gives b = dp+1 + cd. Now taking the last two equations and
subtracting one from the other shows

a− b = cp+1 − dp+1 (6)

implying a − b ∈ F
∗

p. We shall now show that ap+1 = bp+1 implies

cp+1 = dp+1. We have ap − bp = a − b. Multiplying through by a and
assuming ap+1 = bp+1 we obtain the equation

(bp + a)(b− a) = 0.

If a = b then (6) implies cp+1 = dp+1. If a = −bp, then using (3) and (5)
we have (cp+d)2 = 0, or cp = −d. It follows that cp+1 = −cd = dp+1. It
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remains to count the pairs (c, d) satisfying c− d ∈ F
∗

p and cp+1 6= dp+1.

There are p2 choices for c. For each c there are p − 1 choices for d
such that c − d ∈ F

∗

p. This gives p2(p − 1) pairs overall. We need to

remove those pairs where cp+1 = dp+1. Assume cp+1 = dp+1. We have
(c− d)p = c− d. Multiplying through by c yields the equation

(dp + c)(d− c) = 0.

So either d = c or d = −cp. If Tr(c) = cp + c = 0, then there is only
one choice of d for which cp+1 = dp+1 (as c = −cp). If Tr(c) 6= 0, then
there are two choices. We must therefore remove p pairs for the case
Tr(c) = 0 (as there are p such c ∈ Fp2), and 2(p2 − p) pairs for the case
Tr(c) 6= 0. This means there are p2(p− 1) − 2p(p− 1) − p = p(p− 1)2

legitimate pairs (c, d), and as a and b are fixed by c and d, there are
p(p− 1)2 weak automorphisms of Xp+1 +X2.

For f(X) = X2p −X2, Lemma 4.3 yields the equations

a− b = c2p − d2 (7)

0 = 2(cd)p − 2cd (8)

b− a = d2p − c2. (9)

Raising (7) to the power p and using (9) shows a − b ∈ Fp. Equation
(8) shows cd ∈ Fp. Also, equating (7) and (9) shows c2 + d2 ∈ Fp. If
cd 6= 0, then (c2 + d2)/cd ∈ Fp. Setting η = c/d, we have

ηp + η−p = η + η−1

from which it follows (ηp+1 − 1)(ηp−1 − 1) = 0. So cp+1 = dp+1 or c/d ∈
Fp. As we can exclude the first possibility, it follows that c2, d2 ∈ Fp

(even if cd = 0). We thus have the following relevant conditions:

c2, d2 ∈ Fp (10)

cd ∈ Fp (11)

a− b ∈ F
∗

p. (12)

To begin counting, if c = 0 then d = gi(p+1)/2, with 0 ≤ i < 2(p − 1).
So there are 2(p − 1) choices for d when c = 0. Likewise, when d = 0
we have 2(p − 1) choices for c. Overall we have 4(p − 1) choices for
pairs (c, d) when cd = 0. When cd 6= 0, we have 2(p − 1) choices for
c(= gi(p+1)/2). We require d2, cd ∈ F

∗

p, and dp+1 6= cp+1. Conditions (10)

and (11) imply d = gj(p+1)/2 where 0 ≤ j < 2(p− 1) and i ≡ j mod 2.
There are p−1 such d. However, two such choices will give cp+1 = dp+1

(they are d = c or d = −c). So there are p− 3 legitimate choices for d.
Overall we have 2(p− 1)(p− 3) + 4(p− 1) = 2(p− 1)2 choices for pairs
(c, d). For these pairs (c, d), choosing an a ∈ Fp2 fixes b. We are left
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to determine the number of a ∈ Fp2 such that ap+1 6= bp+1 and where
a − b ∈ Fp. We have b = a + α, where α ∈ F

∗

p. A short calculation
yields

bp+1 = ap+1 + α(α+ Tr(a)).

Suppose ap+1 = bp+1. Then Tr(a) = −α and there are p choices for
a ∈ Fp2 such that this holds. Therefore there are p2 − p choices for a
(and hence pairs (a, b)). In summary, there are

(p2 − p)(2(p− 1)2) = 2p(p− 1)3

weak automorphisms of the polynomial X2p −X2. �

We note that the equation involving η + η−1 in the last argument is
familiar to those who have studied the Dickson Polynomials of the 1st
and 2nd kind, see [15].

4.3. Equivalence classes of DO trinomials. It remains to consider
two final classes, both of which are generated by DO trinomials. In
the next section we shall show that we have exhausted the number of
classes.

Lemma 4.6. We have

|Ω(X2p − 2Xp+1 +X2)| = p2(p− 1)3 and

|Ω(X2p + gXp+1 +X2)| = 2(p− 1)2.

Proof. Let f(X) = X2p − 2Xp+1 +X2. Applying Lemma 4.3 yields

a+ b = d2 − 2cpd+ c2p = (cp − d)2 (13)

a+ b = cp+1 + dp+1 − cd− (cd)p = (cp − d)(c− dp) (14)

a+ b = c2 − 2cdp + d2p = (c− dp)2. (15)

Equating (13) and (14) we have either c + d ∈ Fp or cp = d. However,
cp = d implies c+ d ∈ Fp. We also have a+ b ∈ Fp as (14) is unaltered
by taking pth powers. The count for pairs (c, d) follows in exactly the
same fashion as for f(X) = Xp+1 +X2 resulting in p(p−1)2 pairs. The
calculation for pairs (a, b) is exactly the same as it was for the case
f(X) = X2p −X2 giving p2 − p such pairs. Thus

|Ω(X2p − 2Xp+1 +X2)| = p2(p− 1)3.

Now set f(X) = X2p + gXp+1 +X2. From Lemma 4.3, the following
three equations must be satisfied.

a + b = d2 + gcpd+ c2p (16)

gpa+ gb = g(cp+1 + dp+1) + 2cd+ 2(cd)p (17)

a + b = c2 + gcdp + d2p. (18)
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From (16), we have

(a + b)p + (a+ b) = c2p + c2 + d2p + d2 + gpcdp + gcpd.

Likewise, (18) yields

(a + b)p + (a+ b) = c2p + c2 + d2p + d2 + gpcpd+ gcdp.

Equating shows cpd ∈ Fp. Returning to (16) and (18), we have c2−d2 ∈
Fp. If cd 6= 0, then

c2 − d2 = c2p − d2p

= c2p − c−2(cpd)2

= c2p−2(c2 − d2).

If c2 = d2, then cp+1 = dp+1, a case we must exclude. It follows
that c2, d2 ∈ Fp (regardless of whether cd = 0 or not). These are
almost the same conditions for c, d as in the case f(X) = X2p − X2

(replace cd ∈ Fp with cpd ∈ Fp). A similar counting argument can
be used, giving 2(p − 1)2 pairs (c, d). It remains to show that a and
b are completely determined by c and d, and that ap+1 6= bp+1 holds
whenever cp+1 6= dp+1. Equations (16), (17) and (18) now generate

a + b = c2 + d2 + gcpd (19)

agp + bg = g(cp+1 + dp+1) + 2Tr(cd). (20)

Multiplying (19) by g and subtracting from (20) shows

(gp − g)a = 2Tr(cd) + g(cp+1 + dp+1 − c2 − d2) + g2cpd.

So a is determined completely by c and d, which in turn implies b is.
Suppose ap+1 = bp+1. We may assume ab 6= 0. Obviously

gp(ap+1 − bp+1) + ap(bg − bg) = 0.

It follows that

ap(agp + bg) − b(bpgp + apg) = 0.

Raising to the power p and subtracting from itself we obtain

(a + b)(agp + bg)p − (a + b)p(agp + bg) = 0. (21)

Substituting into (21) using the values of a+ b and agp + bg (and their
pth powers) from (19) and (20), one obtains the equation

cp+3 + dp+3 − 2c2dp+1 = 0. (22)

As cpd = cdp, (22) implies

(dp+1 − cp+1)(d2 − c2) = 0.
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Thus ap+1 = bp+1 implies cp+1 = dp+1 which are the cases we have
already excluded. Hence |Ω(X2p + gXp+1 +X2)| = 2(p− 1)2. �

4.4. A complete set of equivalence classes. We need to show that
the six classes given in the previous three sections do indeed account
for all DO polynomials over Fp2.

Theorem 4.7. Under weak equivalence, there are six equivalence classes

of DO polynomials, and these are described by the six polynomials

X2, Xp+1, Xp+1+X2, X2p−X2, X2p−2Xp+1+X2 and X2p+gXp+1+X2.

Proof. That the six polynomials given always describe different classes
is easily established from noting that no two formulae for the number
of weak automorphisms (as determined in the previous three sections)
can be equal for a fixed prime p > 2.

It remains to show that these six classes contain all DO polynomials
over Fp2. Let f1(X) = X2, f2(X) = Xp+1, f3(X) = Xp+1+X2, f4(X) =
X2p − X2, f5(X) = X2p − 2Xp+1 + X2 and f6(X) = X2p + gXp+1 +
X2. There are p6 − 1 DO polynomials over Fp2 (we exclude the zero
polynomial). We need to show

p6 − 1 =

6
∑

i=1

|C(fi)|.

Recall |G| = p(p − 1)(p2 − 1). By Lemma 4.2 and the results of the
previous three sections, we have

|C(f1)| =

(

p2 − 1

2

)

(p4 − 2p3 + p2)

|C(f2)| =

(

p2 − 1

2

)

(p2 − p)

|C(f3)| =

(

p2 − 1

2

)

(2p3 − 2p)

|C(f4)| =

(

p2 − 1

2

)

(p2 + p)

|C(f5)| =

(

p2 − 1

2

)

(2p+ 2)

|C(f6)| =

(

p2 − 1

2

)

(p4 − p2).
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Summing gives

6
∑

i=1

|C(fi)| =

(

p2 − 1

2

)

(2p4 + 2p2 + 2)

= p6 − 1

as required. �

Since two rings are weakly isomorphic if they are isomorphic, it is
seen that this construction method yields at least six non-isomorphic
rings of order p2 for any odd prime p. Computational evidence leads
us to make the following conjecture.

Conjecture 4.8. Let p an odd prime. Then the number of non-

isomorphic rings {Fp2,+, ?f} generated by polynomials f ∈ Fp2[X] is

p2 + 3p+ 6 if p > 3 and p2 + 3p+ 5 if p = 3.

The method used above for weak isomorphism may be adapted for
the isomorphism problem provided good class representatives can be
found.

5. Planar Functions

A polynomial f over Fq is planar if for every a ∈ F
∗

q , the polyno-
mial ∆f (X, a) is a permutation polynomial over Fq . Planar functions
have been used to construct projective planes, see [9]. All planar DO
polynomials necessarily describe semifield planes.

We end the article by applying our results to classify those DO poly-
nomials which are planar over Fp2. By [7, Theorem 2.3], either every
polynomial in a class is a planar function, or every polynomial in a class
is not. So we need only test the planarity of the class representatives.

Theorem 5.1. A DO polynomial f ∈ Fp2 [X] is planar if and and only

if f(X) ≡ L1(L
2
2(X)) mod (Xp2

−X), where L1, L2 ∈ G.

Proof. It follows from [7, Theorem 3.3] that X2 is planar and Xp+1 is
not planar. For the remaining class representatives, it is easy to show

∆f3
(X, a) = aXp + (ap + 2a)X

∆f4
(X, a) = 2((aX)p − aX)

∆f5
(X, a) = 2((ap − a)Xp − (ap − a)X)

∆f6
(X, a) = (2ap + ga)Xp + (2a+ gap)X).

We proceed to show that each of these difference polynomials cannot
be permutation polynomials of Fp2 for all a ∈ F

∗

p2. Now ap+1 − (ap +
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2a)p+1 = −2(ap + a)2 = −2Tr(a)2. As the trace mapping is equidis-
tributive, there are p − 1 choices of a ∈ F

∗

p2 such that Tr(a) = 0 and

aXp+(ap+2a)X is not a permutation polynomial (by Lemma 3.1). For
any a ∈ F

∗

p2, both ∆f4
(X, a) and ∆f5

(X, a) are permutation polynomi-

als if and only if Xp −X is. Since Xp −X has p roots, ∆f4
(X, a) and

∆f5
(X, a) are never permutation polyonomials. Finally, for a ∈ Fp,

(2ap + ga)Xp + (2a + gap)X = a(2 + g)Tr(X), which cannot be a
permutation polynomial. Hence X2 is the only class representative
which is planar and every planar DO polynomial must be of the form
L1 ◦X

2 ◦ L2 mod (Xp2

−X) with L1, L2 ∈ G. �

It has been known for some time, see [14], that any semifield plane
of order p2 is desarguesian and that the class C(X2) describes the de-
sarguesian plane, see [7, Theorem 5.2]. Thus Theorem 5.1 shows there
are no other planar DO polynomials which describe the desarguesian
plane of order p2.
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