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Abstract. Planar functions were introduced by Dembowski and Ostrom ([4])
to describe projective planes possessing a collineation group with particular
properties. Several classes of planar functions over a finite field are described,
including a class whose associated affine planes are not translation planes or
dual translation planes. This resolves in the negative a question posed in [4].
These planar functions define at least one such affine plane of order 3e for every
e ≥ 4 and their projective closures are of Lenz-Barlotti type II. All previously
known planes of type II are obtained by derivation or lifting. At least when e

is odd, the planes described here cannot be obtained in this manner.

1. Introduction

The Lenz-Barlotti classification for projective planes has proved to be a useful
focal point in discussing properties of projective planes. The 1957 classification
by point-line transitivities was based on earlier work by Lenz and refinements by
Barlotti. The question of the existence of a plane in each of the classes has been
studied by many geometers but there are several classes for which this question
remains unsettled. Dembowski in Chapter 3 of [3] gives a detailed description
of the classification and outlines the theory behind it. Dembowski also gives a
classification of projective planes with quasiregular collineation groups, see 4.2.10
of [3].

The Lenz-Barlotti type II planes are those which have either a single incident
point-line transitivity (class II.1) or two point-line transitivities with one incident
and one not (class II.2). The first class II planes to appear in the literature were the
Ostrom-Rosati planes ([20]) which were later shown to coincide with the derived
Hughes planes. Ostrom, through derivation of the dual Lüneburg planes, also
provided the second class of examples in [21]. A third class was discovered in 1974
and at present there are eleven classes of type II planes known to the authors. The
Hughes planes are type I.1. All other planes whose derivations are class II are duals
of translation planes. A list of known suitable translation planes follows:

(i) Lüneburg planes
(ii) Walker planes ([14])
(iii) Kantor’s likeable planes of characteristic 5 ([16])
(iv) Kantor’s other likeable planes ([16])
(v) Biliotti-Menichetti planes ([1, 13])
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2 ROBERT S. COULTER AND REX W. MATTHEWS

(vi) Jha-Johnson planes ([10, 13])
(vii) Fisher flock planes ([12])
(viii) Cohen-Ganley semifield planes ([2, 13])
(ix) The translation planes of the Ree-Tits ovoid ([13])

A further class is Johnson’s class II planes ([13]) obtained by the process of “lifting”
then dualising (producing planes of order q4). All derived planes have square order
so all the above examples have square prime-power order. Further, all the planes
obtained by derivation or lifting are class II.1, no II.2 examples currently being
known. Some immediate questions arise from a consideration of the above list. Do
all finite projective planes of Lenz-Barlotti class II have square order and are they
all representable as derivations or liftings? A result of this paper establishes that
this is not the case. In particular we present examples of class II planes of order 3e

for all e ≥ 4. When e is odd (at least) such planes cannot be obtained by derivation
or lifting. The construction of these planes is based on the concept of a planar

function. Planar functions are also studied under the name of relative difference
sets.

In [4] Dembowski and Ostrom considered projective planes of order n which
contained a collineation group of order n2. They introduced the following notion.
Let G and H be arbitrary finite groups, written additively, but not necessarily
commutative. A function f : G → H is called a planar function if for every
non-identity a ∈ G the functions ∆f,a : x 7→ f(a + x) − f(x) and ∇f,a : x 7→
−f(x) + f(x+ a) are bijections.

Given groupsG andH as above and a function f : G→ H , an incidence structure
I(G,H ; f) may be defined as follows: “Points” are the elements of G×H , “Lines”
are the symbols L(a, b) with a ∈ G and b ∈ H , together with the symbols L(c) with
c ∈ G. Incidence is defined by

(x, y) I L(a, b) if and only if y = f(x− a) + b; and

(x, y) I L(c) if and only if x = c.

From the above definitions Dembowski and Ostrom derived the following result.

Lemma 1.1 (Dembowski and Ostrom [4], Lemma 12). A function f : G→ H is a

planar function if and only if I(G,H ; f) is an affine plane.

Moreover, the affine planes defined by planar functions have collineation groups
with particular properties (see [4] for further details).

The situation in which most results on planar functions have been obtained is
when G = H = (Fq ,+) (throughout we use the following conventions: p is an odd
prime, q = pe, Fq denotes the finite field of order q, and F

∗
q = Fq\{0}). In this

case every function defined from Fq to itself may be obtained as the evaluation
map of some polynomial and so the notion of a planar function may be extended to
polynomials. A polynomial f ∈ Fq [X ] is a permutation polynomial over Fq (PP) if
it induces a permutation of Fq . For each a ∈ Fq, a 6= 0, we may define the difference

operator ∆ by ∆f,a(X) = f(X + a) − f(X). Then f is called a planar polynomial

over Fq if ∆f,a(X) is a PP over Fq for each a ∈ F
∗
q . Any polynomial f ∈ Fq [X ] may

be reduced mod Xq −X to yield a polynomial of degree less than q which induces
on Fq the same function as f . We will call this the reduced form of f .

The classification of planar functions over fields of prime order was settled when
in 1989 and 1990 three papers appeared ([7, 8, 22]). These independently showed
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PLANAR FUNCTIONS AND PLANES OF LENZ-BARLOTTI CLASS II 3

that any planar polynomial over a prime field must reduce to a quadratic. This
also established a conjecture of Kallaher ([15, page 145]) which suggested that any
affine plane of prime order with a transitive collineation group was desarguesian
(see [8] for details).

While most of the results obtained concerning planar functions have been limited
to the case where G =H = (Fq ,+) there have been several papers published dealing
with the general case. A recent result of Hiramine ([9]) shows that a planar function
which describes a semifield plane must have a particular shape, which is explicitly
determined.

This paper splits logically into two parts. Sections 2 through 4 deal with al-
gebraic questions, while the remaining sections are concerned with the associated
geometries. Let f be a planar polynomial and L an additive polynomial. Then the
planes generated by f and f +L are isomorphic, as are those generated by f(L) or
L(f) if L is a PP. We then consider a class of polynomials introduced in [4] (which
we refer to as Dembowski-Ostrom polynomials) and show that they are precisely
those f for which ∆f,a(X) is additive for every a ∈ F

∗
q . Dembowski and Ostrom

noted that any planar Dembowski-Ostrom polynomial produced a translation plane.
We describe three such classes.

(i) f(X) = X2, which gives the desarguesian plane over Fq , q odd.

(ii) f(X) = Xpα+1 (already mentioned in [4]), which is planar over Fpe , p odd,
if and only if e/(α, e) is odd.

(iii) f(X) = X10 +X6 −X2, which is planar over F3e if and only if e = 2 or e
is odd.

It appears that all known planar Dembowski-Ostrom polynomials are equivalent to
one of these types in the sense that they define isomorphic planes.

The question of whether all planar polynomials on a finite field are Dembowski-
Ostrom polynomials was first posed in [4] and restated in various later papers. A
principal result of this article is the description of a class of planar polynomials
in characteristic 3 which are not Dembowski-Ostrom polynomials. An interest-
ing feature of these polynomials is that their difference polynomials are Dickson
polynomials of the first kind.

Turning to the geometry, we first discuss the problem of isomorphism of two
planes described by different planar polynomials and also determine the set of
mutually orthogonal Latin squares defined by a planar function.

The remainder of the paper deals with the existence of translation lines in the
projective closure of an affine plane described by a planar function. Initially we shall
deal with planar functions in the general setting, establishing that the projective
plane contains a translation line if and only if the affine plane is a translation
plane. We conclude by showing that the projective planes defined by the planar
polynomials of Section 4 do not contain a translation line and hence must be Lenz-
Barlotti type II.

2. Planar functions over finite fields

In the first part of this paper we shall deal with the algebraic aspects of planar
polynomials over finite fields. Later sections will refer to specific classes of planar
functions but initially we consider the general case.

Suppose L : G→ H , where G and H are finite groups as in Section 1. L is called
additive on G if L(x+ y) = L(x) +L(y) for all x, y ∈ G (i.e. L is a homomorphism
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4 ROBERT S. COULTER AND REX W. MATTHEWS

of G into H). In the case where G = H = (Fq ,+), G may be considered as
a vector space over Fp, and any additive function is an Fp-linear transformation
of Fq (we note that when the field of scalars has non-prime order this does not
hold). Polynomials which induce an Fp-linear transformation of Fq are known in
the literature as linearised polynomials. There is an explicit description of such
polynomials: their reduced form has the shape

L(X) =

e−1
∑

i=0

aiX
pi

(recalling that q = pe), where ai ∈ Fq.
Since the polynomials may always be considered to be reduced, we may assume

that any additive polynomial has the above shape. A polynomial L(X)+c, where L
is additive, is called an affine polynomial. Such polynomials have been thoroughly
studied and their more detailed properties may be found in [18, pages 107-124].
The following result is well known (for example, see [18, Theorem 7.9].

Lemma 2.1. Let L ∈ Fq [X ] be defined by

L(X) =

e−1
∑

i=0

aiX
pi

.

Then L is a PP over Fq if and only if L has no roots in Fq other than 0.

The relevance of additive polynomials in the current context is that the planarity
property of a polynomial is preserved by composition with an additive polynomial.
The following lemma may be established by a direct computation.

Lemma 2.2. If L is an additive polynomial over Fq then ∆f,L(a)(L(X)) = ∆f(L),a(X).

It follows immediately from the definition of an additive function that if f is pla-
nar over Fq and L is additive on Fq then f+L is planar over Fq . Other connections
between these classes of polynomials are described in the following result.

Theorem 2.3. Let f ∈ Fq [X ] and let L ∈ Fq[X ] be an additive polynomial. Then

the following are equivalent.

(i) f(L) is a planar polynomial.

(ii) L(f) is a planar polynomial.

(iii) f is a planar polynomial and L is a permutation polynomial.

Proof. Consider the polynomial ∆L(f),a(X). Then

∆L(f),a(X) = L(f(X + a)) − L(f(X))

= L(f(X + a) − f(X))

= L(∆f,a(X)). (1)

If L(f) is a planar polynomial then ∆L(f),a is a permutation polynomial over Fq for
all a ∈ F

∗
q . Hence from (1) the additive polynomial L is a permutation polynomial

and f is a planar polynomial. Thus (ii) ⇒ (iii). Conversely, if (iii) holds then
clearly (1) implies L(f) is planar. Hence (iii) ⇒ (ii).

To show that (i) ⇒ (iii) consider f(L), and suppose ∆f(L),a is a permutation
polynomial over Fq for all a ∈ F

∗
q . By Lemma 2.2, ∆f,L(a)(L(X)) is a permutation

polynomial over Fq for all a ∈ F
∗
q , and so L must be a permutation polynomial over

Fq. Hence L(F∗
q) = F

∗
q . For any b ∈ F

∗
q there exists a ∈ F

∗
q such that L(a) = b.
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PLANAR FUNCTIONS AND PLANES OF LENZ-BARLOTTI CLASS II 5

Consequently, for all b ∈ F
∗
q , ∆f,b(X) = ∆f,L(a)(X) permutes Fq and f is planar

over Fq . The converse result (iii) ⇒ (i) follows immediately from Lemma 2.2. �

From the definition it is immediate that the planarity property is preserved by
linear transformations (i.e. if f(X) is planar so is αf(λX + µ) + β, with α, λ 6= 0).

We conclude this section with some remarks on planar monomials. For any
a ∈ F

∗
q we have

(X + a)n −Xn = an
(

(X/a+ 1)n − (X/a)n
)

,

so it is clear Xn is a planar polynomial over Fq if and only if (X + 1)n −Xn is a
PP over Fq. Consequently Xn must also be a planar polynomial over Fp. From
the known classification of planar monomials over prime fields [7, 8, 11, 22], the
condition n ≡ 2 (mod p− 1) must hold.

Proposition 2.4. The polynomial Xn is planar over Fq if and only if (X + 1)n −
Xn is a PP over Fq. Further, if Xn is a planar polynomial over Fq then n ≡ 2
(mod p− 1) and (n, q − 1) = 2.

Proof. It remains only to establish the final condition. Suppose Xn is planar over
Fq. Then there exists a unique x ∈ Fq such that (x+ 1)n = xn. Equivalently there
exists a unique y ∈ Fq such that yn = 1 and y 6= 1. Thus there are precisely two
y ∈ Fq with yn = 1 and so (n, q − 1) = 2. �

In the case where q is prime, Proposition 2.4 was established by Johnson in [11].
In general, no necessary and sufficient conditions for Xn to be planar are known.
The condition n ≡ 2 (mod q−1) is sufficient but not necessary while the conditions
of Proposition 2.4 are not sufficient.

3. Dembowski-Ostrom polynomials

In their seminal paper on planar functions ([4]) Dembowski and Ostrom de-
scribed a class of polynomials which sometimes give rise to planar functions. We
shall refer to these as Dembowski-Ostrom polynomials.

Definition 3.1. Suppose f ∈ Fq[X ]. Then f is a Dembowski-Ostrom polynomial

if the reduced form of f has the shape

f(X) =

e−1
∑

i,j=0

aijX
pi+pj

.

Dembowski and Ostrom observed that if f is a Dembowski-Ostrom polynomial
(in reduced form) whose coefficients aij satisfy the condition

e−1
∑

i,j=0

aij(x
pi

ypj

+ xpj

ypi

) = 0 if and only if x = 0 or y = 0. (2)

then f is a planar polynomial. Dembowski and Ostrom asked whether, up to
addition of an additive polynomial, every planar polynomial on Fq is a Dembowski-
Ostrom polynomial. This was restated as a conjecture by Rónyai and Szönyi in
[22]. In the next section we describe a class of planar polynomials which form
counterexamples to this conjecture in characteristic 3.

Our next result characterises Dembowski-Ostrom polynomials as those (reduced)
polynomials whose difference polynomials are all additive.
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6 ROBERT S. COULTER AND REX W. MATTHEWS

Theorem 3.2. Let f ∈ Fq[X ] with deg(f) < q. Then the following conditions are

equivalent.

(i) f = D+L+c, where D is a Dembowski-Ostrom polynomial, L is an additive

polynomial and c ∈ Fq is a constant.

(ii) For each a ∈ F
∗
q , ∆f,a = La + ca where La is an additive polynomial and

ca ∈ Fq is a constant (both depending on a).

Proof. It is immediate from the definition of ∆f,a and Definition 3.1 that (i) ⇒ (ii).
We show that (ii) ⇒ (i). Let

f(X) =

q−1
∑

i=0

ciX
i

with some ci non-zero. Then for each x ∈ Fq,

∆f,a(x) =

q−1
∑

i=0

ci
(

(x+ a)i − xi
)

=

q−1
∑

i=0

ci
(

i−1
∑

r=0

(

i

r

)

xrai−r
)

=

q−2
∑

r=0

xr
(

q−1
∑

i=r+1

ci

(

i

r

)

ai−r
)

.

From (ii), whenever r 6= 0 and r 6= pk, k ≥ 0,

q−1
∑

i=r+1

ci

(

i

r

)

ai−r = 0

for each a ∈ F
∗
q . Thus under these conditions on r the polynomial

Cr(X) =

q−1
∑

i=r+1

ci

(

i

r

)

X i−r

is identically 0. Then if r 6= 0 and r 6= pk,

ci

(

i

r

)

= 0 (3)

for all i satisfying r < i < q, where
(

i
r

)

is interpreted modulo p. Let i =
∑

j αjp
j

and r =
∑

j βjp
j be the base-p expansions of i and r. Then by Lucas’ theorem

(

i
r

)

≡ 0 mod p if and only if αj < βj for some j. By choosing particular values of

r in (3) we show that ci = 0 unless i = 0, i = pk or i = pk + pl. Let r = pk + pl

with k ≥ l ≥ 0. Then r cannot be 0 or a power of p. There are two cases: either
k > l or k = l. Consider the case k > l. Then by (3), ci

(

i
r

)

= 0 for all i satisfying

pk + pl < i < q. For pk + pl < i < pk + pl+1 we have
(

i
r

)

6= 0 by Lucas’ theorem.

Hence ci = 0 for all i satisfying pk +pl < i < pk +pl+1 with k > l ≥ 0. Now consider
the case k = l. Once again Equation (3) holds for all i satisfying 2pk < i < q. For

2pk < i < pk+1, we again apply Lucas’ theorem to obtain
(

i
r

)

6= 0 and hence ci = 0
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PLANAR FUNCTIONS AND PLANES OF LENZ-BARLOTTI CLASS II 7

for all i such that 2pk < i < pk+1. Rewriting f using the information gained from
these two cases shows that

f(X) =
e−1
∑

k≥l≥0

cpk+plXpk+pl

+
e−1
∑

k=0

ckX
pk

+ c0

as required. �

A special class of Dembowski-Ostrom polynomials are the monomials of the
shape Xpα+1 over Fq . The following theorem describes necessary and sufficient

conditions on α for Xpα+1 to be planar over Fq .

Theorem 3.3. Let f(X) = Xpα+1. Then f is planar over Fq if and only if e/(α, e)
is odd.

Proof. We need to determine when the affine polynomial (X + 1)pα+1 −Xpα+1 =
(Xpα

+ X + 1) is a permutation polynomial over Fq. By Lemma 2.1 this holds if

and only if Xpα

+X has precisely one root in Fq , or equivalently xpα−1 6= −1 for

all x ∈ F
∗
q . Let ζ be a primitive element of Fq. Then ζi(pα−1) 6= ζ(q−1)/2 for any

integer i. So Xpα+1 is planar over Fq if and only if the congruence

i(pα − 1) ≡ (pe − 1)/2 mod pe − 1

has no integer solution i. Now iu ≡ v mod n has a solution i if and only if (u, n) | v.
So we have no solution i if and only if (pα − 1, pe − 1) 6 | (pe − 1)/2, or equivalently
p(α,e) − 1 6 | (pe − 1)/2. Let d = (α, e). Then there is no integer solution i if and
only if the 2-order of pd − 1 is greater than or equal to the 2-order of pe − 1. But

pe − 1 = (pd − 1)(1 + pd + p2d + . . .+ p((e/d)−1)d)

and so this condition is equivalent to e/(α, e) being odd. �

We note that this result differs from that stated in [4]. There Dembowski and
Ostrom claim that Xpα+1 is planar on Fq if and only if α = 0 or (α, e) = 1. However
this is not an equivalent condition, as the polynomial X10 is planar over Fq with
q = 36, since 6/(2, 6) = 3 is odd, but (2, 6) = 2 6= 1.

The condition (2) for a Dembowski-Ostrom polynomial to be planar mentioned
above does not appear to be effective in searching for planar functions. Apart
from those described in Theorem 3.3, there is another class of Dembowski-Ostrom
polynomials whose planarity properties may be fully determined.

Theorem 3.4. Let f(X) = X10 + X6 − X2. Then f is a Dembowski-Ostrom

polynomial over F3e which is planar if and only if e = 2 or e is odd.

Proof. Clearly f(X) is a Dembowski-Ostrom polynomial. A direct calculation
shows that ∆f,a(X) = aX9 − a3X3 + a(a8 + 1)X + f(a). Then ∆f,a(X) is a
permutation polynomial if and only if the linearised polynomial La(X) = X9 −
a2X3 + (a8 + 1)X is a permutation polynomial. By Lemma 2.1 this is equiva-
lent to the requirement that La(X) has no non-zero root in Fq. Let i2 = −1,
i ∈ F32 . Then La(X) = Xφ1,a(X)φ2,a(X), where φ1,a(X) = X4 + ia2X2 + a4 + i,
φ2,a(X) = X4 − ia2X2 + a4 − i. If e = 2 then f reduces to X6 and so is planar. If
e is odd then in F3e , −1 is a non-square. If x is a non-zero root of La in F3e then
i = ±(x4 + a4)/(a2x2 + 1). The denominator of this expression is non-zero, so we
would deduce that i ∈ F3e , a contradiction. Thus La does not possess a non-zero
root and f is planar.
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8 ROBERT S. COULTER AND REX W. MATTHEWS

If e is even, e > 2, we show that there exists x, a 6= 0 with φ1,a(x) = 0. Consider
φ = φ1,a(X) as a bivariate polynomial in X, a. Then we claim that φ is absolutely
irreducible. If U = X−1, V = aX−1, then φ may be written as X4(iU4 + V 4 +
iV 2 + 1), and so the absolute irreducibility of φ is equivalent to that of ψ(U, V )
= U4 − i(V 4 + iV 2 + 1). Absolute irreducibility of polynomials with the shape
Y d − cf(X) is discussed in [18]. There it is shown (Lemma 6.54) that such a
polynomial is absolutely irreducible over Fq if f(X) has no repeated factors (which
holds in this case). An application of Theorem 6.57 of [18] (a form of Weil’s theorem)
shows that the number N of zeros of ψ in Fq is at least q − 32q1/2. If q ≥ 36 then
this guarantees the existence of a pair (x, a) with φ1,a(x, a) = 0, with neither x nor
a equal to 0. Consequently f is not planar over Fq. In F34 there exists a such that
a8 + 1 = 0. If x is chosen such that x3 = a then La(x) = 0, and so f(X) is not
planar. �

4. A new class of planar functions

To our knowledge all previously described planar polynomials defined over a
finite field (Fq ,+) are Dembowski-Ostrom polynomials (as defined in Definition
3.1). We now describe a class of planar function which are not of this type.

Theorem 4.1. Let q = 3e and α ∈ N. Then the polynomial X (3α+1)/2 is planar

over Fq if and only if (α, e) = 1 and α is odd.

We have observed that the Dembowski-Ostrom polynomials f are precisely those
whose difference functions ∆f,a are additive. The difference polynomials which arise
from the planar polynomials described here correspond to another well-known class
of permutation polynomials, the Chebyshev (or Dickson) polynomials of the first
kind. A recent book has appeared on this topic ([17]). The permutation behaviour
of these polynomials is well understood, the first results being obtained by Dickson
([5]), with a complete description due to W. Nöbauer ([19], see also [17, 18]): gk(X)
is a PP over Fq if and only if (k, q2 − 1) = 1. Their explicit form may be obtained
by recurrence: g0(X) = 2, g1(X) = X and gk+2(X) = Xgk+1(X) − gk(X) where
k ∈ N. A more useful representation for our purposes is the following: let η ∈ Fq2

be a root of the quadratic polynomial Z2 − xZ + 1. Then ηk + η−k can be written
as a polynomial in x (= η + η−1) which coincides with gk(x). In other words
gk(η+η−1) = ηk+η−k. This representation is classical and is discussed, for example,
in [17].

Proof of Theorem 4.1. Suppose f(X) = Xn and define h(X) to be ∆f,1(X + 1) =
(X − 1)n − (X + 1)n (in characteristic 3). Then f(X) is planar over Fq if and only
if h(X) is a permutation polynomial over Fq. If x = η + η−1 then

h(x) = (η + η−1 − 1)n − (η + η−1 + 1)n

=
(η2 + 1 − η)n − (η2 + 1 + η)n

ηn

=
(η + 1)2n − (η − 1)2n

ηn
.
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PLANAR FUNCTIONS AND PLANES OF LENZ-BARLOTTI CLASS II 9

If n = (3α + 1)/2, then

h(x) =
(η + 1)3

α+1 − (η − 1)3
α+1

η(3α+1)/2

=
2η + 2η3α

η(3α+1)/2

= −(η(3α−1)/2 + η−(3α−1)/2)

= −g(3α−1)/2(x).

Thus Xn is planar over Fq if and only if the Chebyshev polynomial of the first
kind, g(3α−1)/2(X), is a permutation polynomial over Fq. A necessary and sufficient

condition for this to occur ([19, Theorem 3.2]) is ((3α − 1)/2, q2 − 1) = 1. Since
q2 ≡ 1 (mod 4), this is equivalent to the condition (3α − 1, 32e − 1) = (3(α,2e) − 1)
= 2, which holds if and only if (α, 2e) = 1. �

We note that if f(X) = Xn (n 6≡ 2.3k (mod q − 1)) is a planar monomial over
Fq as described in Theorem 4.1, then f forms a counterexample to the conjecture
mentioned in Section 3. Applications of Theorem 2.3 to such an f would also yield
counterexamples to the conjecture.

A related class of planar polynomials are described by the following.

Theorem 4.2. Let q = 3e and n = (3α + q)/2, where α ∈ N. Then the polynomial

Xn is planar over Fq if and only if (α, e) = 1 and α− e is odd.

Proof. If α = e then Xn = Xq is not planar over Fq. If α > e then, replacing α by

α− e in Theorem 4.1, we obtain the result that h(X) = X (3α−e+1)/2 is planar over
Fq if and only if (α − e, e) = (α, e) = 1 and α − e is odd. Since Xn = (h(X))3

e

,
planarity of Xn is equivalent to planarity of h(X). If α < e, a similar argument

shows that the planarity of Xn is equivalent to that of g(X) = X (3e−α+1)/2, since
Xn = (g(X))3

α

. �

The following lemma will be required in Section 6.

Lemma 4.3. Suppose q = 3e. For each α ∈ N define a function f : Fq → Fq

by fα(x) = x(3α+1)/2. Let S be the sequence of functions {f0, f1, . . .}. Then S is

periodic with period 2e.

Proof. Let α = 2λe+ β with 0 ≤ β < 2e and λ > 0. Suppose x ∈ Fq . Then

x(3β+1)/2 = x(3α−2λe+1)/2

= (x(3α−2λe+1)/2)3
2λe

= x(3α+32λe)/2

= x(32λe−1)/2x(3α+1)/2

= x(qλ−1)(qλ+1)/2 x(3α+1)/2

= x(3α+1)/2.

�
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10 ROBERT S. COULTER AND REX W. MATTHEWS

5. Planes defined by planar functions

We turn now to the geometric aspects of the results established in the first part of
the paper. We begin with a discussion of some isomorphic classes of planes described
by different planar polynomials defined over the same finite field. Properties of
affine and projective planes defined by planar functions are then considered with
particular emphasis on the problem of the existence of a translation line in a plane
defined by a planar function.

Two planes Π1 and Π2 are isomorphic if and only if there exists a bijection φ
of the points of Π1 onto the points of Π2 mapping lines of Π1 onto lines of Π2

and preserving incidence. We denote “is isomorphic to” by Π1 ≈ Π2 and call φ an
isomorphism.

The connection with additive polynomials discussed in Section 2 leads to the
following two results.

Theorem 5.1. Let f be a planar polynomial and L an additive polynomial, both

defined over Fq. Then I(Fq,Fq ; f) ≈ I(Fq ,Fq; f + L).

Proof. Let φ : Fq×Fq → Fq×Fq be the bijection defined by φ(x, y) = (x, y+L(x)). If
(x, y) lies on the line Lf (a, b) then it may be verified by an elementary calculation
that φ(x, y) lies on the line L′

f+L(a, b + L(a)). Further φ maps Lf (c) to L′
f (c).

Consequently I(f) ≈ I(f + L). �

Theorem 5.2. Let f be a planar polynomial and let L be an additive permutation

polynomial, both defined over Fq. Then

I(Fq ,Fq; f) ≈ I(Fq,Fq ; f(L)) ≈ I(Fq ,Fq;L(f)).

Proof. Consider the bijection from I(f) to I(f(L)) defined by φ(x, y) = (L−1(x), y).
We claim that φ maps Lf (a, b) to L′

f(L)(L
−1(a), b). Suppose that (x, y) lies on

Lf (a, b). Then

f

(

L
(

L−1(x) − L−1(a)
)

)

+ b = f

(

L
(

L−1(x)
)

− L
(

L−1(a)
)

)

+ b

= f(x− a) + b = y.

Consequently the point φ(x, y) = (L−1(x), y) lies on the line L′
f(L)(L

−1(a), b). The

image of L(c) is L′(L−1(c)), and so I(Fq,Fq ; f) ≈ I(Fq,Fq ; f(L)). A similar argu-
ment shows that the bijection ψ : (Fq,Fq ; f) ≈ I(Fq ,Fq;L(f)) defined by ψ(x, y) =
(x, L(y)) defines a collineation. �

Thus constructing new planar polynomials by adding an additive polynomial or
by composing with additive permutation polynomials does not alter the associated
affine plane.

It is well known that every projective plane is equivalent to a maximal set of
mutually orthogonal latin squares (MOLS). For the next result we return to the
general setting where G and H are additively written groups (but not necessarily
commutative) and provide a description for a set of MOLS which is associated with
a planar function.

Theorem 5.3. Let G and H be finite groups of order n written additively, but

not necessarily commutative, and let f : G → H be a planar function. For each
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PLANAR FUNCTIONS AND PLANES OF LENZ-BARLOTTI CLASS II 11

a ∈ G, a 6= 0, define a function La : G×H → H by

La(x, y) = −f(x− a) + f(x) + y.

Then each La defines a latin square of order n and the set {La | a ∈ G, a 6= 0}
forms a maximal set of n− 1 mutually orthogonal latin squares.

Proof. It may be checked directly from the definition that the functions La define
a set of MOLS. The formula for La given above may also be derived from the usual
process of obtaining a set of MOLS from an affine plane, where the coordinatising
sets of parallel lines are taken to be {L(c) : c ∈ G} and {L(0, b) : b ∈ H}. This
shows that the set of MOLS described does in fact represent the affine plane defined
by f . �

The full collineation groupAut(P (g)) of the projective extension P (f) of I(G,H ; f)
contains the subgroup

Γ = {φ(u,v) : (x, y) → (x+ u, y + v) for all (x, y) ∈ G×H | (u, v) ∈ G×H}

≈ G×H, (4)

a group of order |G|2 acting sharply transitively on I(G,H ; f) ([4]). In its action
on P (f), Γ has three orbits, I , {(∞)}, and L∞\{(∞)}.

When q is not prime and f is defined over a subfield of Fq, the Frobenius au-
tomorphism also generates a cyclic collineation group CF of I(Fq ,Fq; f). If f is
defined over Fp, then CF has order e (with q = pe). In this case Frobenius acts
on Fq × Fq by mapping (x, y) to (xp, yp), L(c) maps to L(cp) and L(a, b) maps
to L(ap, bp). In the special case that f(X) = Xn, a further group of collineations
(cyclic of order q − 1) is defined by the maps φα(x, y) = (αx, αny) (with α 6= 0).

A useful approach to the study of projective planes is their coordinatisation by
an algebraic structure. We give a brief indication of the approach - a more detailed
account may be found in [15].

Let R be a set with the same cardinality as a line in the projective plane we
wish to coordinatise. Coordinatisation produces a ternary operation T (x, a, b) in R
which satisfies certain algebraic properties. Any set R with such a ternary operation
is called a planar ternary ring. Addition and multiplication in R are defined by
a + b = T (a, 1, b) and ab = T (a, b, 0) (here the element 1 is determined by the
coordinatisation). With respect to addition, R is a loop with identity 0, while the
set R\{0} is a loop with respect to multiplication with identity 1. A planar ternary
ring is linear if it satisfies T (x, a, b) = xa + b for all x, a, b ∈ R. A linear ternary
ring is called a cartesian group if its additive loop is associative and thus a group.
A quasifield is a cartesian group R satisfying (x+ y)z = xz+ yz for all x, y, z ∈ R,
while a semifield is a quasifield satisfying the extra condition x(y + z) = xy + xz
for all x, y, z ∈ R.

In [4], Dembowski and Ostrom introduce the notion of a planar function f
normed with respect to some element a ∈ G \ {0}. By this it is meant that
f(0) = f(a) = 0. If g is a planar function on G then for any non-zero a ∈ G
there exists a unique line in I(G,H ; g) which contains the points (0, 0) and (a, 0)
and this must be of the form L(b, c). If f(x) = g(x − b) + c, then f is a planar
function which is normed with respect to a, and I(G,H ; f) ≈ I(G,H ; g). We have
the following result from [4].
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12 ROBERT S. COULTER AND REX W. MATTHEWS

Lemma 5.4 (Dembowski and Ostrom [4], Theorem 6). Let f be a normed planar

function (with respect to some a ∈ G) from G to H, and define Qa : H → G by

Qa(c) = b if ∆f,a(b) = c. Define a multiplication on the set R = H by the rule

x · y = −f
(

Qa(x)
)

+ f
(

Qa(x) +Qa(y)
)

− f
(

Qa(y)
)

.

Then the set R with the original addition of H and this multiplication forms a

cartesian group coordinatising I(G,H ; f).

Note that in the case where G and H are commutative, for example when G =
H = Fq, x · y = y · x for all x, y ∈ R. Thus if {R,+, ·} is a quasifield it must in fact
be a semifield. A plane coordinatised by a quasifield is necessarily a translation
plane.

We now consider properties of the projective closure of any affine plane described
by a planar function. A line L in a projective plane P is called a translation line if
the group of elations of P which fix L pointwise is transitive on the complement of
L in P . If P contains a translation line then either P is desarguesian (in which case
every line is a translation line) or the translation line is unique. Throughout this
section we shall denote by P (g) the projective closure of the affine plane I(G,H ; g),
where g is a planar function and G and H are arbitrary finite groups written
additively, but not necessarily commutative.

Our main result in this direction is to show that if P (g) is non-desarguesian and
contains a translation line then this line must be L∞. We consider the lines L(a, b)
and L(c) separately. Our next result depends on an observation on permutation
groups and a theorem of Wagner.

Lemma 5.5. Suppose that H, K are subgroups of a group G, all acting on a set

X. If OA, OB are orbits of H, K respectively, with nonempty intersection, then

OA ∪ OB is contained in an orbit of G.

Theorem 5.6 (Wagner [23], Theorem 3). If a projective plane P has a transitive

collineation group containing a non-trivial perspectivity then P is desarguesian.

Theorem 5.7. Let a ∈ G and b ∈ H. Then the line L(a, b) in P (g) is a translation

line if and only if P (g) is desarguesian.

Proof. If P (g) is desarguesian then all lines are translation lines. Suppose L =
L(a, b) is a translation line in P (g) for some a ∈ G and b ∈ H . The complement A
of L in P (g) is an orbit of the translation group of L. The orbits of Γ (as defined
by (4)) are B = {(∞)}, C = L∞\{(∞)} and D = P (g)\L∞. Each of B, C and
D has nonempty intersection with A, and so by Lemma 5.5 their union (=P (g)) is
an orbit of Aut(P (g)). Thus Aut(P (g)) has a single orbit and so acts transitively
on P (g). Since the collineations φ(0,v) of (4) are non-trivial perspectivities of P (g),
Wagner’s Theorem (5.6) implies that P (g) is desarguesian. �

We may also establish that no L(a, b) can be a translation line by appealing to
the Lenz-Barlotti classification of projective planes.

Alternative proof of Theorem 5.7. Suppose L(a, b) is a translation line for particu-
lar a ∈ G, b ∈ H and let T = {(p,L) | P (g) is (p,L)-transitive}. The Lenz-Barlotti
types for projective planes are determined by such a set T, see [3, 3.1.20 and com-
ments on page 125]. The only possible Lenz-Barlotti types for a projective plane
containing a translation line are types IVa.1, IVa.2, V.1 or VII.2, from 3.1.20 and
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PLANAR FUNCTIONS AND PLANES OF LENZ-BARLOTTI CLASS II 13

Table 1, page 126, of [3]. The type VII.2 refers to the desarguesian plane. Our aim
is to show that the other three types cannot arise. By assumption,

{(p,L(a, b)) | p I L(a, b)} ∪ {((∞),L∞)} ⊆ T.

For each of the Lenz-Barlotti types IVa.1, IVa.2 and V.1 the set T contains only
point-line pairs (p,L) for which the point p always lies on the translation line. Since
(∞) 6∈ L(a, b) the plane P (g) can not be any of these types. Hence no line L(a, b)
can be a translation line of P (g) unless P (g) is desarguesian. �

The possibility remains that some line L(c) may be a translation line when
P (g) is non-desarguesian. We eliminate this possibility. The proof is based on the
following result, which appears as Theorem 4.1 of [15].

Theorem 5.8. Let P be a projective plane and let (R, T ) and (R′, T ′) be two

ternary rings coordinatising P with respect to U, V,O, I and U ′, V ′, O′, I ′ respec-

tively. The ternary ring (R, T ) is isomorphic to (R′, T ′) if and only if there exists

a collineation φ of P satisfying aφ = a′ for all a ∈ {U, V,O, I}.

Theorem 5.9. A line L(c) with c ∈ G is a translation line in P (g) if and only if

P (g) is desarguesian.

Proof. Suppose L(c) is a translation line in P (g). Then all ternary rings based
on L(c) as the line at infinity are quasifields. Consider an ordered quadrangle
U, V,O, I, with V = (∞) and U on the line L(c) and its corresponding ternary ring
T . Suppose γ ∈ Γ fixes V and maps U to U ′, with U ′ not lying on L(c). Then
Uγ, V γ,Oγ, Iγ (= U ′, V, O′, I ′) is an ordered quadrangle with respect to a line L
= L(c′), which contains U ′. Then L 6= L(c), and by Theorem 5.8 the ternary ring
T ′ corresponding to U ′, V, O′, I ′ is isomorphic to T . Consequently P (g) has two
distinct translation lines L and L(c), and so must be desarguesian. �

Corollary 5.10. P (g) contains a translation line if and only if I(g) is an affine

translation plane.

Proof. If I(g) is an affine translation plane then L∞ is a translation line. Conversely,
either P (g) is desarguesian (in which case the result holds) or the translation line
must be L∞, by Theorems 5.7 and 5.9. This implies that I(g) is an affine translation
plane. �

Under the additional assumption that G and H are commutative we may make
some observations on when I(g) is a dual translation plane.

Definition 5.11. An affine plane A is a dual translation plane if there exists a

point V ∈ L∞ such that the projective closure of A is (V,L)-transitive for all lines

L (including L∞) through V.

Corollary 5.12. Suppose G and H are commutative finite groups. Then I(g) is a

dual translation plane if and only if I(g) is a translation plane.

Proof. If I(g) is a dual translation plane then its projective closure P (g) must
contain a translation point V . If V 6= (∞) then P (g) is both ((∞),L∞)-transitive
and (V,L∞)-transitive, and so by [15, Theorem 6.1], I(g) is a translation plane.
Now assume that V = (∞). Then ([15, Theorem 6.4]) the ternary ring R described
in Lemma 5.4 is a left quasifield (a cartesian group satisfying left distributivity).
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14 ROBERT S. COULTER AND REX W. MATTHEWS

By assumption G and H are commutative and so (R,+, ·) is a semifield. Hence
I(g) is a translation plane.

Conversely, suppose that I(g) is a translation plane. Then the ternary ring of
Lemma 5.4 is a quasifield. By commutativity it is a left quasifield and so I(g) is a
dual translation plane by [15, Theorem 6.4]. �

Note that the last result implies that when G and H are commutative the projec-
tive plane P (g) can never be of Lenz-Barlotti type IV.1 or IV.2. Either it contains
no translation line or point (type II) or it is at least a semifield plane (type V.1).
All previously known planar functions describe projective planes which are at least
semifield planes.

6. Non-translation Planes defined by planar functions

The planar functions introduced in Theorem 4.1 differ from the other known
classes of planar functions in that they do not describe translation planes. This
will be established using the ternary ring given by Lemma 5.4 and the following
particular case of a result from [4].

Lemma 6.1 (Dembowski and Ostrom [4], Corollary 4). Let f be a planar polyno-

mial on Fq normed with respect to some a ∈ F
∗
q and let Qa be as defined in Lemma

5.4. Then I(Fq ,Fq; f) is a translation plane if and only if

f(x+ z) + f(y + z) − f(x) − f(y) − f(z)

= f
(

Qa(∆f,a(x) + ∆f,a(y)) + z
)

− f
(

Qa(∆f,a(x) + ∆f,a(y))
)

(5)

for all x, y, z ∈ Fq.

Dembowski and Ostrom note that any planar Dembowski-Ostrom polynomial
satisfies (5) so that any affine plane associated with a Dembowski-Ostrom polyno-
mial is necessarily a translation plane (and a semifield plane). We note that the
original paper contains a misprint in the statement of this corollary.

Our first result establishes that the affine planes associated with the planar
polynomials introduced in Section 4 are not in general translation planes.

Theorem 6.2. Let g(X) = X (3α+1)/2 be a planar polynomial on Fq with q = 3e

and suppose that α 6≡ ±1 (mod 2e). Then the affine plane I(Fq,Fq ; g) is not a

translation plane.

Proof. Let n = (3α + 1)/2. By Lemma 4.3 we may assume that 1 ≤ α < 2e. If
α = e+ β with β < e then for all x ∈ F

∗
q

x(3α+1)/2 = x3e(3β+1)/2x−(3e−1)/2

= x(3β+1)/2x(3e−1)/2

= x(3e+3β)/2

= (x(3e−β+1)/2)3
β

.

This also holds for x = 0. Consequently the planes defined by X (3α+1)/2 and

X(3e−β+1)/2 are isomorphic and we may restrict ourselves to the range 1 ≤ α < e.
Denote by f(X) = (X + a)n − an the normed form with respect to a ∈ F

∗
q of the

planar monomialXn. Then ∆f,a(X) = (X−a)n−(X+a)n, an odd polynomial. Let
Qa ∈ Fq[X ] be the reduced polynomial satisfying ∆f,a(Qa(x)) = x for all x ∈ Fq.
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PLANAR FUNCTIONS AND PLANES OF LENZ-BARLOTTI CLASS II 15

Then Qa(X) is also an odd polynomial and further ∆f,a(0) = Qa(0) = 0. Suppose
that I(Fq,Fq ; f) is a translation plane and consider (5) with y = −x. Then the
right side of (5) reduces to f(z) and (5) becomes

f(z + x) + f(z − x) + f(z) = f(x) + f(−x)

for all x, z ∈ Fq. Now

f(z + x) + f(z − x) + f(z) = (z + x+ a)n + (z − x+ a)n + (z + a)n

and for z = 2a we thus have

−xn = f(x) + f(−x)

= (x+ a)n + (−x+ a)n + an

= (x+ a)n + (x− a)n + an (6)

for all x ∈ Fq. Let 2k(X) = (X + a)n + (X − a)n +Xn so that, by (6), k(x) = an

for all x ∈ Fq. Clearly this will hold for n = 2. However for 2 < n < q we have

k(X) =

(n−2)/2
∑

i=1

(

n

2i

)

X2ian−2i.

Since
(

n
2

)

6≡ 0 mod 3, the degree of k is n − 2 and so 0 < deg(k) < q − 2. Hence
k cannot be a constant polynomial, contradicting (6), and I(Fq,Fq ; f) cannot be a
translation plane for n > 2. �

According to Kallaher [15, page 101], all known affine planes which can be de-
scribed by planar functions are translation planes or dual translation planes. The
affine planes defined by the functions in Theorem 4.1 are not in these classes.

Corollary 6.3. Let g(X) be a planar polynomial described by Theorem 4.1 with

α 6≡ ±1 (mod 2e). Then I(g) is not a dual translation plane. Furthermore, P (g)
must be Lenz-Barlotti type II.1 or II.2.

Proof. The fact that I(g) is not a dual translation plane follows from Corollary 5.12
and Theorem 6.2. Hence P (g) does not contain a translation line or point. Since
P (g) does have at least one incident point-line transitivity, ((∞),L∞), by Theorem
1 of [4], P (g) must be Lenz-Barlotti type II. �

In [15, Chapter 9], Kallaher lists four classes of planes which form counterexam-
ples to a conjecture that all affine planes which have a collineation group transitive
on the affine points must be a translation plane. We note that the class of planes
introduced above also form counterexamples to this conjecture.

A further question of interest is whether the known Dembowski-Ostrom polyno-
mials define non-desarguesian planes. It is remarked in [6] that this is the case but
no proof is given. Certainly this can be shown for small orders by calculation. It is
possible (and consistent with our experimental data) that if an affine plane defined
by a planar polynomial f over Fq is a translation plane then f is a Dembowski-
Ostrom polynomial. The authors have not located any planar polynomials beyond
those mentioned in this paper, so it is also possible that the list is complete.

We conclude with some remarks concerning the projective plane P (g) associated
with the planar polynomials of Section 4. By Corollary 6.3 the plane P (g) is
Lenz-Barlotti type II.1 or II.2. Establishing that the planes are in fact type II.1 is
equivalent to showing that the ternary ring of Lemma 5.4 is not associative. For the
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16 ROBERT S. COULTER AND REX W. MATTHEWS

small examples computed this is in fact the case. As indicated in the Introduction,
for non-square orders the planes of Section 6 cannot be amongst those obtained by
derivation or lifting, but the square order case remains open.

Added in proof: T. Ostrom has informed us that he has established the proof
of the above conjecture on translation planes and J. Yaqub has established P (g) is
Lenz-Barlotti class II.1.
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