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Abstract

Let H be a subgroup of the multiplicative group of a finite field. In this note we
give a method for constructing permutation polynomials over the field using a bi-
jective map from H to a coset of H. A similar, but inequivalent, method for lifting
permutation behaviour of a polynomial to an extension field is also given.
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Throughout Fq denotes the finite field of characteristic p with q elements
(q = pe, e ∈ N), and F

∗

q the non-zero elements of Fq . Let Fq [X] be the ring
of polynomials over Fq in the indeterminate X. A permutation polynomial
is a polynomial which, under evaluation, permutes the elements of Fq . For
example, a linearised polynomial L ∈ Fq [X] has the shape

L(X) =
k

∑

i=0

aiX
pi

,

and permutes Fq if and only if the only root of L(X) in Fq is x = 0. This
class of polynomials will be useful later in this note. For further properties of
linearised polynomials see [3].

Determining new classes of permutation polynomials is an open problem, see
[4]. The following theorem describes a method for constructing permutation
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polynomials.

Theorem 1 Let g be a primitive element of Fq and H = 〈gn〉 where nd =
q−1. Let T ∈ Fq [X] be any polynomial which maps Fq into H ∪{0} satisfying
T (λx) = λT (x) for all λ ∈ H and x ∈ Fq . For any polynomial h ∈ Fq [X] and
any positive integer s, define f(X) = Xsh(X) and F (X) = Xsh(T (X)). If F
is a permutation polynomial over Fq and T does not induce the zero map on
Fq , then f is one to one on H. Conversely, if f maps H onto Ha for some
a ∈ F

∗

q , (s, n) = 1 and either

(i) T (x) = 0 implies x = 0, or
(ii) (s, d) = 1 and h(0) ∈ Ha,

then F is a permutation polynomial over Fq .

PROOF. Let F be a permutation polynomial over Fq and suppose there
exists an x ∈ Fq such that T (x) = α 6= 0. Then

o(H) = #{(λx)sh(T (λx)) : λ ∈ H}

= #{λsh(λT (x)) : λ ∈ H}

= #{λsh(λα) : λ ∈ H}

= #{(λα)sh(λα) : λ ∈ H}

= #{ysh(y) : y ∈ H}.

It follows f is one to one on H .

Now suppose f maps H onto a coset Ha with a 6= 0, (s, n) = 1 and either
condition (i) or (ii) holds. For any λ, µ ∈ H we must have h(λ)/h(µ) ∈ H .
Further, either condition (i) or (ii) implies h(T (x)) 6= 0 for all x ∈ F

∗

q . Let
x, y ∈ Fq satisfy F (x) = F (y). If x = 0, then ysh(T (y)) = 0, implying y = 0.
Now suppose x 6= 0, in which case y 6= 0 also. We have

xs

ys
=

h(T (y))

h(T (x))
(1)

and so (x/y)s ∈ H . As (s, n) = 1, there exists integers i, j such that is+jn = 1.
It follows that x/y ∈ H . Therefore T (x) = (x/y)T (y), implying T (x)s =
(x/y)sT (y)s. We claim T (x) = T (y). Clearly T (x) = 0 if and only if T (y) = 0.
If T (x)T (y) 6= 0, then since F (x) = F (y) we have

xs

ys
h(T (x)) = h(T (y))

and multiplying by T (y)s gives

T (x)sh(T (x)) = T (y)sh(T (y)).
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Since f is one to one on H , it follows that T (x) = T (y) = µ for some µ ∈
H ∪{0}. Thus F (x) = F (y) implies xs = ys. If condition (i) holds, then µ 6= 0
and since x/y = T (x)/T (y), we have x = y. Otherwise, condition (ii) holds
and so (s, d) = 1, implying (s, q − 1) = 1. Hence xs = ys implies x = y. In
either case, we have F is a permutation polynomial over Fq .

We say a polynomial T satisfies the criteria of Theorem 1 when (i) T maps
Fq into H ∪ {0}, and (ii) T (hx) = hT (x) for all h ∈ H and x ∈ Fq . The
polynomials T satisfying the criteria of the theorem will be described by the
authors in a more general context elsewhere.

We next make some comments regarding the scope and limitations of Theorem
1. Clearly, by multiplying through by a−1, the restriction on the behaviour of
f would simply be that it is bijective on H , but we prefer to state the theorem
as given here.

If o(H) = q−1, then the only polynomials T satisfying the criteria of Theorem
1 are equivalent to cX for some c ∈ F

∗

q . Hence F (X) = c−sf(cX) and clearly
the permutation behaviour of f(X) and F (X) are equivalent in this case. If
o(H) = 1, then (s, q − 1) = 1 and so Xs permutes Fq . In this case, Xq−1 is
the only reduced polynomial which satisfies (i) and the criteria of Theorem
1. We then have F (X) ≡ Xs mod (Xq − X). For (ii) to be satisfied we need
h(0) = h(1), and then F (X) ≡ h(1)Xs mod (Xq − X).

Now set o(H) = d and let nd = q−1. If n ≡ 1 mod d, then T (X) = Xn satisfies
the criteria of Theorem 1. In such cases, it can be seen that Theorem 1 with
T (X) = Xn describes precisely a subset of the Wan-Lidl permutations, [5], of
the form Xsh(Xn) with n a divisor of q − 1. The permutation condition of
Xsh(Xn) simplifies to (i) Xsh(X) maps H onto a coset Ha, and (ii) (r, n) =
1 (compare with the more general conditions given in [5, Theorem 1.2]). If
n 6≡ 1 mod d, then there appears to be no overlap between the Wan-Lidl
permutations and permutations generated by Theorem 1.

In practice, it is very simple to use Theorem 1 to generate permutation poly-
nomials not of the form of Wan-Lidl. For example, consider the finite field
Fq with q = 16 and primitive element z and let H = 〈z3〉. Then there are
315 suitable reduced polynomials f and 125 distinct choices for polynomial
T which satisfy condition (i). They combine to produce 501 distinct reduced
monic permutation polynomials (including X, of course). A specific example
is f(X) = Xh(X) with h(X) = X3 + z11X2 + z7X + z3. Setting T (X) =
X11 + zX6 + z12X, the resulting permutation polynomial F (X) = Xh(T (X))
is a degree 34 polynomial, clearly not of the form XsM(Xd) and its reduced
form has degree q − 2 = 14 (as almost all examples do) and has 10 terms.

Before leaving our discussion of Wan-Lidl permutation polynomials, we also
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note the following implication of Theorem 1.

Lemma 2 Let H = 〈gn〉 with dn = q−1 and d > 1. Let 1 < k < q−1 be any
integer satisfying (k, d) = 1 and T ∈ Fq [X] satisfy the criteria of Theorem
1 with x = 0 the only root of T in Fq . Then XsT (X)k−s is a permutation
polynomial over Fq whenever 0 < s < k and (s, n) = 1. Set

S = {XsT (X)k−s mod (Xq − X) | 0 < s < k ∧ (s, n) = 1}.

Then |S| ≥ Min(φ(n), ϕ(k, n)) where φ(n) is the Euler φ-function of n and
ϕ(k, m) is the number of positive integers less than k and relatively prime to
n.

PROOF. Since (k, d) = 1, Xk is bijective on H . It follows from Theorem 1
that XsT (X)k−s is a permutation polynomial over Fq whenever 0 < s < k
satisfies (s, n) = 1. It remains to count the number of distinct functions.
Suppose

XsT (X)k−s ≡ Xs−tT (X)k−s+t mod (Xq − X).

Then it follows that xt = T (x)t for all x ∈ Fq . In particular, we must have
xt ∈ H for all x ∈ F

∗

q , implying n divides t. The result follows.

Theorem 1 is described in terms of a finite field Fq and a subgroup H of the
multiplicative group of Fq . For the remainder of this note we consider specif-
ically the case where we have a finite field Fqm and H is the multiplicative
group of Fq , so that H ∪ {0} forms a subfield of Fqm. In this case, Theorem
1 can be used as a lifting criteria: given a permutation f of Fq and a polyno-
mial T satisfying the criteria of Theorem 1, one can construct a permutation
polynomial F over Fqm if the conditions of the theorem are met.

Some well known polynomials can be used for T in this case. Let k and m be
integers with k|m. Define the polynomial

Trm,k(X) = X + Xqk

+ · · · + Xqm−k

(this is a polynomial which induces the trace mapping from Fqm to Fqk). Then
Trm,k(αx) = αTrm,k(x) and Trm,k(x) ∈ Fqk for all α ∈ Fqk and x ∈ Fqm. So
Trm,k satisfies the criteria for the polynomial T in Theorem 1 (where H is the
multiplicative group of Fqk). We recall that for any k dividing m, Trm,1(x) =
Trk,1(Trm,k(x)) for all x ∈ Fqm .

Let f ∈ Fq [X] be any permutation polynomial satisfying f(X) = Xsh(X)
with (s, qm − 1) = 1 and h(0) 6= 0. These conditions could be met by any
linearised permutation polynomial, for example, with s = pi where i is the
smallest integer for which ai 6= 0. Define Fk(X) = Xsh(Trk,1(X)) for any
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positive integer k dividing m. By Theorem 1, Fk(X) permutes Fqk . In partic-
ular, Fm(X) permutes Fqm and since Fm ∈ Fq [X], it must also permute each
subfield of Fqm containing Fq . In fact, for any x ∈ Fqk , if p divides m/k, then
Fm(x) = xsh(0); otherwise Fm(x) = (m/k)−sFk((m/k)x).

The following theorem is similar in theme to Theorem 1, but neither theorem
follows fully from the other.

Theorem 3 Let f(X) = Xh(X) where h ∈ Fq [X]. Define the polynomial
F ∈ Fq [X] by F (X) = L(X) + Xh(Trm,1(X)) where L ∈ Fq [X] is a linearised
polynomial. Then F is a permutation polynomial over Fqm if and only if the
following conditions hold:

(i) L(X) + f(X) is a permutation polynomial over Fq .
(ii) For any y ∈ Fq , x ∈ Fqm satisfies L(x) + xh(y) = 0 and Trm,1(x) = 0 if

and only if x = 0.

PROOF. For all x ∈ Fqm , we have Trm,1(F (x)) = L(Trm,1(x)) + f(Trm,1(x))
as Trm,1(ax) = aTrm,1(x) for all a ∈ Fq . Suppose F is a permutation polyno-
mial over Fqm . Then the cardinality of the set {Trm,1(F (x)) | x ∈ Fqm} is q. The
cardinality of this set and {L(y)+f(y) | y ∈ Fq} are equal and so it follows that
L(X)+f(X) is a permutation polynomial over Fq . To show that condition (ii)
holds take two distinct elements x, y ∈ Fqm satisfying Trm,1(x) = Trm,1(y) = t.
Then Trm,1(x − y) = 0 and

F (x) − F (y) = L(x − y) + (x − y)h(t).

As F is a permutation polynomial, F (x)−F (y) is non-zero for distinct x, y ∈
Fqm and condition (ii) follows.

Now assume (i) and (ii) hold. Suppose there exist x, y ∈ Fqm such that F (x) =
F (y). As L(X) + f(X) is a permutation polynomial Fq , then Trm,1(x) =
Trm,1(y) = t for some t ∈ Fq . Thus Trn,1(x−y) = 0. Also F (x) = L(x)+xh(t)
and F (y) = L(y) + yh(t) so that L(x − y) + (x − y)h(t) = 0. From condition
(ii), x = y and F is a permutation polynomial over Fqm .

As an application of this theorem, we have the following corollary which
formed the motivation for this note.

Corollary 4 ([1, Theorem 5]) Let q be even, m be odd. The polynomial

F (X) = X
(

Trm,1(X) + aX
)

is a permutation polynomial over Fqm for all a ∈ Fq \ {0, 1}.
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PROOF. For any a ∈ Fq \ {0, 1}, the conditions of Theorem 3 are met by
the polynomials L(X) = aX2 and h(X) = X.

The proof of the corollary given in [1] is also particularly straightforward. We
note that Corollary 4 was established earlier by W.M. Kantor in [2].
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