A note on constructing permutation polynomials

Robert Coulter ${ }^{\text {a,* }}$ Marie Henderson ${ }^{\text {b, }}$ Rex Matthews ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, 520 Ewing Hall, University of Delaware, Newark, Delaware, 19716, U.S.A. email: coulter@math.udel.edu
${ }^{\mathrm{b}}$ State Services Commission, Wellington, New Zealand
${ }^{\text {c }} 6$ Earl St., Sandy Bay, Tasmania 7005, Australia

Abstract

Let H be a subgroup of the multiplicative group of a finite field. In this note we give a method for constructing permutation polynomials over the field using a bijective map from H to a coset of H. A similar, but inequivalent, method for lifting permutation behaviour of a polynomial to an extension field is also given.

Key words: permutation polynomial, finite field, subfield.

Throughout \mathbb{F}_{q} denotes the finite field of characteristic p with q elements $\left(q=p^{e}, e \in \mathbb{N}\right)$, and \mathbb{F}_{q}^{*} the non-zero elements of \mathbb{F}_{q}. Let $\mathbb{F}_{q}[X]$ be the ring of polynomials over \mathbb{F}_{q} in the indeterminate X. A permutation polynomial is a polynomial which, under evaluation, permutes the elements of \mathbb{F}_{q}. For example, a linearised polynomial $L \in \mathbb{F}_{q}[X]$ has the shape

$$
L(X)=\sum_{i=0}^{k} a_{i} X^{p^{i}},
$$

and permutes \mathbb{F}_{q} if and only if the only root of $L(X)$ in \mathbb{F}_{q} is $x=0$. This class of polynomials will be useful later in this note. For further properties of linearised polynomials see [3].

Determining new classes of permutation polynomials is an open problem, see [4]. The following theorem describes a method for constructing permutation

[^0]polynomials.
Theorem 1 Let g be a primitive element of \mathbb{F}_{q} and $H=\left\langle g^{n}\right\rangle$ where $n d=$ $q-1$. Let $T \in \mathbb{F}_{q}[X]$ be any polynomial which maps \mathbb{F}_{q} into $H \cup\{0\}$ satisfying $T(\lambda x)=\lambda T(x)$ for all $\lambda \in H$ and $x \in \mathbb{F}_{q}$. For any polynomial $h \in \mathbb{F}_{q}[X]$ and any positive integer s, define $f(X)=X^{s} h(X)$ and $F(X)=X^{s} h(T(X))$. If F is a permutation polynomial over \mathbb{F}_{q} and T does not induce the zero map on \mathbb{F}_{q}, then f is one to one on H. Conversely, if f maps H onto H a for some $a \in \mathbb{F}_{q}^{*},(s, n)=1$ and either
(i) $T(x)=0$ implies $x=0$, or
(ii) $(s, d)=1$ and $h(0) \in H a$,
then F is a permutation polynomial over \mathbb{F}_{q}.

PROOF. Let F be a permutation polynomial over \mathbb{F}_{q} and suppose there exists an $x \in \mathbb{F}_{q}$ such that $T(x)=\alpha \neq 0$. Then

$$
\begin{aligned}
o(H) & =\#\left\{(\lambda x)^{s} h(T(\lambda x)): \lambda \in H\right\} \\
& =\#\left\{\lambda^{s} h(\lambda T(x)): \lambda \in H\right\} \\
& =\#\left\{\lambda^{s} h(\lambda \alpha): \lambda \in H\right\} \\
& =\#\left\{(\lambda \alpha)^{s} h(\lambda \alpha): \lambda \in H\right\} \\
& =\#\left\{y^{s} h(y): y \in H\right\} .
\end{aligned}
$$

It follows f is one to one on H.
Now suppose f maps H onto a coset $H a$ with $a \neq 0,(s, n)=1$ and either condition (i) or (ii) holds. For any $\lambda, \mu \in H$ we must have $h(\lambda) / h(\mu) \in H$. Further, either condition (i) or (ii) implies $h(T(x)) \neq 0$ for all $x \in \mathbb{F}_{q}^{*}$. Let $x, y \in \mathbb{F}_{q}$ satisfy $F(x)=F(y)$. If $x=0$, then $y^{s} h(T(y))=0$, implying $y=0$. Now suppose $x \neq 0$, in which case $y \neq 0$ also. We have

$$
\begin{equation*}
\frac{x^{s}}{y^{s}}=\frac{h(T(y))}{h(T(x))} \tag{1}
\end{equation*}
$$

and so $(x / y)^{s} \in H$. As $(s, n)=1$, there exists integers i, j such that $i s+j n=1$. It follows that $x / y \in H$. Therefore $T(x)=(x / y) T(y)$, implying $T(x)^{s}=$ $(x / y)^{s} T(y)^{s}$. We claim $T(x)=T(y)$. Clearly $T(x)=0$ if and only if $T(y)=0$. If $T(x) T(y) \neq 0$, then since $F(x)=F(y)$ we have

$$
\frac{x^{s}}{y^{s}} h(T(x))=h(T(y))
$$

and multiplying by $T(y)^{s}$ gives

$$
T(x)^{s} h(T(x))=T(y)^{s} h(T(y))
$$

Since f is one to one on H, it follows that $T(x)=T(y)=\mu$ for some $\mu \in$ $H \cup\{0\}$. Thus $F(x)=F(y)$ implies $x^{s}=y^{s}$. If condition (i) holds, then $\mu \neq 0$ and since $x / y=T(x) / T(y)$, we have $x=y$. Otherwise, condition (ii) holds and so $(s, d)=1$, implying $(s, q-1)=1$. Hence $x^{s}=y^{s}$ implies $x=y$. In either case, we have F is a permutation polynomial over \mathbb{F}_{q}.

We say a polynomial T satisfies the criteria of Theorem 1 when (i) T maps \mathbb{F}_{q} into $H \cup\{0\}$, and (ii) $T(h x)=h T(x)$ for all $h \in H$ and $x \in \mathbb{F}_{q}$. The polynomials T satisfying the criteria of the theorem will be described by the authors in a more general context elsewhere.

We next make some comments regarding the scope and limitations of Theorem 1. Clearly, by multiplying through by a^{-1}, the restriction on the behaviour of f would simply be that it is bijective on H, but we prefer to state the theorem as given here.

If $o(H)=q-1$, then the only polynomials T satisfying the criteria of Theorem 1 are equivalent to $c X$ for some $c \in \mathbb{F}_{q}^{*}$. Hence $F(X)=c^{-s} f(c X)$ and clearly the permutation behaviour of $f(X)$ and $F(X)$ are equivalent in this case. If $o(H)=1$, then $(s, q-1)=1$ and so X^{s} permutes \mathbb{F}_{q}. In this case, X^{q-1} is the only reduced polynomial which satisfies (i) and the criteria of Theorem 1. We then have $F(X) \equiv X^{s} \bmod \left(X^{q}-X\right)$. For (ii) to be satisfied we need $h(0)=h(1)$, and then $F(X) \equiv h(1) X^{s} \bmod \left(X^{q}-X\right)$.

Now set $o(H)=d$ and let $n d=q-1$. If $n \equiv 1 \bmod d$, then $T(X)=X^{n}$ satisfies the criteria of Theorem 1. In such cases, it can be seen that Theorem 1 with $T(X)=X^{n}$ describes precisely a subset of the Wan-Lidl permutations, [5], of the form $X^{s} h\left(X^{n}\right)$ with n a divisor of $q-1$. The permutation condition of $X^{s} h\left(X^{n}\right)$ simplifies to (i) $X^{s} h(X)$ maps H onto a coset $H a$, and (ii) $(r, n)=$ 1 (compare with the more general conditions given in [5, Theorem 1.2]). If $n \not \equiv 1 \bmod d$, then there appears to be no overlap between the Wan-Lidl permutations and permutations generated by Theorem 1.

In practice, it is very simple to use Theorem 1 to generate permutation polynomials not of the form of Wan-Lidl. For example, consider the finite field \mathbb{F}_{q} with $q=16$ and primitive element z and let $H=\left\langle z^{3}\right\rangle$. Then there are 315 suitable reduced polynomials f and 125 distinct choices for polynomial T which satisfy condition (i). They combine to produce 501 distinct reduced monic permutation polynomials (including X, of course). A specific example is $f(X)=X h(X)$ with $h(X)=X^{3}+z^{11} X^{2}+z^{7} X+z^{3}$. Setting $T(X)=$ $X^{11}+z X^{6}+z^{12} X$, the resulting permutation polynomial $F(X)=X h(T(X))$ is a degree 34 polynomial, clearly not of the form $X^{s} M\left(X^{d}\right)$ and its reduced form has degree $q-2=14$ (as almost all examples do) and has 10 terms.

Before leaving our discussion of Wan-Lidl permutation polynomials, we also
note the following implication of Theorem 1.
Lemma 2 Let $H=\left\langle g^{n}\right\rangle$ with $d n=q-1$ and $d>1$. Let $1<k<q-1$ be any integer satisfying $(k, d)=1$ and $T \in \mathbb{F}_{q}[X]$ satisfy the criteria of Theorem 1 with $x=0$ the only root of T in \mathbb{F}_{q}. Then $X^{s} T(X)^{k-s}$ is a permutation polynomial over \mathbb{F}_{q} whenever $0<s<k$ and $(s, n)=1$. Set

$$
S=\left\{X^{s} T(X)^{k-s} \bmod \left(X^{q}-X\right) \mid 0<s<k \wedge(s, n)=1\right\} .
$$

Then $|S| \geq \operatorname{Min}(\phi(n), \varphi(k, n))$ where $\phi(n)$ is the Euler ϕ-function of n and $\varphi(k, m)$ is the number of positive integers less than k and relatively prime to n.

PROOF. Since $(k, d)=1, X^{k}$ is bijective on H. It follows from Theorem 1 that $X^{s} T(X)^{k-s}$ is a permutation polynomial over \mathbb{F}_{q} whenever $0<s<k$ satisfies $(s, n)=1$. It remains to count the number of distinct functions. Suppose

$$
X^{s} T(X)^{k-s} \equiv X^{s-t} T(X)^{k-s+t} \bmod \left(X^{q}-X\right)
$$

Then it follows that $x^{t}=T(x)^{t}$ for all $x \in \mathbb{F}_{q}$. In particular, we must have $x^{t} \in H$ for all $x \in \mathbb{F}_{q}^{*}$, implying n divides t. The result follows.

Theorem 1 is described in terms of a finite field \mathbb{F}_{q} and a subgroup H of the multiplicative group of \mathbb{F}_{q}. For the remainder of this note we consider specifically the case where we have a finite field $\mathbb{F}_{q^{m}}$ and H is the multiplicative group of \mathbb{F}_{q}, so that $H \cup\{0\}$ forms a subfield of $\mathbb{F}_{q^{m}}$. In this case, Theorem 1 can be used as a lifting criteria: given a permutation f of \mathbb{F}_{q} and a polynomial T satisfying the criteria of Theorem 1, one can construct a permutation polynomial F over $\mathbb{F}_{q^{m}}$ if the conditions of the theorem are met.

Some well known polynomials can be used for T in this case. Let k and m be integers with $k \mid m$. Define the polynomial

$$
\operatorname{Tr}_{m, k}(X)=X+X^{q^{k}}+\cdots+X^{q^{m-k}}
$$

(this is a polynomial which induces the trace mapping from $\mathbb{F}_{q^{m}}$ to $\mathbb{F}_{q^{k}}$). Then $\operatorname{Tr}_{m, k}(\alpha x)=\alpha \operatorname{Tr}_{m, k}(x)$ and $\operatorname{Tr}_{m, k}(x) \in \mathbb{F}_{q^{k}}$ for all $\alpha \in \mathbb{F}_{q^{k}}$ and $x \in \mathbb{F}_{q^{m}}$. So $\operatorname{Tr}_{m, k}$ satisfies the criteria for the polynomial T in Theorem 1 (where H is the multiplicative group of $\mathbb{F}_{q^{k}}$. We recall that for any k dividing $m, \operatorname{Tr}_{m, 1}(x)=$ $\operatorname{Tr}_{k, 1}\left(\operatorname{Tr}_{m, k}(x)\right)$ for all $x \in \mathbb{F}_{q^{m}}$.

Let $f \in \mathbb{F}_{q}[X]$ be any permutation polynomial satisfying $f(X)=X^{s} h(X)$ with $\left(s, q^{m}-1\right)=1$ and $h(0) \neq 0$. These conditions could be met by any linearised permutation polynomial, for example, with $s=p^{i}$ where i is the smallest integer for which $a_{i} \neq 0$. Define $F_{k}(X)=X^{s} h\left(\operatorname{Tr}_{k, 1}(X)\right)$ for any
positive integer k dividing m. By Theorem $1, F_{k}(X)$ permutes $\mathbb{F}_{q^{k}}$. In particular, $F_{m}(X)$ permutes $\mathbb{F}_{q^{m}}$ and since $F_{m} \in \mathbb{F}_{q}[X]$, it must also permute each subfield of $\mathbb{F}_{q^{m}}$ containing \mathbb{F}_{q}. In fact, for any $x \in \mathbb{F}_{q^{k}}$, if p divides m / k, then $F_{m}(x)=x^{s} h(0)$; otherwise $F_{m}(x)=(m / k)^{-s} F_{k}((m / k) x)$.

The following theorem is similar in theme to Theorem 1, but neither theorem follows fully from the other.

Theorem 3 Let $f(X)=X h(X)$ where $h \in \mathbb{F}_{q}[X]$. Define the polynomial $F \in \mathbb{F}_{q}[X]$ by $F(X)=L(X)+X h\left(\operatorname{Tr}_{m, 1}(X)\right)$ where $L \in \mathbb{F}_{q}[X]$ is a linearised polynomial. Then F is a permutation polynomial over $\mathbb{F}_{q^{m}}$ if and only if the following conditions hold:
(i) $L(X)+f(X)$ is a permutation polynomial over \mathbb{F}_{q}.
(ii) For any $y \in \mathbb{F}_{q}, x \in \mathbb{F}_{q^{m}}$ satisfies $L(x)+x h(y)=0$ and $\operatorname{Tr}_{m, 1}(x)=0$ if and only if $x=0$.

PROOF. For all $x \in \mathbb{F}_{q^{m}}$, we have $\operatorname{Tr}_{m, 1}(F(x))=L\left(\operatorname{Tr}_{m, 1}(x)\right)+f\left(\operatorname{Tr}_{m, 1}(x)\right)$ 'as $\operatorname{Tr}_{m, 1}(a x)=a \operatorname{Tr}_{m, 1}(x)$ for all $a \in \mathbb{F}_{q}$. Suppose F is a permutation polynomial over $\mathbb{F}_{q^{m}}$. Then the cardinality of the set $\left\{\operatorname{Tr}_{m, 1}(F(x)) \mid x \in \mathbb{F}_{q^{m}}\right\}$ is q. The cardinality of this set and $\left\{L(y)+f(y) \mid y \in \mathbb{F}_{q}\right\}$ are equal and so it follows that $L(X)+f(X)$ is a permutation polynomial over \mathbb{F}_{q}. To show that condition (ii) holds take two distinct elements $x, y \in \mathbb{F}_{q^{m}}$ satisfying $\operatorname{Tr}_{m, 1}(x)=\operatorname{Tr}_{m, 1}(y)=t$. Then $\operatorname{Tr}_{m, 1}(x-y)=0$ and

$$
F(x)-F(y)=L(x-y)+(x-y) h(t)
$$

As F is a permutation polynomial, $F(x)-F(y)$ is non-zero for distinct $x, y \in$ $\mathbb{F}_{q^{m}}$ and condition (ii) follows.

Now assume (i) and (ii) hold. Suppose there exist $x, y \in \mathbb{F}_{q^{m}}$ such that $F(x)=$ $F(y)$. As $L(X)+f(X)$ is a permutation polynomial \mathbb{F}_{q}, then $\operatorname{Tr}_{m, 1}(x)=$ $\operatorname{Tr}_{m, 1}(y)=t$ for some $t \in \mathbb{F}_{q}$. Thus $\operatorname{Tr}_{n, 1}(x-y)=0$. Also $F(x)=L(x)+x h(t)$ and $F(y)=L(y)+y h(t)$ so that $L(x-y)+(x-y) h(t)=0$. From condition (ii), $x=y$ and F is a permutation polynomial over $\mathbb{F}_{q^{m}}$.

As an application of this theorem, we have the following corollary which formed the motivation for this note.

Corollary 4 ([1, Theorem 5]) Let q be even, m be odd. The polynomial

$$
F(X)=X\left(\operatorname{Tr}_{m, 1}(X)+a X\right)
$$

is a permutation polynomial over $\mathbb{F}_{q^{m}}$ for all $a \in \mathbb{F}_{q} \backslash\{0,1\}$.

PROOF. For any $a \in \mathbb{F}_{q} \backslash\{0,1\}$, the conditions of Theorem 3 are met by the polynomials $L(X)=a X^{2}$ and $h(X)=X$.

The proof of the corollary given in [1] is also particularly straightforward. We note that Corollary 4 was established earlier by W.M. Kantor in [2].

References

[1] A. Blokhuis, R.S. Coulter, M. Henderson, and C.M. O'Keefe, Permutations amongst the Dembowski-Ostrom polynomials, Finite Fields and Applications: proceedings of the Fifth International Conference on Finite Fields and Applications (D. Jungnickel and H. Niederreiter, eds.), 2001, pp. 37-42.
[2] W.M. Kantor, Spreads, translation planes and Kerdock sets I and II, Siam J. Alg. Disc. Math. 3 (1982), 151-165 and 308-318.
[3] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., vol. 20, Addison-Wesley, Reading, 1983, (now distributed by Cambridge University Press).
[4] G.L. Mullen, Permutation polynomials: a matrix analogue of Schur's conjecture and a survey of recent results, Finite Fields Appl. 1 (1995), 242-258.
[5] D. Wan and R. Lidl, Permutation polynomials of the form $x^{r} f\left(x^{(q-1) / d}\right)$ and their group structure, Mh. Math 112 (1991), 149-163.

[^0]: * Corresponding author
 ${ }^{1}$ This author was supported by a RMIT VRII grant while employed by RMIT University in 2002 and 2003.

