A note on constructing permutation polynomials

Robert Coulter^{a,*} Marie Henderson^{b,1} Rex Matthews^c

^aDepartment of Mathematical Sciences, 520 Ewing Hall, University of Delaware, Newark, Delaware, 19716, U.S.A. email: coulter@math.udel.edu ^bState Services Commission, Wellington, New Zealand

^c6 Earl St., Sandy Bay, Tasmania 7005, Australia

Abstract

Let H be a subgroup of the multiplicative group of a finite field. In this note we give a method for constructing permutation polynomials over the field using a bijective map from H to a coset of H. A similar, but inequivalent, method for lifting permutation behaviour of a polynomial to an extension field is also given.

Key words: permutation polynomial, finite field, subfield.

Throughout \mathbb{F}_q denotes the finite field of characteristic p with q elements $(q = p^e, e \in \mathbb{N})$, and \mathbb{F}_q^* the non-zero elements of \mathbb{F}_q . Let $\mathbb{F}_q[X]$ be the ring of polynomials over \mathbb{F}_q in the indeterminate X. A *permutation polynomial* is a polynomial which, under evaluation, permutes the elements of \mathbb{F}_q . For example, a *linearised polynomial* $L \in \mathbb{F}_q[X]$ has the shape

$$L(X) = \sum_{i=0}^{k} a_i X^{p^i},$$

and permutes \mathbb{F}_q if and only if the only root of L(X) in \mathbb{F}_q is x = 0. This class of polynomials will be useful later in this note. For further properties of linearised polynomials see [3].

Determining new classes of permutation polynomials is an open problem, see [4]. The following theorem describes a method for constructing permutation

Preprint submitted to Finite Fields and Their Applications 4 September 2009

^{*} Corresponding author

¹ This author was supported by a RMIT VRII grant while employed by RMIT University in 2002 and 2003.

polynomials.

Theorem 1 Let g be a primitive element of \mathbb{F}_q and $H = \langle g^n \rangle$ where nd = q-1. Let $T \in \mathbb{F}_q[X]$ be any polynomial which maps \mathbb{F}_q into $H \cup \{0\}$ satisfying $T(\lambda x) = \lambda T(x)$ for all $\lambda \in H$ and $x \in \mathbb{F}_q$. For any polynomial $h \in \mathbb{F}_q[X]$ and any positive integer s, define $f(X) = X^s h(X)$ and $F(X) = X^s h(T(X))$. If F is a permutation polynomial over \mathbb{F}_q and T does not induce the zero map on \mathbb{F}_q , then f is one to one on H. Conversely, if f maps H onto Ha for some $a \in \mathbb{F}_q^*$, (s, n) = 1 and either

(i) T(x) = 0 implies x = 0, or (ii) (s, d) = 1 and $h(0) \in Ha$

(*ii*)
$$(s, a) = 1$$
 and $h(0) \in Ha$,

then F is a permutation polynomial over \mathbb{F}_q .

PROOF. Let F be a permutation polynomial over \mathbb{F}_q and suppose there exists an $x \in \mathbb{F}_q$ such that $T(x) = \alpha \neq 0$. Then

$$o(H) = \#\{(\lambda x)^{s}h(T(\lambda x)) : \lambda \in H\}$$

= $\#\{\lambda^{s}h(\lambda T(x)) : \lambda \in H\}$
= $\#\{\lambda^{s}h(\lambda \alpha) : \lambda \in H\}$
= $\#\{(\lambda \alpha)^{s}h(\lambda \alpha) : \lambda \in H\}$
= $\#\{y^{s}h(y) : y \in H\}.$

It follows f is one to one on H.

Now suppose f maps H onto a coset Ha with $a \neq 0$, (s,n) = 1 and either condition (i) or (ii) holds. For any $\lambda, \mu \in H$ we must have $h(\lambda)/h(\mu) \in H$. Further, either condition (i) or (ii) implies $h(T(x)) \neq 0$ for all $x \in \mathbb{F}_q^*$. Let $x, y \in \mathbb{F}_q$ satisfy F(x) = F(y). If x = 0, then $y^sh(T(y)) = 0$, implying y = 0. Now suppose $x \neq 0$, in which case $y \neq 0$ also. We have

$$\frac{x^s}{y^s} = \frac{h(T(y))}{h(T(x))} \tag{1}$$

and so $(x/y)^s \in H$. As (s, n) = 1, there exists integers i, j such that is+jn = 1. It follows that $x/y \in H$. Therefore T(x) = (x/y)T(y), implying $T(x)^s = (x/y)^s T(y)^s$. We claim T(x) = T(y). Clearly T(x) = 0 if and only if T(y) = 0. If $T(x)T(y) \neq 0$, then since F(x) = F(y) we have

$$\frac{x^s}{y^s}h(T(x)) = h(T(y))$$

and multiplying by $T(y)^s$ gives

$$T(x)^{s}h(T(x)) = T(y)^{s}h(T(y)).$$

Since f is one to one on H, it follows that $T(x) = T(y) = \mu$ for some $\mu \in H \cup \{0\}$. Thus F(x) = F(y) implies $x^s = y^s$. If condition (i) holds, then $\mu \neq 0$ and since x/y = T(x)/T(y), we have x = y. Otherwise, condition (ii) holds and so (s, d) = 1, implying (s, q - 1) = 1. Hence $x^s = y^s$ implies x = y. In either case, we have F is a permutation polynomial over \mathbb{F}_q .

We say a polynomial T satisfies the criteria of Theorem 1 when (i) T maps \mathbb{F}_q into $H \cup \{0\}$, and (ii) T(hx) = hT(x) for all $h \in H$ and $x \in \mathbb{F}_q$. The polynomials T satisfying the criteria of the theorem will be described by the authors in a more general context elsewhere.

We next make some comments regarding the scope and limitations of Theorem 1. Clearly, by multiplying through by a^{-1} , the restriction on the behaviour of f would simply be that it is bijective on H, but we prefer to state the theorem as given here.

If o(H) = q-1, then the only polynomials T satisfying the criteria of Theorem 1 are equivalent to cX for some $c \in \mathbb{F}_q^*$. Hence $F(X) = c^{-s}f(cX)$ and clearly the permutation behaviour of f(X) and F(X) are equivalent in this case. If o(H) = 1, then (s, q-1) = 1 and so X^s permutes \mathbb{F}_q . In this case, X^{q-1} is the only reduced polynomial which satisfies (i) and the criteria of Theorem 1. We then have $F(X) \equiv X^s \mod (X^q - X)$. For (ii) to be satisfied we need h(0) = h(1), and then $F(X) \equiv h(1)X^s \mod (X^q - X)$.

Now set o(H) = d and let nd = q-1. If $n \equiv 1 \mod d$, then $T(X) = X^n$ satisfies the criteria of Theorem 1. In such cases, it can be seen that Theorem 1 with $T(X) = X^n$ describes precisely a subset of the Wan-Lidl permutations, [5], of the form $X^sh(X^n)$ with n a divisor of q-1. The permutation condition of $X^sh(X^n)$ simplifies to (i) $X^sh(X)$ maps H onto a coset Ha, and (ii) (r, n) =1 (compare with the more general conditions given in [5, Theorem 1.2]). If $n \not\equiv 1 \mod d$, then there appears to be no overlap between the Wan-Lidl permutations and permutations generated by Theorem 1.

In practice, it is very simple to use Theorem 1 to generate permutation polynomials not of the form of Wan-Lidl. For example, consider the finite field \mathbb{F}_q with q = 16 and primitive element z and let $H = \langle z^3 \rangle$. Then there are 315 suitable reduced polynomials f and 125 distinct choices for polynomial T which satisfy condition (i). They combine to produce 501 distinct reduced monic permutation polynomials (including X, of course). A specific example is f(X) = Xh(X) with $h(X) = X^3 + z^{11}X^2 + z^7X + z^3$. Setting $T(X) = X^{11} + zX^6 + z^{12}X$, the resulting permutation polynomial F(X) = Xh(T(X)) is a degree 34 polynomial, clearly not of the form $X^s M(X^d)$ and its reduced form has degree q - 2 = 14 (as almost all examples do) and has 10 terms.

Before leaving our discussion of Wan-Lidl permutation polynomials, we also

note the following implication of Theorem 1.

Lemma 2 Let $H = \langle g^n \rangle$ with dn = q-1 and d > 1. Let 1 < k < q-1 be any integer satisfying (k, d) = 1 and $T \in \mathbb{F}_q[X]$ satisfy the criteria of Theorem 1 with x = 0 the only root of T in \mathbb{F}_q . Then $X^sT(X)^{k-s}$ is a permutation polynomial over \mathbb{F}_q whenever 0 < s < k and (s, n) = 1. Set

$$S = \{X^{s}T(X)^{k-s} \mod (X^{q} - X) \mid 0 < s < k \land (s, n) = 1\}.$$

Then $|S| \ge Min(\phi(n), \varphi(k, n))$ where $\phi(n)$ is the Euler ϕ -function of n and $\varphi(k, m)$ is the number of positive integers less than k and relatively prime to n.

PROOF. Since (k, d) = 1, X^k is bijective on H. It follows from Theorem 1 that $X^sT(X)^{k-s}$ is a permutation polynomial over \mathbb{F}_q whenever 0 < s < ksatisfies (s, n) = 1. It remains to count the number of distinct functions. Suppose

$$X^{s}T(X)^{k-s} \equiv X^{s-t}T(X)^{k-s+t} \mod (X^{q} - X).$$

Then it follows that $x^t = T(x)^t$ for all $x \in \mathbb{F}_q$. In particular, we must have $x^t \in H$ for all $x \in \mathbb{F}_q^*$, implying *n* divides *t*. The result follows.

Theorem 1 is described in terms of a finite field \mathbb{F}_q and a subgroup H of the multiplicative group of \mathbb{F}_q . For the remainder of this note we consider specifically the case where we have a finite field \mathbb{F}_{q^m} and H is the multiplicative group of \mathbb{F}_q , so that $H \cup \{0\}$ forms a subfield of \mathbb{F}_{q^m} . In this case, Theorem 1 can be used as a lifting criteria: given a permutation f of \mathbb{F}_q and a polynomial T satisfying the criteria of Theorem 1, one can construct a permutation polynomial F over \mathbb{F}_{q^m} if the conditions of the theorem are met.

Some well known polynomials can be used for T in this case. Let k and m be integers with k|m. Define the polynomial

$$\operatorname{Tr}_{m,k}(X) = X + X^{q^k} + \dots + X^{q^{m-k}}$$

(this is a polynomial which induces the trace mapping from \mathbb{F}_{q^m} to \mathbb{F}_{q^k}). Then $\operatorname{Tr}_{m,k}(\alpha x) = \alpha \operatorname{Tr}_{m,k}(x)$ and $\operatorname{Tr}_{m,k}(x) \in \mathbb{F}_{q^k}$ for all $\alpha \in \mathbb{F}_{q^k}$ and $x \in \mathbb{F}_{q^m}$. So $\operatorname{Tr}_{m,k}$ satisfies the criteria for the polynomial T in Theorem 1 (where H is the multiplicative group of \mathbb{F}_{q^k}). We recall that for any k dividing m, $\operatorname{Tr}_{m,1}(x) =$ $\operatorname{Tr}_{k,1}(\operatorname{Tr}_{m,k}(x))$ for all $x \in \mathbb{F}_{q^m}$.

Let $f \in \mathbb{F}_q[X]$ be any permutation polynomial satisfying $f(X) = X^s h(X)$ with $(s, q^m - 1) = 1$ and $h(0) \neq 0$. These conditions could be met by any linearised permutation polynomial, for example, with $s = p^i$ where *i* is the smallest integer for which $a_i \neq 0$. Define $F_k(X) = X^s h(\operatorname{Tr}_{k,1}(X))$ for any positive integer k dividing m. By Theorem 1, $F_k(X)$ permutes \mathbb{F}_{q^k} . In particular, $F_m(X)$ permutes \mathbb{F}_{q^m} and since $F_m \in \mathbb{F}_q[X]$, it must also permute each subfield of \mathbb{F}_{q^m} containing \mathbb{F}_q . In fact, for any $x \in \mathbb{F}_{q^k}$, if p divides m/k, then $F_m(x) = x^s h(0)$; otherwise $F_m(x) = (m/k)^{-s} F_k((m/k)x)$.

The following theorem is similar in theme to Theorem 1, but neither theorem follows fully from the other.

Theorem 3 Let f(X) = Xh(X) where $h \in \mathbb{F}_q[X]$. Define the polynomial $F \in \mathbb{F}_q[X]$ by $F(X) = L(X) + Xh(Tr_{m,1}(X))$ where $L \in \mathbb{F}_q[X]$ is a linearised polynomial. Then F is a permutation polynomial over \mathbb{F}_{q^m} if and only if the following conditions hold:

(i) L(X) + f(X) is a permutation polynomial over 𝔽_q.
(ii) For any y ∈ 𝔽_q, x ∈ 𝔽_{q^m} satisfies L(x) + xh(y) = 0 and Tr_{m,1}(x) = 0 if and only if x = 0.

PROOF. For all $x \in \mathbb{F}_{q^m}$, we have $\operatorname{Tr}_{m,1}(F(x)) = L(\operatorname{Tr}_{m,1}(x)) + f(\operatorname{Tr}_{m,1}(x))$ as $\operatorname{Tr}_{m,1}(ax) = a\operatorname{Tr}_{m,1}(x)$ for all $a \in \mathbb{F}_q$. Suppose F is a permutation polynomial over \mathbb{F}_{q^m} . Then the cardinality of the set $\{\operatorname{Tr}_{m,1}(F(x)) \mid x \in \mathbb{F}_{q^m}\}$ is q. The cardinality of this set and $\{L(y)+f(y) \mid y \in \mathbb{F}_q\}$ are equal and so it follows that L(X) + f(X) is a permutation polynomial over \mathbb{F}_q . To show that condition (ii) holds take two distinct elements $x, y \in \mathbb{F}_{q^m}$ satisfying $\operatorname{Tr}_{m,1}(x) = \operatorname{Tr}_{m,1}(y) = t$. Then $\operatorname{Tr}_{m,1}(x-y) = 0$ and

$$F(x) - F(y) = L(x - y) + (x - y)h(t).$$

As F is a permutation polynomial, F(x) - F(y) is non-zero for distinct $x, y \in \mathbb{F}_{q^m}$ and condition (ii) follows.

Now assume (i) and (ii) hold. Suppose there exist $x, y \in \mathbb{F}_{q^m}$ such that F(x) = F(y). As L(X) + f(X) is a permutation polynomial \mathbb{F}_q , then $\operatorname{Tr}_{m,1}(x) = \operatorname{Tr}_{m,1}(y) = t$ for some $t \in \mathbb{F}_q$. Thus $\operatorname{Tr}_{n,1}(x-y) = 0$. Also F(x) = L(x) + xh(t) and F(y) = L(y) + yh(t) so that L(x-y) + (x-y)h(t) = 0. From condition (ii), x = y and F is a permutation polynomial over \mathbb{F}_{q^m} .

As an application of this theorem, we have the following corollary which formed the motivation for this note.

Corollary 4 ([1, Theorem 5]) Let q be even, m be odd. The polynomial

$$F(X) = X(Tr_{m,1}(X) + aX)$$

is a permutation polynomial over \mathbb{F}_{q^m} for all $a \in \mathbb{F}_q \setminus \{0, 1\}$.

PROOF. For any $a \in \mathbb{F}_q \setminus \{0, 1\}$, the conditions of Theorem 3 are met by the polynomials $L(X) = aX^2$ and h(X) = X.

The proof of the corollary given in [1] is also particularly straightforward. We note that Corollary 4 was established earlier by W.M. Kantor in [2].

References

- [1] A. Blokhuis, R.S. Coulter, M. Henderson, and C.M. O'Keefe, Permutations amongst the Dembowski-Ostrom polynomials, Finite Fields and Applications: proceedings of the Fifth International Conference on Finite Fields and
- (2) Proceedings of the Firth International Conference on Finite Fields and Applications (D. Jungnickel and H. Niederreiter, eds.), 2001, pp. 37–42.
 [2] W.M. Kantor, Spreads, translation planes and Kerdock sets I and II, Siam J. Alg. Disc. Math. 3 (1982), 151–165 and 308–318.
 [3] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., vol. 20, Addison-Wesley, Reading, 1983, (now distributed by Cambridge University Press).
 [4] G.L. Mullen, Permutation polynomials: a matrix analogue of Schur's conjecture and a survey of recent results, Finite Fields Appl. 1 (1995), 242–258.
 [5] D. Wan and R. Lidl, Permutation polynomials of the form x^r f(x^{(q-1)/d}) and their group structure, Mh. Math 112 (1991), 149–163.