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Abstract

In a recent paper, Kyureghyan and Özbudak proved that u ∈ {1, 2} was a sufficient condition for

the polynomial X(Xq2 + Xq + (1 − u)X) to be planar over Fq3 , and conjectured the condition was
also necessary. This conjecture is established in this note.

§ 1. Introduction

Let q be an odd prime power. We use Fq to denote the finite field of q elements, F∗
q it’s nonzero elements,

and Fq[X] the ring of polynomials in indeterminate X with coefficients from Fq. Let f ∈ Fq[X]. Then f
is a permutation polynomial on Fq if it induces a bijection on Fq under evaluation. If f(X + a) − f(X)
is a permutation polynomial for all a ∈ F∗

q , then f is called planar over Fq. The motivation for studying
permutation polynomials or planar polynomials has been presented many times, with connections ranging
from projective geometry to cryptology.

In this note we are interested in a specific conjecture concerning planar polynomials. Let n ≥ 2 be
a natural number. Set Trn(X) =

∑n−1
i=0 X

qi . The polynomial Trn ∈ Fqn [X] induces the trace map

from Fqn onto Fq. In a recent paper [3], Kyureghyan and Özbudak considered the planarity of fu(X) =
X(Trn(X)− uX) with u ∈ Fqn . Their main results can be summarised as follows.

Theorem 1.1 (Kyureghyan & Özbudak, [3]).

(i) If n ≥ 5, then fu cannot be planar over Fqn for any u ∈ Fqn .

(ii) If n = 3 and u ∈ {1, 2}, then fu is planar over Fq3 .

Kyureghyan and Özbudak conjectured that fu cannot be planar for any u when n = 4, and that when
n = 3, the condition on u given above was necessary. Their latter conjecture is indeed true, for in this note
we prove
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Theorem 1.2. The polynomial fu(X) = X(Tr3(X)− uX) is planar over Fq3 if and only if u ∈ {1, 2}.

Our method of proof is quite indirect; we never consider the planarity of fu directly. Instead, we use
certain classification results on planar Dembowski-Ostrom polynomials given in our paper [1].

§ 2. Approach

A polynomial L ∈ Fqn [X] is a q-polynomial if it has the form
∑

i aiX
qi . Such polynomials represent all

linear transformations of Fqn when viewed as a vector space over Fq. They are non-singular (permutation
polynomials) over Fqn if and only if L(x) = 0 implies x = 0.

A polynomial f ∈ Fqn [X] is a q-Dembowski Ostrom (q-DO) polynomial if it has the form
∑

ij aijX
qi+qj .

When planar, such a polynomial yields a commutative presemifield of order qn which can be represented as
a vector space over Fq.

In [1], we consider the isotopy problem for commutative presemifields, deriving results based on the
size of the nuclei. In particular, an unstated but useful fact inherent in all of the results of [1], Section 2,
is that when dealing with commutative presemifields of order qn with nuclei of order q, the non-singular
linear transformations involved are, in fact, non-singular linear transformations of Fqn over Fq and can
thus be represented by non-singular q-polynomials. Furthermore, again when dealing with commutative
presemifields of order qn with nuclei of order q, one can strengthen the statement of [1], Theorem 3.3 to
deal with planar q-DO polynomials (the proof is the same as that given). Theorems 2.6 and 3.5 can thus
be stated in terms of planar q-DO polynomials and non-singular q-polynomials, provided the size of the
nucleus is specified as being of order at least q. This observation is critical, as by combining Theorems 2.6
and 3.5 with Menichetti’s classification [5] of commutative presemifields of dimension 3 over their nucleus
– he proved there are only two inequivalent commutative presemifields, the finite field and Albert’s twisted
field – we get the following useful lemma, which can be viewed as the q-DO polynomial equivalent of [1],
Corollary 3.11.

Lemma 2.1. If D ∈ Fq3 [X] is a planar q-DO polynomial, then there exists non-singular q-polynomials
L,M ∈ Fq3 [X] and i ∈ {0, 1} satisfying

L(Xqi+1) ≡ D(M(X)) (mod Xq3 −X). (1)

The cases i = 0 and i = 1 correspond to when D yields a commutative presemifield equivalent to the
finite field or Albert’s twisted field, respectively, and we say D is equivalent to X2 or Xq+1, depending
upon the case.

Lemma 2.1 is the key to our proof. We shall show firstly that if fu ∈ Fq3 [X] is planar, then it cannot
be equivalent to X2. Then, we prove that if fu is equivalent to Xq+1, then necessarily u ∈ {1, 2}. Since
the planarity of fu has been established in those cases in [3], Theorem 1.2 then follows at once.

Before moving on to these cases, we observe if u = 0, then fu(X) cannot be planar as then fu(X)
must have non-zero roots, which contradicts results given in any of [2, 4, 6]. Consequently, we assume
u 6= 0 in all that follows.

§ 3. Inequivalence of fu(X) and X2

Suppose fu ∈ Fq3 [X] is planar, u ∈ F∗
q3 , and equivalent to X2. By Lemma 2.1, there exists two q-

polynomials L and M which satisfy (1). Set

L(X) = αXq2 + βXq + γX,

M(X) = aXq2 + bXq + cX.
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(There are conditions on the coefficients for L and M to be permutation polynomials, but surprisingly we
will not need them.) Direct calculation shows

L(X2) (mod Xq3 −X) = αX2q2 + βX2q + γX2,

and

fu(M(X)) (mod Xq3 −X) = (tq
2

a− ua2)X2q2 + (tqb− ub2)X2q + (tc− uc2)X2

+ (tq
2

b+ tqa− 2uab)Xq2+q

+ (tq
2

c+ ta− 2uac)Xq2+1

+ (tqc+ tb− 2ubc)Xq+1,

where t = c+ aq + bq
2

. By (1), we may equate coefficients. In particular, we get

tq
2

b+ tqa− 2uab = 0, (2)

tq
2

c+ ta− 2uac = 0, (3)

tqc+ tb− 2ubc = 0. (4)

First, suppose abc = 0. Suppose a = 0, say. Then (2) and (3) imply b = c = 0 or t = 0. In the former
case, we find M(X) = 0, contrary to M being a permutation polynomial. In the latter case, we must have

c = −bq2 and now (4) implies 2ubq
2+1 = 0, so that b = 0 = c and again M(X) = 0. A similar argument

shows b 6= 0 and c 6= 0.

Thus abc 6= 0. We can thus solve for 2u in each of the three equations (2), (3) and (4); we obtain

2u =
tq

2

b+ tqa

ab

=
tq

2

c+ ta

ac

=
tqc+ tb

bc
.

Via some more simple arithmetic we find

u =
t

c
=
tq

b
=
tq

2

a
. (5)

Returning to (1), we also have

α = tq
2

a− ua2,
β = tqb− ub2,
γ = tc− uc2.

Substituting the appropriate part of (5) where necessary, we now find α = β = γ = 0, and so L(X) = 0,
a final contradiction.

There being no more possibilities, we have thus shown fu(X) can never be equivalent to X2 over Fq3 .
We note that practically the same argument can be applied to show that if fu(X) is planar over Fqn for
n = 4, then it cannot be equivalent to X2.
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§ 4. Equivalence of fu(X) and Xq+1

Now suppose fu ∈ Fq3 [X] is planar, u ∈ F∗
q3 , and equivalent to Xq+1. As above, we appeal to Lemma 2.1

for the existence of two q-polynomials L and M , whose coefficients we will denote as above, which satisfy
(1). The calculation for fu(M(X)) (mod Xq3 −X) is as before, while

L(Xq+1) (mod Xq3 −X) = αXq2+1 + βXq2+q + γXq+1.

The two cases are again abc = 0 or abc 6= 0.
This time, let us deal with the case abc 6= 0 first, which is practically the direct reverse argument of the

corresponding case in our last proof. Equating coefficients for the X2qj terms, j ∈ {0, 1, 2}, we find

0 = tq
2

a− ua2, (6)

= tqb− ub2, (7)

= tc− uc2. (8)

Solving for u in each of these equations, we obtain the identities

u =
t

c
=
tq

b
=
tq

2

a
.

Now equating the coefficients in (1) for the remaining terms, we have

β = tq
2

b+ tqa− 2uab,

α = tq
2

c+ ta− 2uac,

γ = tqc+ tb− 2ubc.

Now substituting leads to α = β = γ = 0, so that L(X) = 0, a contradiction.
Hence abc = 0 must hold. If any two of a, b and c are zero, then the remaining non-zero equation from

(6), (7), and (8), along with t = c+ aq + bq
2

, forces u = 1, a case we know to be planar.
Now suppose only a = 0. Then we still have

u =
t

c
=
tq

b
.

Solving for c and b, we can substitute into the formula for t to find

t = c+ bq
2

=
t

u
+

t

uq2
.

Since u 6= 0, we know t 6= 0, and so we can multiply through by uq
2

/t to obtain the equation

0 = uq
2

− uq
2−1 − 1. (9)

Now multiplying by u, we can factor to obtain

1 = (u− 1)(uq
2

− 1)

= (uq − 1)(u− 1)

= (uq
2

− 1)(uq − 1),

where the last two identities are obtained by successively raising the previous identity to the qth power.
Clearly u 6= 1, and so we find u ∈ Fq. Now (9) simplifies to u = 2, another case which we know to be
planar. The cases b = 0 and c = 0 lead to the same conclusion.

Hence u ∈ {1, 2} is forced, and since we already know both are planar, Theorem 1.2 has been established.
We also have the following corollary.
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Corollary 4.1. If u ∈ {1, 2}, then the planar DO polynomial fu ∈ Fq3 [X] necessarily yields a commutative
presemifield equivalent to Albert’s twisted field.

§ 5. Final comments

While we have resolved one of the two conjectures of Kyureghyan and Özbudak, there remains the problem
of showing fu(X) is never planar over Fqn with n = 4. One might be tempted to approach the n = 4
case in a similar way; certainly, one can show fu(X) is never equivalent to X2 in almost identical fashion
to our Section 3. However, additional problems arise. Firstly, the classification of planar DO polynomials
representing commutative presemifields of dimension 4 over Fq is incomplete. Secondly, and perhaps more
importantly, even if we had such a classification, the strict strong isotopy results from [1] no longer hold
in general (though they do in some cases, in particular the case X2), and so there is no four dimensional
version of Lemma 2.1. So we suspect that a different approach will be needed to resolve the n = 4
conjecture from [3].
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