Journal ax matymatildyen Ableynumgen

73aper 120.29 (2013)

On a conjecture on planar polynomials of the form $X\left(\operatorname{Tr}_{n}(X)-u X\right)$

Robert S. Coulter ${ }^{1}$ and Marie Henderson ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
${ }^{2} 9 / 84$ a Boulcott Street, Wellington, New Zealand

AMS Subject class: 11T06, 12E10
Keywords: Planar functions

Note: This is a personal preprint; for correct page numbering and references please see the original paper, the proper citation for which is:
R.S. Coulter and M. Henderson, On a conjecture on planar polynomials of the form $X\left(\operatorname{Tr}_{n}(X)-u X\right)$, Finite Fields Appl. 21 (2013), 30-34.

Abstract

In a recent paper, Kyureghyan and Özbudak proved that $u \in\{1,2\}$ was a sufficient condition for the polynomial $X\left(X^{q^{2}}+X^{q}+(1-u) X\right)$ to be planar over $\mathbb{F}_{q^{3}}$, and conjectured the condition was also necessary. This conjecture is established in this note.

§1. Introduction

Let q be an odd prime power. We use \mathbb{F}_{q} to denote the finite field of q elements, \mathbb{F}_{q}^{*} it's nonzero elements, and $\mathbb{F}_{q}[X]$ the ring of polynomials in indeterminate X with coefficients from \mathbb{F}_{q}. Let $f \in \mathbb{F}_{q}[X]$. Then f is a permutation polynomial on \mathbb{F}_{q} if it induces a bijection on \mathbb{F}_{q} under evaluation. If $f(X+a)-f(X)$ is a permutation polynomial for all $a \in \mathbb{F}_{q}^{*}$, then f is called planar over \mathbb{F}_{q}. The motivation for studying permutation polynomials or planar polynomials has been presented many times, with connections ranging from projective geometry to cryptology.

In this note we are interested in a specific conjecture concerning planar polynomials. Let $n \geq 2$ be a natural number. Set $\operatorname{Tr}_{n}(X)=\sum_{i=0}^{n-1} X^{q^{i}}$. The polynomial $\operatorname{Tr}_{n} \in \mathbb{F}_{q^{n}}[X]$ induces the trace map from $\mathbb{F}_{q^{n}}$ onto \mathbb{F}_{q}. In a recent paper [3], Kyureghyan and Özbudak considered the planarity of $f_{u}(X)=$ $X\left(\operatorname{Tr}_{n}(X)-u X\right)$ with $u \in \mathbb{F}_{q^{n}}$. Their main results can be summarised as follows.
Theorem 1.1 (Kyureghyan \& Özbudak, [3]).
(i) If $n \geq 5$, then f_{u} cannot be planar over $\mathbb{F}_{q^{n}}$ for any $u \in \mathbb{F}_{q^{n}}$.
(ii) If $n=3$ and $u \in\{1,2\}$, then f_{u} is planar over $\mathbb{F}_{q^{3}}$.

Kyureghyan and Özbudak conjectured that f_{u} cannot be planar for any u when $n=4$, and that when $n=3$, the condition on u given above was necessary. Their latter conjecture is indeed true, for in this note we prove

Theorem 1.2. The polynomial $f_{u}(X)=X\left(\operatorname{Tr}_{3}(X)-u X\right)$ is planar over $\mathbb{F}_{q^{3}}$ if and only if $u \in\{1,2\}$.
Our method of proof is quite indirect; we never consider the planarity of f_{u} directly. Instead, we use certain classification results on planar Dembowski-Ostrom polynomials given in our paper [1].

§ 2. Approach

A polynomial $L \in \mathbb{F}_{q^{n}}[X]$ is a q-polynomial if it has the form $\sum_{i} a_{i} X^{q^{i}}$. Such polynomials represent all linear transformations of $\mathbb{F}_{q^{n}}$ when viewed as a vector space over \mathbb{F}_{q}. They are non-singular (permutation polynomials) over $\mathbb{F}_{q^{n}}$ if and only if $L(x)=0$ implies $x=0$.

A polynomial $f \in \mathbb{F}_{q^{n}}[X]$ is a q-Dembowski Ostrom ($q-D O$) polynomial if it has the form $\sum_{i j} a_{i j} X^{q^{i}+q^{j}}$. When planar, such a polynomial yields a commutative presemifield of order q^{n} which can be represented as a vector space over \mathbb{F}_{q}.

In [1], we consider the isotopy problem for commutative presemifields, deriving results based on the size of the nuclei. In particular, an unstated but useful fact inherent in all of the results of [1], Section 2, is that when dealing with commutative presemifields of order q^{n} with nuclei of order q, the non-singular linear transformations involved are, in fact, non-singular linear transformations of $\mathbb{F}_{q^{n}}$ over \mathbb{F}_{q} and can thus be represented by non-singular q-polynomials. Furthermore, again when dealing with commutative presemifields of order q^{n} with nuclei of order q, one can strengthen the statement of [1], Theorem 3.3 to deal with planar q-DO polynomials (the proof is the same as that given). Theorems 2.6 and 3.5 can thus be stated in terms of planar q-DO polynomials and non-singular q-polynomials, provided the size of the nucleus is specified as being of order at least q. This observation is critical, as by combining Theorems 2.6 and 3.5 with Menichetti's classification [5] of commutative presemifields of dimension 3 over their nucleus - he proved there are only two inequivalent commutative presemifields, the finite field and Albert's twisted field - we get the following useful lemma, which can be viewed as the q-DO polynomial equivalent of [1], Corollary 3.11 .

Lemma 2.1. If $D \in \mathbb{F}_{q^{3}}[X]$ is a planar q-DO polynomial, then there exists non-singular q-polynomials $L, M \in \mathbb{F}_{q^{3}}[X]$ and $i \in\{0,1\}$ satisfying

$$
\begin{equation*}
L\left(X^{q^{i}+1}\right) \equiv D(M(X)) \quad\left(\bmod X^{q^{3}}-X\right) \tag{1}
\end{equation*}
$$

The cases $i=0$ and $i=1$ correspond to when D yields a commutative presemifield equivalent to the finite field or Albert's twisted field, respectively, and we say D is equivalent to X^{2} or X^{q+1}, depending upon the case.

Lemma 2.1 is the key to our proof. We shall show firstly that if $f_{u} \in \mathbb{F}_{q^{3}}[X]$ is planar, then it cannot be equivalent to X^{2}. Then, we prove that if f_{u} is equivalent to X^{q+1}, then necessarily $u \in\{1,2\}$. Since the planarity of f_{u} has been established in those cases in [3], Theorem 1.2 then follows at once.

Before moving on to these cases, we observe if $u=0$, then $f_{u}(X)$ cannot be planar as then $f_{u}(X)$ must have non-zero roots, which contradicts results given in any of $[2,4,6]$. Consequently, we assume $u \neq 0$ in all that follows.

§3. Inequivalence of $f_{u}(X)$ and X^{2}

Suppose $f_{u} \in \mathbb{F}_{q^{3}}[X]$ is planar, $u \in \mathbb{F}_{q^{3}}^{*}$, and equivalent to X^{2}. By Lemma 2.1, there exists two q polynomials L and M which satisfy (1). Set

$$
\begin{aligned}
L(X) & =\alpha X^{q^{2}}+\beta X^{q}+\gamma X \\
M(X) & =a X^{q^{2}}+b X^{q}+c X
\end{aligned}
$$

(There are conditions on the coefficients for L and M to be permutation polynomials, but surprisingly we will not need them.) Direct calculation shows

$$
L\left(X^{2}\right) \quad\left(\bmod X^{q^{3}}-X\right)=\alpha X^{2 q^{2}}+\beta X^{2 q}+\gamma X^{2}
$$

and

$$
\begin{aligned}
f_{u}(M(X))\left(\bmod X^{q^{3}}-X\right)= & \left(t^{q^{2}} a-u a^{2}\right) X^{2 q^{2}}+\left(t^{q} b-u b^{2}\right) X^{2 q}+\left(t c-u c^{2}\right) X^{2} \\
& +\left(t^{q^{2}} b+t^{q} a-2 u a b\right) X^{q^{2}+q} \\
& +\left(t^{q^{2}} c+t a-2 u a c\right) X^{q^{2}+1} \\
& +\left(t^{q} c+t b-2 u b c\right) X^{q+1}
\end{aligned}
$$

where $t=c+a^{q}+b^{q^{2}}$. By (1), we may equate coefficients. In particular, we get

$$
\begin{align*}
t^{q^{2}} b+t^{q} a-2 u a b & =0 \tag{2}\\
t^{q^{2}} c+t a-2 u a c & =0 \tag{3}\\
t^{q} c+t b-2 u b c & =0 \tag{4}
\end{align*}
$$

First, suppose $a b c=0$. Suppose $a=0$, say. Then (2) and (3) imply $b=c=0$ or $t=0$. In the former case, we find $M(X)=0$, contrary to M being a permutation polynomial. In the latter case, we must have $c=-b^{q^{2}}$ and now (4) implies $2 u b^{q^{2}+1}=0$, so that $b=0=c$ and again $M(X)=0$. A similar argument shows $b \neq 0$ and $c \neq 0$.

Thus $a b c \neq 0$. We can thus solve for $2 u$ in each of the three equations (2), (3) and (4); we obtain

$$
\begin{aligned}
2 u & =\frac{t^{q^{2}} b+t^{q} a}{a b} \\
& =\frac{t^{q^{2}} c+t a}{a c} \\
& =\frac{t^{q} c+t b}{b c}
\end{aligned}
$$

Via some more simple arithmetic we find

$$
\begin{equation*}
u=\frac{t}{c}=\frac{t^{q}}{b}=\frac{t^{q^{2}}}{a} \tag{5}
\end{equation*}
$$

Returning to (1), we also have

$$
\begin{aligned}
\alpha & =t^{q^{2}} a-u a^{2} \\
\beta & =t^{q} b-u b^{2} \\
\gamma & =t c-u c^{2}
\end{aligned}
$$

Substituting the appropriate part of (5) where necessary, we now find $\alpha=\beta=\gamma=0$, and so $L(X)=0$, a final contradiction.

There being no more possibilities, we have thus shown $f_{u}(X)$ can never be equivalent to X^{2} over $\mathbb{F}_{q^{3}}$. We note that practically the same argument can be applied to show that if $f_{u}(X)$ is planar over $\mathbb{F}_{q^{n}}$ for $n=4$, then it cannot be equivalent to X^{2}.

\S 4. Equivalence of $f_{u}(X)$ and X^{q+1}

Now suppose $f_{u} \in \mathbb{F}_{q^{3}}[X]$ is planar, $u \in \mathbb{F}_{q^{3}}^{*}$, and equivalent to X^{q+1}. As above, we appeal to Lemma 2.1 for the existence of two q-polynomials L and M, whose coefficients we will denote as above, which satisfy (1). The calculation for $f_{u}(M(X))\left(\bmod X^{q^{3}}-X\right)$ is as before, while

$$
L\left(X^{q+1}\right) \quad\left(\bmod X^{q^{3}}-X\right)=\alpha X^{q^{2}+1}+\beta X^{q^{2}+q}+\gamma X^{q+1}
$$

The two cases are again $a b c=0$ or $a b c \neq 0$.
This time, let us deal with the case $a b c \neq 0$ first, which is practically the direct reverse argument of the corresponding case in our last proof. Equating coefficients for the $X^{2 q^{j}}$ terms, $j \in\{0,1,2\}$, we find

$$
\begin{align*}
0 & =t^{q^{2}} a-u a^{2} \tag{6}\\
& =t^{q} b-u b^{2} \tag{7}\\
& =t c-u c^{2} \tag{8}
\end{align*}
$$

Solving for u in each of these equations, we obtain the identities

$$
u=\frac{t}{c}=\frac{t^{q}}{b}=\frac{t^{q^{2}}}{a}
$$

Now equating the coefficients in (1) for the remaining terms, we have

$$
\begin{aligned}
\beta & =t^{q^{2}} b+t^{q} a-2 u a b, \\
\alpha & =t^{q^{2}} c+t a-2 u a c \\
\gamma & =t^{q} c+t b-2 u b c .
\end{aligned}
$$

Now substituting leads to $\alpha=\beta=\gamma=0$, so that $L(X)=0$, a contradiction.
Hence $a b c=0$ must hold. If any two of a, b and c are zero, then the remaining non-zero equation from (6), (7), and (8), along with $t=c+a^{q}+b^{q^{2}}$, forces $u=1$, a case we know to be planar.

Now suppose only $a=0$. Then we still have

$$
u=\frac{t}{c}=\frac{t^{q}}{b}
$$

Solving for c and b, we can substitute into the formula for t to find

$$
\begin{aligned}
t & =c+b^{q^{2}} \\
& =\frac{t}{u}+\frac{t}{u^{q^{2}}}
\end{aligned}
$$

Since $u \neq 0$, we know $t \neq 0$, and so we can multiply through by $u^{q^{2}} / t$ to obtain the equation

$$
\begin{equation*}
0=u^{q^{2}}-u^{q^{2}-1}-1 \tag{9}
\end{equation*}
$$

Now multiplying by u, we can factor to obtain

$$
\begin{aligned}
1 & =(u-1)\left(u^{q^{2}}-1\right) \\
& =\left(u^{q}-1\right)(u-1) \\
& =\left(u^{q^{2}}-1\right)\left(u^{q}-1\right),
\end{aligned}
$$

where the last two identities are obtained by successively raising the previous identity to the q th power. Clearly $u \neq 1$, and so we find $u \in \mathbb{F}_{q}$. Now (9) simplifies to $u=2$, another case which we know to be planar. The cases $b=0$ and $c=0$ lead to the same conclusion.

Hence $u \in\{1,2\}$ is forced, and since we already know both are planar, Theorem 1.2 has been established. We also have the following corollary.

Corollary 4.1. If $u \in\{1,2\}$, then the planar DO polynomial $f_{u} \in \mathbb{F}_{q^{3}}[X]$ necessarily yields a commutative presemifield equivalent to Albert's twisted field.

§5. Final comments

While we have resolved one of the two conjectures of Kyureghyan and Özbudak, there remains the problem of showing $f_{u}(X)$ is never planar over $\mathbb{F}_{q^{n}}$ with $n=4$. One might be tempted to approach the $n=4$ case in a similar way; certainly, one can show $f_{u}(X)$ is never equivalent to X^{2} in almost identical fashion to our Section 3. However, additional problems arise. Firstly, the classification of planar DO polynomials representing commutative presemifields of dimension 4 over \mathbb{F}_{q} is incomplete. Secondly, and perhaps more importantly, even if we had such a classification, the strict strong isotopy results from [1] no longer hold in general (though they do in some cases, in particular the case X^{2}), and so there is no four dimensional version of Lemma 2.1. So we suspect that a different approach will be needed to resolve the $n=4$ conjecture from [3].

References

[1] R.S. Coulter and M. Henderson, Commutative presemifields and semifields, Adv. Math. 217 (2008), 282-304.
[2] R.S. Coulter and R.W. Matthews, On the number of distinct values of a class of functions over a finite field, Finite Fields Appl. 17 (2011), 220-224.
[3] G. Kyureghyan and F. Özbudak, Planar products of two linearized polynomials, submitted.
[4] G.M. Kyureghyan and A. Pott, Some theorems on planar mappings, Arithmetic of Finite Fields: Proceedings of the 2nd International Workshop, WAIFI 2008 (J. von zur Gathen, J.L. Imanã, and C.K. Koç, eds.), Lecture Notes in Computer Science, vol. 5130, 2008, pp. 117-122.
[5] G. Menichetti, On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field, J. Algebra 47 (1977), 400-410.
[6] W. Qiu, Z. Wang, G. Weng, and Q. Xiang, Pseudo-Paley graphs and skew Hadamard difference sets from presemifields, Des. Codes Cryptogr. 44 (2007), 49-62.

