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Abstract

We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well known
connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence
between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to
a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We
also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised
polynomials without asymptotic cost.

1. Introduction

Let F be a field with F [X] the ring of polynomials with coefficients from F in the indeter-
minate X. For polynomials f, f1, f2 ∈ F [X], let deg(f) be the degree of f and f1 ◦f2 denote the
composition f1(f2). Note that deg(f1 ◦ f2) = deg(f1) deg(f2). A polynomial f is called inde-
composable if for all f1, f2 ∈ F [X] satisfying f = f1 ◦ f2, then either deg(f1) = 1 or deg(f2) = 1.
A complete decomposition of f ∈ F [X] is any decomposition of f into indecomposable factors.
The problem of polynomial decomposition has been well studied with [20] providing a survey
of results. Generally, decomposition behaviour can been split into two cases: the characteristic
of F is zero or the degree of the polynomial is not divisible by the characteristic of F ; or F
is a finite field and the degree of the polynomial is divisible by the characteristic of the field.
In this article we consider two classes of polynomials over a finite field with degree divisible by
the characteristic. Determining results on decomposition behaviour for such polynomials is, in
general, less tractable.

Let Fq be the finite field of order q = pe for a prime p and F
∗
q be the set of non-zero elements of

Fq. Polynomials of Fq[X] with degree divisible by the characteristic p are called wild polynomials
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and those with degree not divisible by p are called tame polynomials, see [8, 9]. For a positive
integer s, a ps-polynomial L ∈ Fq[X] with deg(L) = pst is a polynomial of the shape

L(X) =

t
∑

i=0

aiX
psi

(1)

where ai ∈ Fq and at ∈ F
∗
q. For s = 1 these polynomials are known as linearised polynomials and

are precisely the linear transformations of Fq, see [14, Chapter 3]. Note that ps-polynomials are,
in a sense, the wildest polynomials, as the exponent of each term is a power of the characteristic.
Even more important here, the class of all ps-polynomials over Fq is closed under composition.

Let L ∈ Fq[X] be a ps-polynomial and d be a divisor of ps − 1. Then L(X) = XM(Xd)
for some M ∈ Fq[X]. The polynomial S(X) = XM d(X) is called a sub-linearised polynomial,
or, more precisely, a (ps, d)-polynomial and is said to be associated with L (simply, the poly-
nomials L and S are associated if and only if Ld(X) = S(Xd)). Note that ps-polynomials are
(ps, 1)-polynomials but the distinction is important when one considers the additional proper-
ties satisfied by ps-polynomials. However, a result of Henderson and Matthews [11] shows that
the compositional behaviour of (ps, d)-polynomials is in one-to-one correspondence with the
compositional behaviour of ps-polynomials. It follows that any results concerning the theory of
decompositions of ps-polynomials as ps-polynomials is relevant to (ps, d)-polynomials. Given our
aim is to determine the number of indecomposable (ps, d)-polynomials the distinction between
p-polynomials and ps-polynomials will be key in what follows. Results and further references on
(ps, d)-polynomials can be found in [11].

Section 2 gives an in-depth discussion of compositions of ps-polynomials, and hence (ps, d)-
polynomials. Utilising earlier work of Odoni [15], we then determine a formula for the number
of indecomposable ps-polynomials, and hence (ps, d)-polynomials, of given arbitrary degree. In
the final section, we consider Ritt’s Theorem and show how to extend current decomposition
algorithms to provide decompositions of (ps, d)-polynomials for no asymptotic cost.

2. The ring As and its properties

The following result connects the compositional behaviour of the two classes of polynomials
considered in this article.

Theorem 2.1 ([11, Theorem 4.1]). Let L be a ps-polynomial with associated (ps, d)-polynomial
S. The polynomial L = L1(L2) for pr-polynomials L1, L2 ∈ Fq[X] where r divides s and d di-
vides pr − 1 if and only if S = S1(S2) for (pr, d)-polynomials S1, S2 where Ld

i (X) = Si(X
d),

i = 1, 2. Also, Ld
1(L2(X)) = S1(S2(X

d)).

By appealing to this theorem, our results can be determined by simply considering ps-polynomials.
However, there is one distinction in the decomposition behaviour of ps-polynomials and (ps, d)-
polynomials important to our task: a ps-polynomial may be indecomposable as a ps-polynomial,
but still be decomposable as a pr-polynomial for some integer r dividing s. This can not be true
for the associated (ps, d)-polynomial unless d divides pr−1. We will return to this point later but
for now it is enough to realise that we need to consider the indecomposable ps-polynomials where
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the decomposition factors are restricted to the same set (in other words they are ps-polynomials
themselves).

Let As be the set of all ps-polynomials over Fq. It is easily seen that As is closed under
addition and composition of polynomials and that the triple (As,+, ◦) forms a non-commutative
ring. Throughout we use As to denote the ring (As,+, ◦). It is possible to relate decompositions
in As to factorisations in a non-commutative polynomial ring, known as a skew-polynomial ring.
This connection has been used elsewhere (e.g. [10]). Let σ be an automorphism of Fq. Then
we must have σ(a) = σs(a) = aps

for some integer s. Construct the skew-polynomial ring
Fq[X;σs] consisting of polynomials in the indeterminate X where for f, g ∈ Fq[X;σs] given by
f(X) =

∑t1
i=0 αiX

i, g(X) =
∑t2

i=0 βiX
i their addition is performed in the usual way, and their

multiplication is given by

f(X)g(X) =

t1+t2
∑

i=0

hiX
i

where hi =
∑

j+k=i αjσ
j
s(βk). It is easily seen that the mapping Φs : As → Fq[X,σs] given by

Φs(L(X)) = Φs

(

t
∑

i=0

aiX
psi

)

=

t
∑

i=0

aiX
i

is a ring isomorphism. In [16, 17] Ore considers more general skew polynomial rings than the
one described here and notes in [17] that A1 is isomorphic to Fq[X,σ1].

We give an exposition of the properties of As in terms of composition, as this enables direct
interpretation of compositional behaviour. We loosely follow the discussion given in [15] for
A1, as later we shall be interested in generalising a result from there. It should be noted that,
ignoring context, the general content of this section is not new and can be found in a number
of texts covering skew-polynomial rings, such as [12, Chapter 1].

The ring As has no zero divisors; if f ◦ g = 0 for f, g ∈ As, then at least one of f or g
must be identically zero. With respect to composition, the identity element is X and the units
(invertible elements) are aX where a ∈ F

∗
q. As As is a non-commutative ring we distinguish

between right and left ideals (it is easily seen that the right and left ideals of As are generally
distinct). In [17] a version of Euclid’s division algorithm is given that holds for a general skew-
polynomial ring, and so for As as well. Precisely, for L1, L2 ∈ As there exist f, g ∈ As where
L1(X) = f(X) ◦L2(X)+ g(X) and deg(g) < deg(L2). It follows that As is a left Principal Ideal
Domain (PID). We will mainly consider left ideals of As but note that as σs is an automorphism
of Fq, As is also a right PID [12, Proposition 1.1.14], and so our statements shall also hold for
right ideals of As. Throughout, an ideal is a left ideal unless otherwise stated.

We represent left ideals in As with angle brackets as follows:

〈L〉 = As ◦ L = {f ◦ L : f ∈ As}.

The ideal 〈L〉 is a maximal left ideal of As if and only if L ∈ As is indecomposable (in this case
there is also a maximal right ideal of As generated by L). Set k = gcd(s, e), and m = lcm(s, e) =
se/k. It is readily seen that the centre, Cs, of the ring As consists of polynomials of the shape

f(X) =

n
∑

i=0

aiX
pmi

3
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where ai ∈ Fpk . In fact, under the isomorphism Φs we see that Cs is indeed isomorphic to the

centre of Fq[X,σs], namely Fpk [Xm/s, σs]. The ring Fpk [Xm/s, σs] is in turn isomorphic to the

ordinary multiplicative polynomial ring Fpk [Y ] (Y = Xm/s). So Cs is a commutative PID whose
maximal ideals coincide with the irreducible polynomials of Fpk [Y ]. From [14, Theorem 3.25],
the number of monic irreducibles of degree d in Fpk [Y ] is given by

Npk(d) =
1

d

∑

i|d

µ(d/i)(pk)i (2)

where µ : N 7→ N is the Moebius function. Thus Npk(d) is the number of indecomposables of

degree pmd in Cs. This formula will be useful when determining the number of indecomposables
in As of given degree.

Next we consider the division rings constructed from As and Cs. We show that we have
a special case: the division ring constructed from As is a finite dimensional vector space over
its centre, and this centre is the division ring constructed from Cs. These constructions are
considered elsewhere [12] but are included here for the convenience of the reader and because
we work with the ring As (rather than Fq[X,σs]).

As Cs is an integral domain, the smallest field containing Cs is the field of fractions:

F = {g−1 ◦ f | f, g ∈ Cs, g 6= 0}. (3)

The addition of two elements of F is calculated in the normal way and as F is an ordinary
(commutative) field of fractions g−1 ◦ f = f ◦ g−1 (which is determined using the Euclidean
algorithm).

Embeddings of non-commutative rings into division rings do not always exist but we are
fortunate as for As this can be done. For any two non-zero elements f, g ∈ As, the intersection
of the ideals they generate, 〈f〉 ∩ 〈g〉, is non-empty as the existence of a left least common
composition (analogous to the least common multiple) for f and g is guaranteed by the left
Euclidean algorithm for As. Suppose h ∈ As is the unique monic polynomial of least degree
satisfying h = f1 ◦ f = g1 ◦ g for f1, g1 ∈ As. It follows that g ◦ f−1 = g−1

1 ◦ f1 (in this case
As is said to satisfy the Ore condition). Thus, as As has no zero divisors, we have satisfied the
conditions of [2, Theorem 1.2.2] and can construct the ring of fractions, D of As, given by

D = {g−1 ◦ f | f, g ∈ As, g 6= 0}. (4)

For g−1 ◦ f, g−1
1 ◦ f1 ∈ D, in the standard way

g−1 ◦ f + g−1
1 ◦ f1 = h−1 ◦ (h1 ◦ f + h2 ◦ f1)

where h = h1 ◦ g = h2 ◦ g1 for some h1, h2 ∈ As, and their composition is given by

(g−1 ◦ f) ◦ (g−1
1 ◦ f1) = (m ◦ g)−1 ◦ (m1 ◦ f1) (5)

where m ◦ f = m1 ◦ g1 for some m,m1 ∈ As. From this point, it is readily shown that these
operations are well defined.

We will need the following properties of D, F , As and Cs in Section 3. As we will be using
results from [18], we follow the definitions given therein.
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Lemma 2.2. Let F be the field of fractions of Cs (given by (3)) and D be the ring of fractions
of As (given by (4)). The following conditions hold for F , D, Cs and As.
(i) F is a global field and Cs a Dedekind domain.
(ii) D is a simple central F -algebra of dimension (e/k)2.
(iii) As is a maximal Cs-order in D.

Proof. (i) As F is isomorphic to Fpk(T ), from [18, Section 4e] F is a global field. As Cs is
isomorphic to Fpk [X] (a commutative PID), from [18, Section 4a] Cs is a Dedekind domain.

(ii) Following [18, Section 7b] we must show that D is a simple finite dimensional F -algebra
where F is the centre of D. We first show that F is the centre of D. Recall g−1 ◦ f = f ◦ g−1

for f, g ∈ Cs. For each h ∈ As, there exists h1 ∈ As such that h ◦ h1 ∈ Cs. Then for g ∈ Cs,
g−1 ◦ (h ◦ h1) = (h ◦ h1) ◦ g−1. Composing on the right with g and using the fact g ∈ Cs we
obtain

h ◦ h1 = g−1 ◦ (h ◦ h1) ◦ g

= (g−1 ◦ h) ◦ (g ◦ h1).

Now composing on the right with (g ◦ h1)
−1 we have h ◦ g−1 = g−1 ◦ h, and its inverse g ◦ h−1 =

h−1 ◦ g, for all g ∈ Cs and h ∈ As. From these identities and the multiplication rule for D (5)
it follows that F is the centre of D.

It is a simple matter to show that D is a left and right F -module. Also, from (5), a◦ (b◦c) =
(a ◦ b) ◦ c = b ◦ (a ◦ c) for all a ∈ F and b, c ∈ D. Therefore D is a F -algebra. As D is a division
ring it only contains trivial ideals and so D is a simple F -algebra.

We now proceed to show that D is a F -vector space of dimension (e/k)2. As we have noted
above, for every h ∈ As there exists h1 ∈ As such that h ◦ h1 ∈ Cs. So the elements of D may
be written as g−1 ◦ f where g ∈ Cs. It follows that the number of elements in a basis for D over
F is equal to the number of elements in a basis for As over Cs. Set δ = e/k. Take the normal

basis for Fq over Fpk generated by the element α ∈ Fq, namely (α, αpk
, . . . , αp(δ−1)k

). Then every
element β ∈ Fq has a unique representation

β = b0α + · · · + bδ−1α
p(δ−1)k

with b0, . . . , bδ−1 ∈ Fpk . Let S be the set

S = {αiX
psj

| 0 ≤ i < δ, 0 ≤ j < δ}.

Each element f ∈ As can be uniquely written as

f(X) = g0(X) ◦ α0X + · · · + gδ−1(X) ◦ αδ−1X
p(δ−1)k

where g0, . . . , gδ−1 ∈ Cs. Thus As is a free Cs-module with basis S containing δ2 = (e/k)2

elements.

(iii) Following the definition given in [18, Section 8] As is a Cs-order in the F -algebra D as As

is a finitely generated Cs-module such that D = F · As. Note that every element in D can be
written as (g−1

1 ◦f1)◦f where f ∈ As and f1, g1 ∈ Cs. It is now not difficult to see that As is the
integral closure of Cs in D and so is the unique maximal Cs-order in D (see [18, page 110]).

Note that in the above proof our methods have differed somewhat from those used in [15].
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3. Counting indecomposable sub-linearised polynomials

In [15] a formula is given for the number of indecomposable p-polynomials of given degree
over Fq. By extending these results to cover ps-polynomials we can apply Theorem 2.1 to give
a formula for the number of indecomposable (ps, d)-polynomials of given degree over Fq where s
is the least positive integer such that d divides ps − 1 (we can say this without loss of generality
as in the cases where d does divide pr − 1 for a proper divisor r of s we can instead consider S
to be a (pr, d)-polynomial). We remind the reader that we are concerned with the ring As and
when we say L ∈ As is indecomposable we mean L is indecomposable over As.

Theorem 3.1. Let Fq be a finite field of order q = pe, k = (e, s), and

Nt = #{L ∈ As : deg(L) = pst and L is indecomposable in As}.

Then N1 = q(q − 1) and for t ≥ 2,

Nt =
(q − 1)(qt − 1)

t(ptk − 1)

∑

i|t

µ(t/i)(pk)i.

Further, if s is the least positive integer such that d divides ps − 1, then the number of indecom-
posable (ps, d)-polynomials of degree pst is given by Nt.

Proof. If t = 1, then for all a0 ∈ Fq and for all a1 ∈ F
∗
q, L(X) = a1X

ps
+ a0X is obviously

indecomposable (as ps-polynomials) so N1 = q(q−1). For the remainder of the proof we assume
t ≥ 2. Let L ∈ As be indecomposable with degree pst. Let f ∈ As be the unique monic
polynomial of least degree such that h = f ◦ L ∈ Cs. Then h is indecomposable over Cs (as
otherwise we would contradict our assumption that L is indecomposable and f has least degree).
So to count the number of indecomposables L ∈ As of degree pst, we can count the number of
indecomposables h ∈ Cs generated in this way (which in turn shall mean determining their
degrees) and the number of distinct L ∈ As that generate the same polynomial h. To do this
we use properties of certain ideals of As and Cs generated from an indecomposable L ∈ As.

As L ∈ As is indecomposable, 〈L〉 is a maximal left ideal of As. The elements of the quotient
ring As/〈L〉 are

f(Z) =
t−1
∑

i=0

biZ
psi

where bi ∈ Fq and the degree of f is less than the degree of L. Therefore, As/〈L〉 is a Fq-vector
space of dimension t with qt elements.

Put p = 〈L〉 ∩ Cs. Then p is a maximal ideal of Cs containing polynomials f ◦ L for f ∈ As

such that f ◦ L ∈ Cs. Let h ∈ As be the unique monic polynomial of least degree such that
h ∈ p. Then As p = pAs = 〈h〉. The elements of the annihilator, P = annAs(As/〈L〉), of the
As-module As/〈L〉, are given by

P = {f ◦ g : f ∈ As, g ∈ Cs, where g = g1 ◦ L for g1 ∈ As}.

It follows that P is a two-sided maximal ideal of As contained in 〈L〉. Note also p = P∩Cs and
P = pAs = 〈h〉. By [18, Theorem 22.15] and Lemma 2.2 above, each maximal left ideal of As

6
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determines a unique (two-sided) prime ideal P and vice versa (as As is a PID, its prime ideals
and maximal ideals coincide).

It is established in the proof of [18, Theorem 22.15] that As/P is a simple artinian ring. In
our case it is also finite. From [18, Theorem 7.4,7.24] it follows that As/P is isomorphic to an
algebra of κ× κ matrices over the finite field FQ of Q elements, Mκ(FQ) (here κ is the capacity
of P as defined on page 213 of [18]). On the other hand, As/P is isomorphic to (As/〈L〉)κ (see
the proof of [18, Corollary 24.8]). As As/〈L〉 has qt elements, we have

(As : P) = (As : 〈L〉)κ = (qt)κ = Qκ2

where (G : H) denotes the index of a subgroup H of an additive abelian group G where G/H is
finite. From pages 212 and 213 of [18] the inertial degree of P is the integer f satisfying

(As : P) = (Cs : p)f.

From page 215 of [18] f = κe/k and it now follows (Cs : p) = ptk. Put δ = e/k. From the proof
of part (ii) of Lemma 2.2, As is a free Cs-module of rank δ2 so that (As : pAs) = (Cs : p)δ

2
.

Since pAs = P we have
(As : P) = (Cs : p)δ

2
.

Therefore f = δ2, κ = δ and Q = ptk. Now everything is in place to complete the proof.
By inspection of the above arguments we see that

Nt =
∑

(Cs:p)=pkt

N(t,k,p)

where N(t,k,p) is the number of indecomposables L ∈ As such that deg(L) = pst (t > 1) and
Cs ∩ 〈L〉 = p. Recall p generates the unique maximal two-sided ideal of As, namely P = pAs.
Since maximal two-sided ideals P in As correspond to maximal left ideals in As/P and units
are not counted in As/P, we obtain

N(t,k,p) = (q − 1)#{maximal left ideals in Mκ(Fpkt)}.

Since N(t,k,p) does not depend on the choice of p, we can consider instead Nt = (q − 1)GtMt

where
Gt = #{maximal ideals p ⊂ Cs where (Cs : p) = pkt}

and
Mt = #{maximal left ideals in Mκ(Fpkt)}.

Since Gt is the number of indecomposables g ∈ Cs of degree pmt it can be determined using
Equation (2) (it is easily seen that if g ∈ Cs with deg(g) = pmt, then there are (pk)t elements
in the factor ring Cs/〈g〉). Put Λ = Mκ(Fpkt). Then Λ is a simple central Fpkt-algebra. The
maximal ideals of Λ are generated by M ∈ Λ with rank(M) = (κ−1) or, equivalently, the (κ−1)-
dimensional subspaces of the vector space (Fpkt)κ. It follows that Mt = (ptkκ − 1)/(ptk − 1).
The value of Nt is now determined. That the number of indecomposable (ps, d)-polynomials of
degree pst is given by Nt follows from Theorem 2.1.

It is easily checked that for p-polynomials this result coincides with [15, Theorem 1]. We
have confirmed the result for small values of p, e, s and t through direct computation using the
algebra package MAGMA [1].

7
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4. Tame behaviour of two wild classes

For the field of complex numbers, Ritt [19] has shown that the complete decomposition of
a polynomial is unique in the following sense: if we have two complete decompositions of a
polynomial f

f = f1 ◦ · · · ◦ fm

= g1 ◦ · · · ◦ gn,

then m = n and deg(fi) = deg(gπ(i)) for some permutation π of {1, . . . ,m}. Engstrom [6] and
Levi [13] extended this to any field of characteristic zero. The behaviour for polynomials over
a finite field is less simple and has generally been split into two cases. Fried and MacRae [7]
established that Ritt’s Theorem holds for tame polynomials over a finite field Fq. By giving
an example, Dorey and Whaples [5] established that Ritt’s Theorem does not hold for wild
polynomials (the example used a class of wild polynomials not considered here).

While it is true that Ritt’s Theorem does not hold for wild polynomials in general, the
two classes considered in this article, ps-polynomials and (ps, d)-polynomials, do satisfy Ritt’s
Theorem. It is implicit in the work of Ore [16, 17] that As satisfies Ritt’s Theorem (as Ore
shows that As is a PID). Now Theorem 2.1 tells us that (ps, d)-polynomials must also satisfy
Ritt’s Theorem. It is conceivable that no other classes of wild polynomials not contained in
these classes satisfy Ritt’s Theorem.

The polynomial decomposition problem introduced by Ritt now receives attention mainly
through the development of efficient decomposition algorithms. Algorithms for decomposing
ps-polynomials and (ps, d)-polynomials can be developed by extending existing algorithms. We
end the article by outlining how this may be achieved without asymptotic cost. We consider the
following two decomposition problems from [3].

The complete decomposition problem: given a f ∈ Fq[X], find indecomposable f1, . . . , fm ∈
Fq[X] such that f = f1 ◦ · · · ◦ fm.

The bi-decomposition problem: given a f ∈ Fq[X] and n ∈ N where n < deg(f), determine
if there exist f1, f2 ∈ Fq[X] such that f = f1 ◦ f2 and deg(f2) = n, and if so, find f1, f2.

An algorithm for the complete factorisation of f ∈ Fq[X,σs] is given in [10, Section 3] and
an algorithm for the bi-factorisation of f ∈ Fq[X,σs] is given in [10, Section 4]. In [3] it is
shown how these results can be extended to (p, d)-polynomials using Theorem 2.1. Given the
isomorphism between As and Fq[X,σs], it is clear that the scope of Giesbrecht’s algorithms can
be extended to decompose ps-polynomials and (ps, d)-polynomials. We give simple descriptions
of algorithms for our decomposition problems in the case of (ps, d)-polynomials.

Algorithm 1: Complete decomposition
Input: A (ps, d)-polynomial S ∈ Fq[X] and the integers s and d.
Output: Indecomposable (pr, d)-polynomials S1, . . . , Sk ∈ Fq[X] where r divides s and S =
S1 ◦ · · · ◦ Sk.

1. Determine the least positive integer r such that r divides s and d divides
pr − 1.

2. Convert S to a pr-polynomial L.

8
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3. Convert L to a polynomial f ∈ Fq[X,σr] using the isomorphism Φr.

4. Find irreducibles f1, . . . , fk ∈ Fq[y, σr] satisfying f = f1 · · · fk using the
algorithm from Section 3 of [10].

5. Convert each fi ∈ Fq[y, σr] into a pr-polynomial using Φ−1
r .

6. Convert each pr-polynomial into a (pr, d)-polynomial.

Algorithm 2: Bi-decomposition

Input: A (ps, d)-polynomial S ∈ Fq[X], say S(X) = X(
∑m

i=0 aiX
(psi−1))d, the integers s and d,

and an integer n = pt.

Output: A pair of (pk, d)-polynomials S1, S2 ∈ Fq[X] where k divides s, d divides pk − 1 and
S = S1 ◦ S2, or a message that no such bi-decomposition exists.

1. Determine the integer k = gcd(sm, t). If d does not divide pk − 1, then
return “S has no such bi-decomposition”.

2. Convert S to a pk-polynomial L.

3. Convert L to a polynomial f ∈ Fq[y, σk] using the isomorphism Φk.

4. Use the bi-factorisation algorithm from Section 4 of [10] to determine if
there exist f1, f2 ∈ Fq[X,σk] satisfying f = f1f2 and deg(f2) = t. If no
suitable polynomials exist, then return “S has no such bi-decomposition”.

5. Convert f1, f2 ∈ Fq[X,σk] to pk-polynomials L1, L2 using Φ−1
k .

6. Convert L1, L2 to (pk, d)-polynomials S1, S2. Return S1, S2.

The conversion algorithms from a (ps, d)-polynomials to a ps-polynomial and the reverse are
found in [3]. The conversion algorithm from a ps-polynomial L to a polynomial f ∈ Fq[X,σs]
is O(m) where deg(L) = pms (i.e. L has m terms). The reverse conversion has the same cost.
We note that step 1 in the first algorithm and steps 1 and 2 in the second algorithm are the
only additional steps required which affect the complexity analysis from [3]. Step 1 (Algorithm
1) has cost O(s log s) while step 1 (Algorithm 2) has cost bounded by O(Cost for gcd(sm, t)).
Combining our arguments with those of [3] shows that the extension of the deterministic algo-
rithms for factorisation in skew polynomial rings Fq[X,σs] from [10] to (ps, d)-polynomials is
asymptotically free. As reported in [4], these algorithms have been successfully implemented.
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