
ON THE NUMBER OF DISTINCT VALUES OF A CLASS OF

FUNCTIONS OVER A FINITE FIELD

ROBERT S. COULTER AND REX W. MATTHEWS

Abstract. Several authors have recently shown that a planar function over a
finite field of order q must have at least (q + 1)/2 distinct values. In this note
this result is extended by weakening the hypothesis significantly and strength-
ening the conclusion. We also give an algorithm for determining whether a
given bivariate polynomial φ(X, Y ) can be written as f(X +Y )−f(X)−f(Y )
for some polynomial f . Using the ideas of the algorithm, we then show a
Dembowski-Ostrom polynomial is planar over a finite field of order q if and
only if it yields exactly (q + 1)/2 distinct values under evaluation; that is, it
meets the lower bound of the image size of a planar function.

1. Introduction and notation

Throughout Fq denotes the finite field of order q = pe, p a prime. The classical
notation Fq [X ] and Fq [X,Y ] is used to denote the rings of polynomials over Fq

in X , and X and Y , respectively. The standard trace mapping from Fq to Fp

is denoted Tr. Let ω be a primitive pth root of unity. Recall that the canonical
additive character, χ1, of Fq is defined by χ1(x) = ωTr(x) for any x ∈ Fq , and that
all additive characters of Fq are given by χh(x) = χ1(hx) for any h ∈ Fq . For any
polynomial f ∈ Fq [X ], the Weil sum of f under χh is denoted by Sh(f); that is,

Sh(f) =
∑

x∈Fq

χh(f(x)).

Let f ∈ Fq [X ]. Define the difference operator, ∆f (X,Y ), to be the bivariate
polynomial given by ∆f (X,Y ) = f(X + Y ) − f(X) − f(Y ). Let V (f) denote the
number of distinct values f(x), x ∈ Fq . The polynomial f is called a permutation
polynomial over Fq if V (f) = q. The polynomial f is called a planar function
over Fq if for every non-zero a ∈ Fq , the polynomial ∆f (X, a) is a permutation
polynomial over Fq . It is easily seen that no function can be planar over a field of
characteristic 2. Planar functions were introduced by Dembowski and Ostrom [6],
where they were used to construct affine planes. They are also closely connected
to commutative semifields [3] and difference sets [7].

For n ∈ N and p prime, define wp(n) to be the p-weight of n; that is, if n =∑
i aip

i is the base p expansion of n, then wp(n) =
∑

i ai. A polynomial f ∈ Fq [X ]
is called a linearised polynomial if each non-zero term Xn of f satisfies wp(n) = 1.
Under evaluation, linearised polynomials induce homomorphisms of the additive
group of the field, and any such homomorphism can be represented by a linearised
polynomial. Consequently, they have been studied in great depth, see [11] for more
information.

A polynomial f ∈ Fq [X ] is called a Dembowski-Ostrom (or DO) polynomial if
each non-zero term Xn of f satisfies wp(n) = 2. When q is odd, DO polynomials
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induce even functions under evaluation and so V (f) ≤ (q + 1)/2 in such cases.
Dembowski-Ostrom polynomials play a significant role in the study of planar func-
tions. It was conjectured that any planar function over a finite field was equivalent
to a DO polynomial, give or take a linearised polynomial. Though the conjecture
was shown to be false in characteristic 3 by the authors [5], it remains open for
all larger characteristics. The significance of planar DO polynomials was further
underlined in [3], where it was shown that there is a one-to-one correspondence
between commutative presemifields and planar DO polynomials.

Recently, Kyureghyan and Pott [10], and Qiu et al [12] have independently shown
that if f is a planar function over Fq , then V (f) ≥ (q + 1)/2. We show this is, in
fact, a consequence of a far weaker condition, a condition which is necessary but
clearly not sufficient for a polynomial f to be planar, see Section 2. Next, we give
an algorithm for determining whether a given polynomial φ(X,Y ) satisfies φ = ∆f

for some polynomial f . The paper ends by showing that V (f) = (q + 1)/2 is a
necessary and sufficient condition for a DO polynomial to be planar over Fq .

2. The number of distinct images

Theorem 1. Let f ∈ Fq [X ] be a polynomial for which |Sh(f)| = q1/2 for all h 6= 0.
Then M1(f) ≥ 1 and

M1(f) +M2(f) ≥
q + 1

2
,

where Mr(f) is the number of y ∈ Fq having r pre-images under the function
induced by f . Moreover, equality holds if and only if M1(f) = 3M3(f) + 1 and
Mr(f) = 0 for all r ≥ 4.

Proof. Define N(f) to be the number of (x, y) ∈ Fq × Fq satisfying f(x) = f(y).
For ease of notation, set d = Degree(f). The following identities are clear:

(i) V (f) =
∑d

r=1Mr(f).

(ii) q =
∑d

r=1 rMr(f).

(iii) N(f) =
∑d

r=1 r
2Mr(f).

It follows from the orthogonality relations of characters that

qN(f) =
∑

h∈Fq

∑

x∈Fq

∑

y∈Fq

χ1(h(f(x) − f(y)))

=
∑

h∈Fq

∑

x∈Fq

χh(f(x))
∑

y∈Fq

χh(−f(y))

=
∑

h∈Fq

∑

x∈Fq

χh(f(x))
∑

y∈Fq

χh(f(y))

=
∑

h∈Fq

|Sh(f)|2.

Now suppose |Sh(f)| = q1/2 for all h 6= 0. Immediately N(f) = 2q− 1. Combining
identities (ii) and (iii) yields

M1(f) − 1 =

d∑

r=3

(r2 − 2r)Mr(f),
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from which M1(f) ≥ 1 is forced. Further, M1(f) − 1 ≥
∑d

r=3 rMr(f), so that

2M1(f) + 2M2(f) − 1 ≥

d∑

r=1

rMr(f) = q,

establishing the claim. Note for equality to hold, Mr(f) = 0 for r > 3, and so
M1(f) − 1 = 3M3(f), completing the proof. �

By [4], Theorem 2.3, a polynomial f ∈ Fq [X ] is planar over Fq if and only if

|Sh(f(x) + λx)| = q1/2 for all h, λ ∈ Fq , h 6= 0. The theorem therefore holds
for planar functions, in particular. That the hypothesis of Theorem 1 holds for
functions other than planar functions is easily seen. By [11], Theorem 5.30, any
monomial Xn for which Gcd(n, p2 − 1) = 2 satisfies the hypothesis of Theorem
1 over Fp2 . However, the monomial Xn is planar over Fp2 if and only if n ≡ 2
(mod p2 − 1) or n ≡ 2p (mod p2 − 1), see [2]. A direct count for functions on
prime fields, the only case for which planar functions have been classified, gives
additional proof that Theorem 1 holds for functions other than planar functions.
Since any planar function over Fp is necessarily equivalent to a quadratic (see any
of [8], [9], [13]), the number of planar functions over Fp is p2(p− 1). On the other
hand, Cavior [1] shows that the total number T of functions f on Fp for which

|Sh(f)| = p1/2 is given by

T =
2p · p!

2(p−1)/2
.

Since V (f) ≥M1(f) +M2(f), the following corollary is immediate.

Corollary 2. Let f ∈ Fq [X ] be a polynomial for which |Sh(f)| = q1/2 for all
h 6= 0. Then V (f) ≥ (q + 1)/2, with equality holding if and only if M1(f) = 1,
M2(f) = (q − 1)/2, and Mr(f) = 0 for all r ≥ 3.

Note that when equality holds in the corollary, without loss of generality, the
polynomial f ∈ Fq [X ] can be assumed to satisfy f(0) = 0 and to act 2 to 1 on the
non-zero elements of Fq . Such a function is called a 2-1 function. We shall return
to such functions at the end of the following section.

3. The difference operator and planar DO polynomials

For n ∈ N and p prime, define vp(n) to be the p-order of n. Any term XtY s ∈
Fq [X,Y ] is defined to be p-admissable if vp(s + t) = min(vp(s), vp(t)). We say
φ ∈ Fq [X,Y ] is p-admissable if each non-zero term of φ is p-admissable.

Define an equivalence relation ≈ on Fq [X ] by f ≈ g if and only if f − g is a
linearised poynomial. We say f is L-normalised if f contains no linearised term.
For any f ∈ Fq [X ] there exists a unique L-normalised polynomial g with f ≈ g.
Clearly f is linearised if and only if f ≈ 0. Equivalently, ∆f (X,Y ) = 0 if and only
if f ≈ 0.

If f(X) =
∑

i ciX
i has no term Xt with t ≡ −1 (mod p), then define the

antiderivative Af(X) to be

Af(X) =
∑

i

ciX
i+1/(i+ 1).

Given any polynomial f , set g(X) = f ′(X), the derivative of f . Then Ag is the
unique L-normalised polynomial satisfying f ≈ Ag.

We are interested in solving the following problem:
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Let φ ∈ Fq [X,Y ]. Describe an algorithm which will determine
whether there exists a polynomial f ∈ Fq [X ] with ∆f = φ. If
this returns TRUE then return f and indicate whether f is a DO
polynomial.

We begin by presenting an algorithm which produces a candidate for such an f .
Given φ ∈ Fq [X,Y ].

Step 1. If φ(X,Y ) 6= φ(Y,X), then return FALSE.
Step 2. Write φ(X,Y ) as a sum ψi(X,Y ) where ψi is the sum of the non-zero terms

of φ whose total degree satisfies p-order i. Define φi by ψi = φpi

i .
Step 3. For each i > 0, if φi has a non-constant term with X-degree or Y -degree 0,

then return FALSE.
Step 4. For each i > 0, if φi is not p-admissable, then return FALSE.
Step 5. For each i, let Y gi(X) be the sum of the terms whose degree in Y is 1. Let

fi(X) be the unique L-normalised antiderivative of gi. Verify fi(X + Y )−
fi(X) − fi(Y ) = φi(X,Y ). If not, return FALSE.

Step 6. Set f(X) =
∑
fpi

i . Return TRUE. Note that f is a DO polynomial if and
only if gi(X) is a linearised polynomial for each i.

Justification of algorithm: Exit points returning FALSE correspond to nec-
essary conditions. If we write fi(X+Y ) =

∑
i,j gi,j(X)Y j , then gi(X) = gi,1(X) =

f ′

i(X). From the conditions on fi(X) it follows that fi(X) = Agi(X), which
uniquely determines f . If f is a DO polynomial, then for each i, fi(X) = XLi(X),
where Li(X) is linearised. Hence fi(X + Y ) − fi(X) − fi(Y ) = (X + Y )Li(X +
Y ) −XLi(X) − Y Li(Y ), and the coefficient of Y is Li(X). If gi(X) is linearised,
then fi(X) = Agi(X) = Xgi(X) and f is a DO polynomial.

The ideas laid out in the algorithm and its justification lead us to a short proof
of the following theorem.

Theorem 3. Let f ∈ Fq [X ] be a Dembowski-Ostrom polynomial. Then f is planar
over Fq if and only if f is a 2-1 function. Equivalently, f is planar over Fq if and
only if V (f) = (q + 1)/2.

Proof. Write f(X) as
∑

i f
pi

i (X). Then each fi(X) has the shape XLi(X), with
Li(X) a linearised polynomial. Adopting the notation of the algorithm, set φ = ∆f .
So φi(X,Y ) = Y Li(X) +XLi(Y ). Now make the change of variable X = U + V ,
Y = U − V . Then

φi(X,Y ) = (U − V )Li(U + V ) + (U + V )Li(U − V )

= 2(ULi(U) − V Li(V ))

= 2(fi(U) − fi(V )),

and so φ(X,Y ) = 2(f(U) − f(V )).
The planarity condition is that φ(X,Y ) has all its zeros on the curve XY = 0.

In (U, V ) coordinates this translates to all zeros of f(U)− f(V ) lying on the curve
U2 − V 2 = 0, or that f(U) = f(V ) implies U = V or U = −V . Since f is an even
function, this implies that f is a 2-1 function.

Conversely. if f is a 2-1 function, we need to show that φ(X,Y ) has all its zeros
on XY = 0. It suffices to show φ(X,Y ) has 2q − 1 zeros or that f(U) − f(V )
has 2q − 1 zeros. But if f(U) = c, c 6= 0, then f(−U) = c, so c has exactly two



F
in

it
e 

F
ie

ld
s 

A
p

p
l. 

17
 (

20
11

),
 2

20
-2

24

ON THE NUMBER OF DISTINCT VALUES OF A CLASS OF FUNCTIONS OVER A FINITE FIELD5

pre-images. Consequently f(U) − f(V ) has 1 + 2((q − 1)/2) = 2q − 1 zeros, as
required. �

We note that each fi may be written as X2hi(X
2) where hi(X

2) = Li(X)/X ,
so fi(X) = gi(X

2) with gi(X) = Xhi(X). Then f(X) = g(X2) where g(X) =
∑

i g
pi

i (X). If g(X) is a permutation polynomial, then f is 2-1, but this is not a
necessary condition. Let ζ be a primitive element of F25 . Set fa(X) = X6 + 2aX2

where a = ζ4i+1 for some integer i, so ga(X) = X3 + 2aX . Then fa is planar over
F25 but ga(X) is not a permutation polynomial.

Added in proof: We have been informed Theorem 3 has also been established
recently by G. Weng and X. Zeng using methods distinct from ours.
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