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ABSTRACT. Several authors have recently shown that a planar function over a
finite field of order ¢ must have at least (q + 1)/2 distinct values. In this note
this result is extended by weakening the hypothesis significantly and strength-
ening the conclusion. We also give an algorithm for determining whether a
given bivariate polynomial ¢(X,Y’) can be written as f(X +Y)— f(X)— f(Y)
for some polynomial f. Using the ideas of the algorithm, we then show a
Dembowski-Ostrom polynomial is planar over a finite field of order ¢ if and
only if it yields exactly (¢ 4+ 1)/2 distinct values under evaluation; that is, it
meets the lower bound of the image size of a planar function.

1. INTRODUCTION AND NOTATION

Throughout F, denotes the finite field of order ¢ = p°, p a prime. The classical
notation F,[X] and F,[X,Y] is used to denote the rings of polynomials over F,
in X, and X and Y, respectively. The standard trace mapping from F, to F,
is denoted Tr. Let w be a primitive pth root of unity. Recall that the canonical
additive character, x1, of F, is defined by x1(z) = W@ for any = € F,, and that
all additive characters of IF, are given by xp(z) = x1(hx) for any h € F,. For any
polynomial f € F,[X], the Weil sum of f under x;, is denoted by Sy (f); that is,

Su(f) =D xu(f (@),

z€F,

Let f € Fy[X]. Define the difference operator, Ay(X,Y), to be the bivariate
polynomial given by Af(X,Y) = f(X +Y) — f(X) — f(Y). Let V(f) denote the
number of distinct values f(x), € F;. The polynomial f is called a permutation
polynomial over Fy if V(f) = ¢g. The polynomial f is called a planar function
over F, if for every non-zero a € F,, the polynomial A¢(X,a) is a permutation
polynomial over F,. It is easily seen that no function can be planar over a field of
characteristic 2. Planar functions were introduced by Dembowski and Ostrom [6],
where they were used to construct affine planes. They are also closely connected
to commutative semifields [3] and difference sets [7].

For n € N and p prime, define w,(n) to be the p-weight of n; that is, if n =
>, a;p® is the base p expansion of n, then wy,(n) =3, a;. A polynomial f € F,[X]
is called a linearised polynomial if each non-zero term X" of f satisfies wy(n) = 1.
Under evaluation, linearised polynomials induce homomorphisms of the additive
group of the field, and any such homomorphism can be represented by a linearised
polynomial. Consequently, they have been studied in great depth, see [11] for more
information.

A polynomial f € F,[X] is called a Dembowski-Ostrom (or DO) polynomial if
each non-zero term X" of f satisfies w,(n) = 2. When ¢ is odd, DO polynomials
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induce even functions under evaluation and so V(f) < (¢ + 1)/2 in such cases.
Dembowski-Ostrom polynomials play a significant role in the study of planar func-
tions. It was conjectured that any planar function over a finite field was equivalent
to a DO polynomial, give or take a linearised polynomial. Though the conjecture
was shown to be false in characteristic 3 by the authors [5], it remains open for
all larger characteristics. The significance of planar DO polynomials was further
underlined in [3], where it was shown that there is a one-to-one correspondence
between commutative presemifields and planar DO polynomials.

Recently, Kyureghyan and Pott [10], and Qiu et al [12] have independently shown
that if f is a planar function over F,, then V(f) > (¢ + 1)/2. We show this is, in
fact, a consequence of a far weaker condition, a condition which is necessary but
clearly not sufficient for a polynomial f to be planar, see Section 2. Next, we give
an algorithm for determining whether a given polynomial ¢(X,Y) satisfies ¢ = Ay
for some polynomial f. The paper ends by showing that V(f) = (¢ +1)/2 is a
necessary and sufficient condition for a DO polynomial to be planar over F,.

2. THE NUMBER OF DISTINCT IMAGES

Theorem 1. Let f € F,[X] be a polynomial for which |Sy(f)| = ¢'/? for all h # 0.
Then My(f) > 1 and

qg+1

2

where M, (f) is the number of y € Fy having r pre-images under the function
induced by f. Moreover, equality holds if and only if My(f) = 3Ms(f) + 1 and
M. (f) =0 for all r > 4.

Mi(f) + Ma(f) >

Proof. Define N(f) to be the number of (z,y) € F, x F, satisfying f(z) = f(y).
For ease of notation, set d = Degree(f). The following identities are clear:

(i) V(f) =0, M.(f).
(i) ¢ =0 rM.(f).
(iii) N(f) =S8 r2M.(f).

It follows from the orthogonality relations of characters that

aN(H) =D > Y xalh(f(@) - f)

helF, z€F, yeF,

S S @) 3 x(—fw)

heF, z€F, y€F,

=Y Y @) Y )
heF, z€F, y€Fq

= 3" [Sn(h)P
heF,

Now suppose |Sy,(f)| = ¢'/? for all h # 0. Immediately N(f) = 2¢ — 1. Combining
identities (ii) and (iii) yields
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from which M;(f) > 1 is forced. Further, M7(f) — 1> Zf:g rM,(f), so that

d
My (f) +2Ms(f) = 1> rM.(f) =g,
r=1

establishing the claim. Note for equality to hold, M,(f) = 0 for r > 3, and so
Mi(f) —1=3Ms3(f), completing the proof. O

By [4], Theorem 2.3, a polynomial f € F,[X] is planar over F, if and only if
|Sh(f(z) + \x)| = ¢*/? for all h,A € F,, h # 0. The theorem therefore holds
for planar functions, in particular. That the hypothesis of Theorem 1 holds for
functions other than planar functions is easily seen. By [11], Theorem 5.30, any
monomial X" for which Ged(n,p? — 1) = 2 satisfies the hypothesis of Theorem
1 over F,». However, the monomial X" is planar over F,. if and only if n = 2
(mod p? — 1) or n = 2p (mod p? — 1), see [2]. A direct count for functions on
prime fields, the only case for which planar functions have been classified, gives
additional proof that Theorem 1 holds for functions other than planar functions.
Since any planar function over F), is necessarily equivalent to a quadratic (see any
of 8], [9], [13]), the number of planar functions over F,, is p*(p — 1). On the other
hand, Cavior [1] shows that the total number T of functions f on F, for which
|Sh(f)| = p*/? is given by

2p - p!
T oo(-1/2°
Since V(f) > Mi(f) + Ma(f), the following corollary is immediate.

Corollary 2. Let f € F,[X] be a polynomial for which |Sn(f)| = ¢'/? for all
h #0. Then V(f) > (¢ + 1)/2, with equality holding if and only if M1(f) = 1,
Msy(f)=(¢g—1)/2, and M.(f) =0 for all r > 3.

Note that when equality holds in the corollary, without loss of generality, the
polynomial f € F,[X] can be assumed to satisfy f(0) =0 and to act 2 to 1 on the
non-zero elements of ;. Such a function is called a 2-1 function. We shall return
to such functions at the end of the following section.

3. THE DIFFERENCE OPERATOR AND PLANAR DO POLYNOMIALS

For n € N and p prime, define v,(n) to be the p-order of n. Any term X'Y* €
F,[X,Y] is defined to be p-admissable if v,(s +t) = min(v,(s),vp(t)). We say
¢ € F [X,Y] is p-admissable if each non-zero term of ¢ is p-admissable.

Define an equivalence relation =~ on F,[X]| by f = g if and only if f —¢g is a
linearised poynomial. We say f is L-normalised if f contains no linearised term.
For any f € F,[X] there exists a unique L-normalised polynomial ¢ with f = g.
Clearly f is linearised if and only if f = 0. Equivalently, A;(X,Y) = 0 if and only
if f=~0.

If f(X) = > ,¢X" has no term X* with ¢ = —1 (mod p), then define the
antiderivative 2 f(X) to be

AFX) =) X (i 4 1),
Given any polynomial f, set g(X) = f/(X), the derivative of f. Then “4g is the

unique L-normalised polynomial satisfying f ~ “g¢.
We are interested in solving the following problem:
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Let ¢ € F,[X,Y]. Describe an algorithm which will determine
whether there exists a polynomial f € F,[X] with Ay = ¢. If
this returns TRUE then return f and indicate whether f is a DO
polynomial.

We begin by presenting an algorithm which produces a candidate for such an f.
Given ¢ € F,[X,Y].
Step 1. If ¢(X,Y) # ¢(Y, X), then return FALSE.
Step 2. Write ¢(X,Y") as a sum (X, Y’) where 1; is the sum of the non-zero terms
of ¢ whose total degree satisfies p-order i. Define ¢; by ¢; = ¢ "
Step 3. For each i > 0, if ¢; has a non-constant term with X-degree or Y-degree 0,
then return FALSE.
Step 4. For each i > 0, if ¢; is not p-admissable, then return FALSE.
Step 5. For each 7, let Yg;(X) be the sum of the terms whose degree in Y is 1. Let
fi(X) be the unique L-normalised antiderivative of g;. Verify f;(X +Y) —
[i(X) = fi(Y) = ¢:(X,Y). If not, return FALSE.
Step 6. Set f(X)=>" ff Return TRUE. Note that f is a DO polynomial if and
only if g;(X) is a linearised polynomial for each 3.

Justification of algorithm: Exit points returning FALSE correspond to nec-
essary conditions. If we write f;(X +Y) =3, ; ¢;;(X)Y7, then g;(X) = gi,1(X) =
f/(X). From the conditions on f;(X) it follows that f;(X) = “g;(X), which
uniquely determines f. If f is a DO polynomial, then for each i, f;(X) = X L;(X),
where L;(X) is linearised. Hence f;(X +Y) — fi(X) — fi(Y) = (X + YV)L;(X +
Y) - XL;(X)—YL;(Y), and the coeflicient of Y is L;(X). If g;(X) is linearised,
then fi(X) = 4g;(X) = Xg;(X) and f is a DO polynomial.

The ideas laid out in the algorithm and its justification lead us to a short proof
of the following theorem.

Theorem 3. Let f € F,[X] be a Dembowski-Ostrom polynomial. Then f is planar
over F, if and only if f is a 2-1 function. Equivalently, f is planar over Fy if and

only if V(f) = (q + 1)/2.

Proof. Write f(X) as 3, f¥ (X). Then each f;(X) has the shape X L;(X), with
L;(X) alinearised polynomial. Adopting the notation of the algorithm, set ¢ = Ay.
So ¢;(X,Y) =YL;(X)+ XL;(Y). Now make the change of variable X =U +V,
Y =U —V. Then

6i(X,Y) = (U= V)Li(U + V) + (U +V)Li(U = V)
= 2UL;(U) — VLi(V))
= 2(£;(U) — f:(V)),

and s0 6(X,Y) = 2(f(U) — F(V)).

The planarity condition is that ¢(X,Y’) has all its zeros on the curve XY = 0.
In (U, V) coordinates this translates to all zeros of f(U) — f(V) lying on the curve
U? —~V2=0,or that f(U) = f(V) implies U = V or U = —V. Since f is an even
function, this implies that f is a 2-1 function.

Conversely. if f is a 2-1 function, we need to show that ¢(X,Y’) has all its zeros
on XY = 0. It suffices to show ¢(X,Y’) has 2¢ — 1 zeros or that f(U) — f(V)
has 2¢ — 1 zeros. But if f(U) = ¢, ¢ # 0, then f(—=U) = ¢, so ¢ has exactly two
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pre-images. Consequently f(U) — f(V) has 1+ 2((¢ — 1)/2) = 2q — 1 zeros, as
required. ([

We note that each f; may be written as X2h;(X?) where h;(X?) = L;(X)/X,
so fi(X) = ¢i(X?) with ¢;(X) = Xh;(X). Then f(X) = g(X?) where g(X) =
> gfl(X). If g(X) is a permutation polynomial, then f is 2-1, but this is not a
necessary condition. Let ¢ be a primitive element of Fa5. Set f,(X) = X+ 2aX?
where a = ¢4+ for some integer i, so g,(X) = X3 + 2aX. Then f, is planar over
Fa5 but g,(X) is not a permutation polynomial.

Added in proof: We have been informed Theorem 3 has also been established
recently by G. Weng and X. Zeng using methods distinct from ours.
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