ON THE NUMBER OF DISTINCT VALUES OF A CLASS OF fUNCTIONS OVER A FINITE FIELD

ROBERT S. COULTER AND REX W. MATTHEWS

Abstract

Several authors have recently shown that a planar function over a finite field of order q must have at least $(q+1) / 2$ distinct values. In this note this result is extended by weakening the hypothesis significantly and strengthening the conclusion. We also give an algorithm for determining whether a given bivariate polynomial $\phi(X, Y)$ can be written as $f(X+Y)-f(X)-f(Y)$ for some polynomial f. Using the ideas of the algorithm, we then show a Dembowski-Ostrom polynomial is planar over a finite field of order q if and only if it yields exactly $(q+1) / 2$ distinct values under evaluation; that is, it meets the lower bound of the image size of a planar function.

1. Introduction and notation

Throughout \mathbb{F}_{q} denotes the finite field of order $q=p^{e}, p$ a prime. The classical notation $\mathbb{F}_{q}[X]$ and $\mathbb{F}_{q}[X, Y]$ is used to denote the rings of polynomials over \mathbb{F}_{q} in X, and X and Y, respectively. The standard trace mapping from \mathbb{F}_{q} to \mathbb{F}_{p} is denoted Tr. Let ω be a primitive p th root of unity. Recall that the canonical additive character, χ_{1}, of \mathbb{F}_{q} is defined by $\chi_{1}(x)=\omega^{\operatorname{Tr}(x)}$ for any $x \in \mathbb{F}_{q}$, and that all additive characters of \mathbb{F}_{q} are given by $\chi_{h}(x)=\chi_{1}(h x)$ for any $h \in \mathbb{F}_{q}$. For any polynomial $f \in \mathbb{F}_{q}[X]$, the Weil sum of f under χ_{h} is denoted by $S_{h}(f)$; that is,

$$
S_{h}(f)=\sum_{x \in \mathbb{F}_{q}} \chi_{h}(f(x)) .
$$

Let $f \in \mathbb{F}_{q}[X]$. Define the difference operator, $\Delta_{f}(X, Y)$, to be the bivariate polynomial given by $\Delta_{f}(X, Y)=f(X+Y)-f(X)-f(Y)$. Let $V(f)$ denote the number of distinct values $f(x), x \in \mathbb{F}_{q}$. The polynomial f is called a permutation polynomial over \mathbb{F}_{q} if $V(f)=q$. The polynomial f is called a planar function over \mathbb{F}_{q} if for every non-zero $a \in \mathbb{F}_{q}$, the polynomial $\Delta_{f}(X, a)$ is a permutation polynomial over \mathbb{F}_{q}. It is easily seen that no function can be planar over a field of characteristic 2. Planar functions were introduced by Dembowski and Ostrom [6], where they were used to construct affine planes. They are also closely connected to commutative semifields [3] and difference sets [7].

For $n \in \mathbb{N}$ and p prime, define $w_{p}(n)$ to be the p-weight of n; that is, if $n=$ $\sum_{i} a_{i} p^{i}$ is the base p expansion of n, then $w_{p}(n)=\sum_{i} a_{i}$. A polynomial $f \in \mathbb{F}_{q}[X]$ is called a linearised polynomial if each non-zero term X^{n} of f satisfies $w_{p}(n)=1$. Under evaluation, linearised polynomials induce homomorphisms of the additive group of the field, and any such homomorphism can be represented by a linearised polynomial. Consequently, they have been studied in great depth, see [11] for more information.

A polynomial $f \in \mathbb{F}_{q}[X]$ is called a Dembowski-Ostrom (or $D O$) polynomial if each non-zero term X^{n} of f satisfies $w_{p}(n)=2$. When q is odd, DO polynomials
induce even functions under evaluation and so $V(f) \leq(q+1) / 2$ in such cases. Dembowski-Ostrom polynomials play a significant role in the study of planar functions. It was conjectured that any planar function over a finite field was equivalent to a DO polynomial, give or take a linearised polynomial. Though the conjecture was shown to be false in characteristic 3 by the authors [5], it remains open for all larger characteristics. The significance of planar DO polynomials was further underlined in [3], where it was shown that there is a one-to-one correspondence between commutative presemifields and planar DO polynomials.

Recently, Kyureghyan and Pott [10], and Qiu et al [12] have independently shown that if f is a planar function over \mathbb{F}_{q}, then $V(f) \geq(q+1) / 2$. We show this is, in fact, a consequence of a far weaker condition, a condition which is necessary but clearly not sufficient for a polynomial f to be planar, see Section 2. Next, we give an algorithm for determining whether a given polynomial $\phi(X, Y)$ satisfies $\phi=\Delta_{f}$ for some polynomial f. The paper ends by showing that $V(f)=(q+1) / 2$ is a necessary and sufficient condition for a DO polynomial to be planar over \mathbb{F}_{q}.

2. The number of distinct images

Theorem 1. Let $f \in \mathbb{F}_{q}[X]$ be a polynomial for which $\left|S_{h}(f)\right|=q^{1 / 2}$ for all $h \neq 0$. Then $M_{1}(f) \geq 1$ and

$$
M_{1}(f)+M_{2}(f) \geq \frac{q+1}{2}
$$

where $M_{r}(f)$ is the number of $y \in \mathbb{F}_{q}$ having r pre-images under the function induced by f. Moreover, equality holds if and only if $M_{1}(f)=3 M_{3}(f)+1$ and $M_{r}(f)=0$ for all $r \geq 4$.

Proof. Define $N(f)$ to be the number of $(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}$ satisfying $f(x)=f(y)$. For ease of notation, set $d=\operatorname{Degree}(f)$. The following identities are clear:
(i) $V(f)=\sum_{r=1}^{d} M_{r}(f)$.
(ii) $q=\sum_{r=1}^{d} r M_{r}(f)$.
(iii) $N(f)=\sum_{r=1}^{d} r^{2} M_{r}(f)$.

It follows from the orthogonality relations of characters that

$$
\begin{aligned}
q N(f) & =\sum_{h \in \mathbb{F}_{q}} \sum_{x \in \mathbb{F}_{q}} \sum_{y \in \mathbb{F}_{q}} \chi_{1}(h(f(x)-f(y))) \\
& =\sum_{h \in \mathbb{F}_{q}} \sum_{x \in \mathbb{F}_{q}} \chi_{h}(f(x)) \sum_{y \in \mathbb{F}_{q}} \chi_{h}(-f(y)) \\
& =\sum_{h \in \mathbb{F}_{q}} \sum_{x \in \mathbb{F}_{q}} \chi_{h}(f(x)) \sum_{y \in \mathbb{F}_{q}} \overline{\chi_{h}(f(y))} \\
& =\sum_{h \in \mathbb{F}_{q}}\left|S_{h}(f)\right|^{2} .
\end{aligned}
$$

Now suppose $\left|S_{h}(f)\right|=q^{1 / 2}$ for all $h \neq 0$. Immediately $N(f)=2 q-1$. Combining identities (ii) and (iii) yields

$$
M_{1}(f)-1=\sum_{r=3}^{d}\left(r^{2}-2 r\right) M_{r}(f)
$$

from which $M_{1}(f) \geq 1$ is forced. Further, $M_{1}(f)-1 \geq \sum_{r=3}^{d} r M_{r}(f)$, so that

$$
2 M_{1}(f)+2 M_{2}(f)-1 \geq \sum_{r=1}^{d} r M_{r}(f)=q
$$

establishing the claim. Note for equality to hold, $M_{r}(f)=0$ for $r>3$, and so $M_{1}(f)-1=3 M_{3}(f)$, completing the proof.

By [4], Theorem 2.3, a polynomial $f \in \mathbb{F}_{q}[X]$ is planar over \mathbb{F}_{q} if and only if $\left|S_{h}(f(x)+\lambda x)\right|=q^{1 / 2}$ for all $h, \lambda \in \mathbb{F}_{q}, h \neq 0$. The theorem therefore holds for planar functions, in particular. That the hypothesis of Theorem 1 holds for functions other than planar functions is easily seen. By [11], Theorem 5.30, any monomial X^{n} for which $\operatorname{Gcd}\left(n, p^{2}-1\right)=2$ satisfies the hypothesis of Theorem 1 over $\mathbb{F}_{p^{2}}$. However, the monomial X^{n} is planar over $\mathbb{F}_{p^{2}}$ if and only if $n \equiv 2$ $\left(\bmod p^{2}-1\right)$ or $n \equiv 2 p\left(\bmod p^{2}-1\right)$, see $[2]$. A direct count for functions on prime fields, the only case for which planar functions have been classified, gives additional proof that Theorem 1 holds for functions other than planar functions. Since any planar function over \mathbb{F}_{p} is necessarily equivalent to a quadratic (see any of [8], [9], [13]), the number of planar functions over \mathbb{F}_{p} is $p^{2}(p-1)$. On the other hand, Cavior [1] shows that the total number T of functions f on \mathbb{F}_{p} for which $\left|S_{h}(f)\right|=p^{1 / 2}$ is given by

$$
T=\frac{2 p \cdot p!}{2^{(p-1) / 2}}
$$

Since $V(f) \geq M_{1}(f)+M_{2}(f)$, the following corollary is immediate.
Corollary 2. Let $f \in \mathbb{F}_{q}[X]$ be a polynomial for which $\left|S_{h}(f)\right|=q^{1 / 2}$ for all $h \neq 0$. Then $V(f) \geq(q+1) / 2$, with equality holding if and only if $M_{1}(f)=1$, $M_{2}(f)=(q-1) / 2$, and $M_{r}(f)=0$ for all $r \geq 3$.

Note that when equality holds in the corollary, without loss of generality, the polynomial $f \in \mathbb{F}_{q}[X]$ can be assumed to satisfy $f(0)=0$ and to act 2 to 1 on the non-zero elements of \mathbb{F}_{q}. Such a function is called a 2-1 function. We shall return to such functions at the end of the following section.

3. The difference operator and planar DO polynomials

For $n \in \mathbb{N}$ and p prime, define $v_{p}(n)$ to be the p-order of n. Any term $X^{t} Y^{s} \in$ $\mathbb{F}_{q}[X, Y]$ is defined to be p-admissable if $v_{p}(s+t)=\min \left(v_{p}(s), v_{p}(t)\right)$. We say $\phi \in \mathbb{F}_{q}[X, Y]$ is p-admissable if each non-zero term of ϕ is p-admissable.

Define an equivalence relation \approx on $\mathbb{F}_{q}[X]$ by $f \approx g$ if and only if $f-g$ is a linearised poynomial. We say f is L-normalised if f contains no linearised term. For any $f \in \mathbb{F}_{q}[X]$ there exists a unique L-normalised polynomial g with $f \approx g$. Clearly f is linearised if and only if $f \approx 0$. Equivalently, $\Delta_{f}(X, Y)=0$ if and only if $f \approx 0$.

If $f(X)=\sum_{i} c_{i} X^{i}$ has no term X^{t} with $t \equiv-1(\bmod p)$, then define the antiderivative ${ }^{A} f(X)$ to be

$$
{ }^{A} f(X)=\sum_{i} c_{i} X^{i+1} /(i+1)
$$

Given any polynomial f, set $g(X)=f^{\prime}(X)$, the derivative of f. Then ${ }^{A} g$ is the unique L-normalised polynomial satisfying $f \approx{ }^{A} g$.

We are interested in solving the following problem:

Let $\phi \in \mathbb{F}_{q}[X, Y]$. Describe an algorithm which will determine whether there exists a polynomial $f \in \mathbb{F}_{q}[X]$ with $\Delta_{f}=\phi$. If this returns TRUE then return f and indicate whether f is a DO polynomial.
We begin by presenting an algorithm which produces a candidate for such an f. Given $\phi \in \mathbb{F}_{q}[X, Y]$.
Step 1. If $\phi(X, Y) \neq \phi(Y, X)$, then return FALSE.
Step 2. Write $\phi(X, Y)$ as a sum $\psi_{i}(X, Y)$ where ψ_{i} is the sum of the non-zero terms of ϕ whose total degree satisfies p-order i. Define ϕ_{i} by $\psi_{i}=\phi_{i}^{p^{i}}$.
Step 3. For each $i>0$, if ϕ_{i} has a non-constant term with X-degree or Y-degree 0 , then return FALSE.
Step 4. For each $i>0$, if ϕ_{i} is not p-admissable, then return FALSE.
Step 5. For each i, let $Y g_{i}(X)$ be the sum of the terms whose degree in Y is 1 . Let $f_{i}(X)$ be the unique L-normalised antiderivative of g_{i}. Verify $f_{i}(X+Y)-$ $f_{i}(X)-f_{i}(Y)=\phi_{i}(X, Y)$. If not, return FALSE.
Step 6. Set $f(X)=\sum f_{i}^{p^{i}}$. Return TRUE. Note that f is a DO polynomial if and only if $g_{i}(X)$ is a linearised polynomial for each i.
Justification of algorithm: Exit points returning FALSE correspond to necessary conditions. If we write $f_{i}(X+Y)=\sum_{i, j} g_{i, j}(X) Y^{j}$, then $g_{i}(X)=g_{i, 1}(X)=$ $f_{i}^{\prime}(X)$. From the conditions on $f_{i}(X)$ it follows that $f_{i}(X)={ }^{A} g_{i}(X)$, which uniquely determines f. If f is a DO polynomial, then for each $i, f_{i}(X)=X L_{i}(X)$, where $L_{i}(X)$ is linearised. Hence $f_{i}(X+Y)-f_{i}(X)-f_{i}(Y)=(X+Y) L_{i}(X+$ $Y)-X L_{i}(X)-Y L_{i}(Y)$, and the coefficient of Y is $L_{i}(X)$. If $g_{i}(X)$ is linearised, then $f_{i}(X)={ }^{A} g_{i}(X)=X g_{i}(X)$ and f is a DO polynomial.

The ideas laid out in the algorithm and its justification lead us to a short proof of the following theorem.

Theorem 3. Let $f \in \mathbb{F}_{q}[X]$ be a Dembowski-Ostrom polynomial. Then f is planar over \mathbb{F}_{q} if and only if f is a 2-1 function. Equivalently, f is planar over \mathbb{F}_{q} if and only if $V(f)=(q+1) / 2$.

Proof. Write $f(X)$ as $\sum_{i} f_{i}^{p^{i}}(X)$. Then each $f_{i}(X)$ has the shape $X L_{i}(X)$, with $L_{i}(X)$ a linearised polynomial. Adopting the notation of the algorithm, set $\phi=\Delta_{f}$. So $\phi_{i}(X, Y)=Y L_{i}(X)+X L_{i}(Y)$. Now make the change of variable $X=U+V$, $Y=U-V$. Then

$$
\begin{aligned}
\phi_{i}(X, Y) & =(U-V) L_{i}(U+V)+(U+V) L_{i}(U-V) \\
& =2\left(U L_{i}(U)-V L_{i}(V)\right) \\
& =2\left(f_{i}(U)-f_{i}(V)\right)
\end{aligned}
$$

and so $\phi(X, Y)=2(f(U)-f(V))$.
The planarity condition is that $\phi(X, Y)$ has all its zeros on the curve $X Y=0$. In (U, V) coordinates this translates to all zeros of $f(U)-f(V)$ lying on the curve $U^{2}-V^{2}=0$, or that $f(U)=f(V)$ implies $U=V$ or $U=-V$. Since f is an even function, this implies that f is a 2-1 function.

Conversely. if f is a 2-1 function, we need to show that $\phi(X, Y)$ has all its zeros on $X Y=0$. It suffices to show $\phi(X, Y)$ has $2 q-1$ zeros or that $f(U)-f(V)$ has $2 q-1$ zeros. But if $f(U)=c, c \neq 0$, then $f(-U)=c$, so c has exactly two
pre-images. Consequently $f(U)-f(V)$ has $1+2((q-1) / 2)=2 q-1$ zeros, as required.

We note that each f_{i} may be written as $X^{2} h_{i}\left(X^{2}\right)$ where $h_{i}\left(X^{2}\right)=L_{i}(X) / X$, so $f_{i}(X)=g_{i}\left(X^{2}\right)$ with $g_{i}(X)=X h_{i}(X)$. Then $f(X)=g\left(X^{2}\right)$ where $g(X)=$ $\sum_{i} g_{i}^{p^{i}}(X)$. If $g(X)$ is a permutation polynomial, then f is $2-1$, but this is not a necessary condition. Let ζ be a primitive element of \mathbb{F}_{25}. Set $f_{a}(X)=X^{6}+2 a X^{2}$ where $a=\zeta^{4 i+1}$ for some integer i, so $g_{a}(X)=X^{3}+2 a X$. Then f_{a} is planar over \mathbb{F}_{25} but $g_{a}(X)$ is not a permutation polynomial.

Added in proof: We have been informed Theorem 3 has also been established recently by G. Weng and X. Zeng using methods distinct from ours.

References

[1] S.R. Cavior, Exponential sums related to polynomials over the GF(p), Proc. Amer. Math. Soc. 15 (1964), 175-178.
[2] R.S. Coulter, The classification of planar monomials over fields of prime square order, Proc. Amer. Math. Soc. 134 (2006), 3373-3378.
[3] R.S. Coulter and M. Henderson, Commutative presemifields and semifields, Adv. Math. 217 (2008), 282-304.
[4] R.S. Coulter and R.W. Matthews, Bent polynomials over finite fields, Bull. Austral. Math. Soc. 56 (1997), 429-437.
[5] R.S. Coulter and R.W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr. 10 (1997), 167-184.
[6] P. Dembowski and T.G. Ostrom, Planes of order n with collineation groups of order n^{2}, Math. Z. 103 (1968), 239-258.
[7] C. Ding and J. Yuan, A family of skew Hadamard difference sets, J. Combin. Theory Ser. A 113 (2006), 1526-1535
[8] D. Gluck, A note on permutation polynomials and finite geometries, Discrete Math. 80 (1990), 97-100.
[9] Y. Hiramine, A conjecture on affine planes of prime order, J. Combin. Theory Ser. A 52 (1989), 44-50.
[10] G.M. Kyureghyan and A. Pott, Some theorems on planar mappings, Arithmetic of Finite Fields: Proceedings of the 2nd International Workshop, WAIFI 2008 (J. von zur Gathen, J.L. Imanã, and C.K. Koç, eds.), Lecture Notes in Computer Science, vol. 5130, 2008, pp. 117-122.
[11] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., vol. 20, AddisonWesley, Reading, 1983, (now distributed by Cambridge University Press).
[12] W. Qiu, Z. Wang, G. Weng, and Q. Xiang, Pseudo-Paley graphs and skew Hadamard difference sets from presemifields, Des. Codes Cryptogr. 44 (2007), 49-62.
[13] L. Rónyai and T. Szőnyi, Planar functions over finite fields, Combinatorica 9 (1989), 315320.
(R.S. Coulter) Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
(R.W. Matthews) 6 Earl St., Sandy Bay, Tasmania 7005, Australia

