ON THE NUMBER OF DISTINCT VALUES OF A CLASS OF FUNCTIONS OVER A FINITE FIELD

ROBERT S. COULTER AND REX W. MATTHEWS

ABSTRACT. Several authors have recently shown that a planar function over a finite field of order q must have at least (q + 1)/2 distinct values. In this note this result is extended by weakening the hypothesis significantly and strengthening the conclusion. We also give an algorithm for determining whether a given bivariate polynomial $\phi(X, Y)$ can be written as f(X+Y) - f(X) - f(Y) for some polynomial f. Using the ideas of the algorithm, we then show a Dembowski-Ostrom polynomial is planar over a finite field of order q if and only if it yields exactly (q + 1)/2 distinct values under evaluation; that is, it meets the lower bound of the image size of a planar function.

1. INTRODUCTION AND NOTATION

Throughout \mathbb{F}_q denotes the finite field of order $q = p^e$, p a prime. The classical notation $\mathbb{F}_q[X]$ and $\mathbb{F}_q[X, Y]$ is used to denote the rings of polynomials over \mathbb{F}_q in X, and X and Y, respectively. The standard trace mapping from \mathbb{F}_q to \mathbb{F}_p is denoted Tr. Let ω be a primitive pth root of unity. Recall that the canonical additive character, χ_1 , of \mathbb{F}_q is defined by $\chi_1(x) = \omega^{\operatorname{Tr}(x)}$ for any $x \in \mathbb{F}_q$, and that all additive characters of \mathbb{F}_q are given by $\chi_h(x) = \chi_1(hx)$ for any $h \in \mathbb{F}_q$. For any polynomial $f \in \mathbb{F}_q[X]$, the Weil sum of f under χ_h is denoted by $S_h(f)$; that is,

$$S_h(f) = \sum_{x \in \mathbb{F}_q} \chi_h(f(x)).$$

Let $f \in \mathbb{F}_q[X]$. Define the difference operator, $\Delta_f(X,Y)$, to be the bivariate polynomial given by $\Delta_f(X,Y) = f(X+Y) - f(X) - f(Y)$. Let V(f) denote the number of distinct values $f(x), x \in \mathbb{F}_q$. The polynomial f is called a *permutation* polynomial over \mathbb{F}_q if V(f) = q. The polynomial f is called a *planar function* over \mathbb{F}_q if for every non-zero $a \in \mathbb{F}_q$, the polynomial $\Delta_f(X, a)$ is a permutation polynomial over \mathbb{F}_q . It is easily seen that no function can be planar over a field of characteristic 2. Planar functions were introduced by Dembowski and Ostrom [6], where they were used to construct affine planes. They are also closely connected to commutative semifields [3] and difference sets [7].

For $n \in \mathbb{N}$ and p prime, define $w_p(n)$ to be the p-weight of n; that is, if $n = \sum_i a_i p^i$ is the base p expansion of n, then $w_p(n) = \sum_i a_i$. A polynomial $f \in \mathbb{F}_q[X]$ is called a *linearised* polynomial if each non-zero term X^n of f satisfies $w_p(n) = 1$. Under evaluation, linearised polynomials induce homomorphisms of the additive group of the field, and any such homomorphism can be represented by a linearised polynomial. Consequently, they have been studied in great depth, see [11] for more information.

A polynomial $f \in \mathbb{F}_q[X]$ is called a *Dembowski-Ostrom (or DO)* polynomial if each non-zero term X^n of f satisfies $w_p(n) = 2$. When q is odd, DO polynomials induce even functions under evaluation and so $V(f) \leq (q+1)/2$ in such cases. Dembowski-Ostrom polynomials play a significant role in the study of planar functions. It was conjectured that any planar function over a finite field was equivalent to a DO polynomial, give or take a linearised polynomial. Though the conjecture was shown to be false in characteristic 3 by the authors [5], it remains open for all larger characteristics. The significance of planar DO polynomials was further underlined in [3], where it was shown that there is a one-to-one correspondence between commutative presemifields and planar DO polynomials.

Recently, Kyureghyan and Pott [10], and Qiu *et al* [12] have independently shown that if f is a planar function over \mathbb{F}_q , then $V(f) \geq (q+1)/2$. We show this is, in fact, a consequence of a far weaker condition, a condition which is necessary but clearly not sufficient for a polynomial f to be planar, see Section 2. Next, we give an algorithm for determining whether a given polynomial $\phi(X, Y)$ satisfies $\phi = \Delta_f$ for some polynomial f. The paper ends by showing that V(f) = (q+1)/2 is a necessary and sufficient condition for a DO polynomial to be planar over \mathbb{F}_q .

2. The number of distinct images

Theorem 1. Let $f \in \mathbb{F}_q[X]$ be a polynomial for which $|S_h(f)| = q^{1/2}$ for all $h \neq 0$. Then $M_1(f) \geq 1$ and

$$M_1(f) + M_2(f) \ge \frac{q+1}{2},$$

where $M_r(f)$ is the number of $y \in \mathbb{F}_q$ having r pre-images under the function induced by f. Moreover, equality holds if and only if $M_1(f) = 3M_3(f) + 1$ and $M_r(f) = 0$ for all $r \ge 4$.

Proof. Define N(f) to be the number of $(x, y) \in \mathbb{F}_q \times \mathbb{F}_q$ satisfying f(x) = f(y). For ease of notation, set d = Degree(f). The following identities are clear:

- (i) $V(f) = \sum_{r=1}^{d} M_r(f).$ (ii) $q = \sum_{r=1}^{d} r M_r(f).$ (iii) $N(f) = \sum_{r=1}^{d} r^2 M_r(f).$

It follows from the orthogonality relations of characters that

$$qN(f) = \sum_{h \in \mathbb{F}_q} \sum_{x \in \mathbb{F}_q} \sum_{y \in \mathbb{F}_q} \chi_1(h(f(x) - f(y)))$$

$$= \sum_{h \in \mathbb{F}_q} \sum_{x \in \mathbb{F}_q} \chi_h(f(x)) \sum_{y \in \mathbb{F}_q} \chi_h(-f(y))$$

$$= \sum_{h \in \mathbb{F}_q} \sum_{x \in \mathbb{F}_q} \chi_h(f(x)) \sum_{y \in \mathbb{F}_q} \overline{\chi_h(f(y))}$$

$$= \sum_{h \in \mathbb{F}} |S_h(f)|^2.$$

Now suppose $|S_h(f)| = q^{1/2}$ for all $h \neq 0$. Immediately N(f) = 2q - 1. Combining identities (ii) and (iii) yields

$$M_1(f) - 1 = \sum_{r=3}^{d} (r^2 - 2r) M_r(f),$$

from which $M_1(f) \ge 1$ is forced. Further, $M_1(f) - 1 \ge \sum_{r=3}^d r M_r(f)$, so that

$$2M_1(f) + 2M_2(f) - 1 \ge \sum_{r=1}^d rM_r(f) = q,$$

establishing the claim. Note for equality to hold, $M_r(f) = 0$ for r > 3, and so $M_1(f) - 1 = 3M_3(f)$, completing the proof.

By [4], Theorem 2.3, a polynomial $f \in \mathbb{F}_q[X]$ is planar over \mathbb{F}_q if and only if $|S_h(f(x) + \lambda x)| = q^{1/2}$ for all $h, \lambda \in \mathbb{F}_q$, $h \neq 0$. The theorem therefore holds for planar functions, in particular. That the hypothesis of Theorem 1 holds for functions other than planar functions is easily seen. By [11], Theorem 5.30, any monomial X^n for which $\operatorname{Gcd}(n, p^2 - 1) = 2$ satisfies the hypothesis of Theorem 1 over \mathbb{F}_{p^2} . However, the monomial X^n is planar over \mathbb{F}_{p^2} if and only if $n \equiv 2 \pmod{p^2 - 1}$ or $n \equiv 2p \pmod{p^2 - 1}$, see [2]. A direct count for functions on prime fields, the only case for which planar functions other than planar functions. Since any planar function over \mathbb{F}_p is necessarily equivalent to a quadratic (see any of [8], [9], [13]), the number of planar functions over \mathbb{F}_p is $p^2(p-1)$. On the other hand, Cavior [1] shows that the total number T of functions f on \mathbb{F}_p for which $|S_h(f)| = p^{1/2}$ is given by

$$T = \frac{2p \cdot p!}{2^{(p-1)/2}}.$$

Since $V(f) \ge M_1(f) + M_2(f)$, the following corollary is immediate.

Corollary 2. Let $f \in \mathbb{F}_q[X]$ be a polynomial for which $|S_h(f)| = q^{1/2}$ for all $h \neq 0$. Then $V(f) \geq (q+1)/2$, with equality holding if and only if $M_1(f) = 1$, $M_2(f) = (q-1)/2$, and $M_r(f) = 0$ for all $r \geq 3$.

Note that when equality holds in the corollary, without loss of generality, the polynomial $f \in \mathbb{F}_q[X]$ can be assumed to satisfy f(0) = 0 and to act 2 to 1 on the non-zero elements of \mathbb{F}_q . Such a function is called a 2-1 function. We shall return to such functions at the end of the following section.

3. The difference operator and planar DO polynomials

For $n \in \mathbb{N}$ and p prime, define $v_p(n)$ to be the *p*-order of n. Any term $X^t Y^s \in \mathbb{F}_q[X, Y]$ is defined to be *p*-admissable if $v_p(s + t) = \min(v_p(s), v_p(t))$. We say $\phi \in \mathbb{F}_q[X, Y]$ is *p*-admissable if each non-zero term of ϕ is *p*-admissable.

Define an equivalence relation \approx on $\mathbb{F}_q[X]$ by $f \approx g$ if and only if f - g is a linearised poynomial. We say f is *L*-normalised if f contains no linearised term. For any $f \in \mathbb{F}_q[X]$ there exists a unique *L*-normalised polynomial g with $f \approx g$. Clearly f is linearised if and only if $f \approx 0$. Equivalently, $\Delta_f(X, Y) = 0$ if and only if $f \approx 0$.

If $f(X) = \sum_{i} c_i X^i$ has no term X^t with $t \equiv -1 \pmod{p}$, then define the *antiderivative* ${}^A f(X)$ to be

$${}^{A}f(X) = \sum_{i} c_{i} X^{i+1} / (i+1).$$

Given any polynomial f, set g(X) = f'(X), the derivative of f. Then ${}^{A}g$ is the unique *L*-normalised polynomial satisfying $f \approx {}^{A}g$.

We are interested in solving the following problem:

Let $\phi \in \mathbb{F}_q[X, Y]$. Describe an algorithm which will determine whether there exists a polynomial $f \in \mathbb{F}_q[X]$ with $\Delta_f = \phi$. If this returns TRUE then return f and indicate whether f is a DO polynomial.

We begin by presenting an algorithm which produces a candidate for such an f. Given $\phi \in \mathbb{F}_q[X, Y]$.

- Step 1. If $\phi(X, Y) \neq \phi(Y, X)$, then return FALSE.
- Step 2. Write $\phi(X, Y)$ as a sum $\psi_i(X, Y)$ where ψ_i is the sum of the non-zero terms of ϕ whose total degree satisfies *p*-order *i*. Define ϕ_i by $\psi_i = \phi_i^{p^i}$.
- Step 3. For each i > 0, if ϕ_i has a non-constant term with X-degree or Y-degree 0, then return FALSE.
- Step 4. For each i > 0, if ϕ_i is not *p*-admissable, then return FALSE.
- Step 5. For each *i*, let $Yg_i(X)$ be the sum of the terms whose degree in *Y* is 1. Let $f_i(X)$ be the unique *L*-normalised antiderivative of g_i . Verify $f_i(X + Y) f_i(X) f_i(Y) = \phi_i(X, Y)$. If not, return FALSE.
- Step 6. Set $f(X) = \sum f_i^{p^i}$. Return TRUE. Note that f is a DO polynomial if and only if $g_i(X)$ is a linearised polynomial for each i.

Justification of algorithm: Exit points returning FALSE correspond to necessary conditions. If we write $f_i(X+Y) = \sum_{i,j} g_{i,j}(X)Y^j$, then $g_i(X) = g_{i,1}(X) = f'_i(X)$. From the conditions on $f_i(X)$ it follows that $f_i(X) = {}^Ag_i(X)$, which uniquely determines f. If f is a DO polynomial, then for each i, $f_i(X) = XL_i(X)$, where $L_i(X)$ is linearised. Hence $f_i(X+Y) - f_i(X) - f_i(Y) = (X+Y)L_i(X+Y) - XL_i(X) - YL_i(Y)$, and the coefficient of Y is $L_i(X)$. If $g_i(X)$ is linearised, then $f_i(X) = {}^Ag_i(X) = Xg_i(X)$ and f is a DO polynomial.

The ideas laid out in the algorithm and its justification lead us to a short proof of the following theorem.

Theorem 3. Let $f \in \mathbb{F}_q[X]$ be a Dembowski-Ostrom polynomial. Then f is planar over \mathbb{F}_q if and only if f is a 2-1 function. Equivalently, f is planar over \mathbb{F}_q if and only if V(f) = (q+1)/2.

Proof. Write f(X) as $\sum_i f_i^{p^i}(X)$. Then each $f_i(X)$ has the shape $XL_i(X)$, with $L_i(X)$ a linearised polynomial. Adopting the notation of the algorithm, set $\phi = \Delta_f$. So $\phi_i(X,Y) = YL_i(X) + XL_i(Y)$. Now make the change of variable X = U + V, Y = U - V. Then

$$\phi_i(X,Y) = (U-V)L_i(U+V) + (U+V)L_i(U-V) = 2(UL_i(U) - VL_i(V)) = 2(f_i(U) - f_i(V)),$$

and so $\phi(X, Y) = 2(f(U) - f(V)).$

The planarity condition is that $\phi(X, Y)$ has all its zeros on the curve XY = 0. In (U, V) coordinates this translates to all zeros of f(U) - f(V) lying on the curve $U^2 - V^2 = 0$, or that f(U) = f(V) implies U = V or U = -V. Since f is an even function, this implies that f is a 2-1 function.

Conversely. if f is a 2-1 function, we need to show that $\phi(X, Y)$ has all its zeros on XY = 0. It suffices to show $\phi(X, Y)$ has 2q - 1 zeros or that f(U) - f(V)has 2q - 1 zeros. But if $f(U) = c, c \neq 0$, then f(-U) = c, so c has exactly two pre-images. Consequently f(U) - f(V) has 1 + 2((q-1)/2) = 2q - 1 zeros, as required.

We note that each f_i may be written as $X^2h_i(X^2)$ where $h_i(X^2) = L_i(X)/X$, so $f_i(X) = g_i(X^2)$ with $g_i(X) = Xh_i(X)$. Then $f(X) = g(X^2)$ where $g(X) = \sum_i g_i^{p^i}(X)$. If g(X) is a permutation polynomial, then f is 2-1, but this is not a necessary condition. Let ζ be a primitive element of \mathbb{F}_{25} . Set $f_a(X) = X^6 + 2aX^2$ where $a = \zeta^{4i+1}$ for some integer i, so $g_a(X) = X^3 + 2aX$. Then f_a is planar over \mathbb{F}_{25} but $g_a(X)$ is not a permutation polynomial.

Added in proof: We have been informed Theorem 3 has also been established recently by G. Weng and X. Zeng using methods distinct from ours.

References

- S.R. Cavior, Exponential sums related to polynomials over the GF(p), Proc. Amer. Math. Soc. 15 (1964), 175–178.
- R.S. Coulter, The classification of planar monomials over fields of prime square order, Proc. Amer. Math. Soc. 134 (2006), 3373–3378.
- [3] R.S. Coulter and M. Henderson, Commutative presemifields and semifields, Adv. Math. 217 (2008), 282–304.
- [4] R.S. Coulter and R.W. Matthews, Bent polynomials over finite fields, Bull. Austral. Math. Soc. 56 (1997), 429–437.
- [5] R.S. Coulter and R.W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr. 10 (1997), 167–184.
- [6] P. Dembowski and T.G. Ostrom, Planes of order n with collineation groups of order n², Math. Z. 103 (1968), 239–258.
- [7] C. Ding and J. Yuan, A family of skew Hadamard difference sets, J. Combin. Theory Ser. A 113 (2006), 1526–1535.
- [8] D. Gluck, A note on permutation polynomials and finite geometries, Discrete Math. 80 (1990), 97–100.
- Y. Hiramine, A conjecture on affine planes of prime order, J. Combin. Theory Ser. A 52 (1989), 44–50.
- [10] G.M. Kyureghyan and A. Pott, Some theorems on planar mappings, Arithmetic of Finite Fields: Proceedings of the 2nd International Workshop, WAIFI 2008 (J. von zur Gathen, J.L. Imanã, and C.K. Koç, eds.), Lecture Notes in Computer Science, vol. 5130, 2008, pp. 117–122.
- [11] R. Lidl and H. Niederreiter, *Finite Fields*, Encyclopedia Math. Appl., vol. 20, Addison-Wesley, Reading, 1983, (now distributed by Cambridge University Press).
- [12] W. Qiu, Z. Wang, G. Weng, and Q. Xiang, Pseudo-Paley graphs and skew Hadamard difference sets from presemifields, Des. Codes Cryptogr. 44 (2007), 49–62.
- [13] L. Rónyai and T. Szőnyi, Planar functions over finite fields, Combinatorica 9 (1989), 315– 320.

(R.S. Coulter) DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF DELAWARE, NEWARK, DE 19716, USA

(R.W. Matthews) 6 EARL ST., SANDY BAY, TASMANIA 7005, AUSTRALIA