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We report on a recent implementation of Giesbrecht’s algorithm for factoring poly-
nomials in a skew-polynomial ring. We also discuss the equivalence between factor-
ing polynomials in a skew-polynomial ring and decomposing p

s-polynomials over
a finite field, and how Giesbrecht’s algorithm is outlined in some detail by Ore in
the 1930’s. We end with some observations on the security of the Hidden Field
Equation (HFE) cryptosystem, where p-polynomials play a central role.

1 Introduction and Background

Let Fq denote the finite field with q = pe elements, p a prime. We use F
∗

q to
denote the non-zero elements of Fq . The polynomial ring in an indeterminate
X over any field K will be denoted by K[X ] and for f, g ∈ K[X ], f ◦ g =
f(g) represents the composition of f with g. We recall that a permutation
polynomial is a polynomial which permutes the elements of the finite field
under evaluation. A p-polynomial (sometimes called an additive or linearised
polynomial) is a polynomial L ∈ Fq[X ] of the shape

L(X) =
∑

i

aiX
pi

with ai ∈ Fq. More specifically, for any integer s, a ps-polynomial is a p-
polynomial where ai = 0 whenever i is not a multiple of s. We note that
ps-polynomials are closed under composition (this is simply established).

The problem of completely decomposing a polynomial f ∈ K[X ] into
indecomposable factors, where K is a field, has a long and rich history. When
K is the complex plane, Ritt 23 showed that there exists an essentially unique
decomposition for any chosen polynomial. It is unique in the sense that for
any f ∈ K[X ] in a complete decomposition of f : the number of factors is
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invariant; and the degrees of the factors are unique up to permutation. So, if
we have two complete decompositions

f = f1 ◦ · · · ◦ fm

= g1 ◦ · · · ◦ gn,

then m = n and deg(fi) = deg(gπ(i)) for some permutation π of {1, . . . , m}.
Any class of polynomials defined over a field for which this property holds is
commonly said to satisfy Ritt’s theorem. The generalisation of Ritt’s theorem
to all fields of characteristic zero was carried out by Engstrom10, and Levi18.
However, for fields of non-zero characteristic, the situation is not so clearcut.

A polynomial is called wild if its degree is divisible by the characteris-
tic p, and tame otherwise. Any non-linear ps-polynomial is therefore a wild
polynomial. A distinction between the behaviour of wild and tame polyno-
mials arises when one considers Ritt’s theorem in the context of a finite field.
Fried and MacRae11 showed that any tame polynomial satisfies Ritt’s theo-
rem. However, Dorey and Whaples9 gave an example which showed that not
all wild polynomials satisfied Ritt’s Theorem. Other properties (not discussed
in this article) of tame and wild polynomials are also distinct. However, not
all wild polynomials deviate from tame polynomial behaviour. Specific to
this question, Ore19 showed in the 1930’s that p-polynomials satisfy Ritt’s
theorem.

It is interesting to note that p-polynomials over a finite field appear to be
the second class of polynomials shown to satisfy Ritt’s theorem, after Ritt had
established the complex field case. This was not noted by Ore but is evident
from his work: see Ore19 (Chapter 2, Theorem 4) which gives a statement
equivalent to Ritt’s theorem for p-polynomials. A further class of wild poly-
nomials, known as (ps, d)-polynomials (or, sub-linearised polynomials) can be
shown to satisfy Ritt’s theorem by using results of Henderson and Matthews15.

Exponential-time algorithms for determining the complete decomposi-
tion of polynomials were first given by Alagar and Thanh1, and Barton and
Zippel2. The first polynomial-time algorithm was published by Kozen and
Landau17, and separately by Gutierrez, Recio and Ruiz de Velasco14. These
results were improved for the tame case over a finite field by von zur Gathen12.
A general purpose polynomial-time algorithm for finding a complete decom-
position of a rational function over an arbitrary field was given by Zippel26.
This last algorithm provides a method for decomposing any polynomial, wild
or tame, over a finite field. However, one should note that in the wild case,
the algorithm simply finds any complete decomposition, as there does not
necessarily exist an essentially unique decomposition.

hfe: submitted to World Scientific on February 19, 2005 2
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Although p-polynomials were the first polynomials over a finite field shown
to satisfy Ritt’s theorem, they are the latest class of polynomials for which
a polynomial-time decomposition algorithm has been given. The algorithm
we refer to was described and analysed by Giesbrecht13. Giesbrecht presents
his algorithm in terms of factoring in skew-polynomial rings but it is well
known (and we later show) that the problem he considers is equivalent to de-
composing p-polynomials over a finite field. We note that any decomposition
algorithm for ps-polynomials can be adapted, at no computational cost, to
decomposing (ps, d)-polynomials. For (p, d)-polynomials this was shown by
the authors5, following earlier work of Henderson and Matthews15. This can
be extended to all (ps, d)-polynomials using the work of Ore19. This subject
is covered in another paper under preparation by the authors.

In this article, we report on a successful implementation of Giesbrecht’s
algorithm, making some specific comments concerning the probabilistic part
of the algorithm. We also recall the work of Oystein Ore, showing how Gies-
brecht’s algorithm is equivalent to an algorithm described by Ore sixty years
earlier. We also consider implications of Ore’s work to the security of the
Hidden Field Equations (HFE) cryptosystem.

2 Giesbrecht’s algorithm and the work of Ore

Giesbrecht13 introduces a probabilistic polynomial-time algorithm for obtain-
ing a complete (essentially unique) factorisation of a polynomial in some
classes of skew-polynomial ring defined over a finite field. This problem is in-
timately connected to the problem of determining an essentially unique com-
plete decomposition of p-polynomials, a class of wild polynomials. In fact,
there is a one-one correspondence between factoring in a particular skew-
polynomial ring over a finite field and decomposing ps-polynomials over a
finite field.

The skew-polynomial ring Fq[Y ; σ], where Y is an indeterminate and σ is
an automorphism of Fq, is a ring of polynomials with the usual component-
wise addition, and with multiplication defined by Y a = σ(a)Y for any
a ∈ Fq (we simply use juxtaposition to represent multiplication in Fq [X ] and
Fq[Y ; σ]). Since σ is an automorphism of Fq, we must have σ(a) = aps

for some
integer s. Given the definition of multiplication above, it is easily seen that the
skew-polynomial ring Fq[Y ; σ] is isomorphic to the ring of ps-polynomials over
Fq with the operations of polynomial addition and composition. Explicitly, the
required isomorphism Φ satisfies Φ(Xp) ◦ Φ(aX) = Y a = apY = Φ(apXp).
From this it follows that composition of ps-polynomials acts in exactly the
same manner as multiplication in the skew-polynomial ring Fq [Y, σ].

hfe: submitted to World Scientific on February 19, 2005 3
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The theory introduced by Giesbrecht13 is developed in its entirety in
the works of Ore19,20,21. It may be more efficient to implement Giesbrecht’s
algorithm using the ps-polynomial representation of the ring rather than the
skew-polynomial ring representation as set out in Giesbrecht’s article but this
is yet to be tested. While Giesbrecht refers to Ore20, it is in Ore’s other
two papers that he develops the algorithm which Giesbrecht has rediscovered.
Giesbrecht’s key contribution is to find a way of computing the crucial step,
which is to find non-zero zero divisors in a small algebra. He does this by
using what he refers to as Eigen rings. Ore19 discusses the same method
in Chapter 2, Section 6 where he uses invariant rings. In particular, Ore’s
Theorem 12 of that section is the key idea in Giesbrecht’s algorithm. Of
course, Ore develops his theory in terms of ps-polynomials rather than skew-
polynomial rings. Ore obtains these results using an earlier paper, Ore20,
where he developed theory on factoring and primality of polynomials in more
general skew-polynomial rings than discussed here. The problem of developing
an algorithm for factoring polynomials over any skew-polynomial ring remains
open.

Recently, a successful implementation of Giesbrecht’s algorithm was pro-
duced by Larissa Meinecke at the University of Queensland using the Magma4

algebra package. There is one step in Giesbrecht’s algorithm which is proba-
bilistic in nature, the rest of the algorithm is strictly deterministic. Giesbrecht
gives a lower bound for the probability of this step being successful as 1/9.
We have carried out some testing regarding this step which suggests this lower
bound is very conservative. While we have been unable to determine a worst-
case scenario, in almost all cases tested, the step has been successful on the
first attempt.

3 HFE and p-polynomials

The Hidden Field Equation (HFE) cryptosystem was introduced by Patarin22.
HFE is a public key cryptosystem and can be described as follows:

1. Choose a finite field Fq, q = pe, and a basis (β1, . . . , βe) for Fq over Fp.

2. Select a polynomial D of “relatively small degree” with the shape

D(X) =
∑

i,j

aijX
pi+pj

where aij ∈ Fq for all i, j.

3. Choose two p-polynomials, S and T , that permute Fq.

hfe: submitted to World Scientific on February 19, 2005 4



C
o

m
p

u
te

r 
M

at
h

em
at

ic
s:

 P
ro

ce
ed

in
g

s 
o

f 
th

e 
F

if
th

 A
si

an
 S

ym
p

o
si

u
m

(A
S

C
M

 2
00

1)
 (

K
. S

h
ir

ay
an

ag
i a

n
d

 K
. Y

o
ko

ya
m

a,
 e

d
s.

),

L

ec
tu

re
 N

o
te

s
S

er
ie

s 
o

n
 C

o
m

p
u

ti
n

g
, v

o
l. 

9,
 W

o
rl

d
 S

ci
en

ti
fi

c,
 2

00
1,

 p
p

. 3
6-

45

4. Calculate E(X) = S ◦ D ◦ T (X) mod (Xq − X).

5. Calculate n1, . . . , ne ∈ Fp[X1, . . . , Xe] satisfying

E(X) =
e∑

i=1

βini(X1, . . . , Xe)

and publish Fq and the ni, 1 ≤ i ≤ e. The polynomials S, T and D are
the secret keys.

If someone wishes to send a message m to the owner of E(X), then they
simply calculate E(m) = y and send y. Decryption is carried out by per-
forming the following steps. As S and T are permutation polynomials, they
have functional and compositional (modulo Xq − X) inverses. As S and T

are known to the owner, they can determine the inverse polynomials modulo
Xq −X (note that these inverses are also p-polynomials). Thus the recipient
of the message y knows S, D, T , S−1 and T−1. They determine z satis-
fying S−1(y) = z = D(T (m)). Next they determine any m1 ∈ Fq so that
D(m1) = z. Once m1 is chosen they determine m = T−1(m1). The middle
step is only computationally feasible because the degree of D is chosen to be
“small”.

The security of the system relies on the assumption that if deg(E) is
large, then solving for m in E(m) = y is computationally infeasible. Note
that several m1 ∈ Fq may need to be tried to find a “sensible” message m.
This is because D is not necessarily chosen to be a permutation of Fq as the
authors of HFE assumed that this may be too difficult. However, Blokhuis et
al.3 have since given examples of permutation polynomials from this class.

Note that it makes no difference whether the polynomial E or the set of
e polynomials ni is published if the basis used is known. In fact, an attacker
need not know the basis chosen as they may choose any basis to reconstruct
a different, but effectively equivalent encryption function (see the discussion
below). If E is constructed from the e polynomials ni using a different basis,
alternative secret keys S, T and D may be obtained and used to decipher
messages.

The HFE system is one of a family of cryptosystems which use functional
composition. Recently, some general attacks for these systems were developed
by Ye, Dai and Lam25. An attack which targets HFE specifically has been
published by Kipnis and Shamir16. This is general in nature and is quite
successful, but does not break HFE in all cases. This attack has since been
improved by Courtois7.

Polynomials with the shape D are known as Dembowski-Ostrom (DO)
polynomials, see Dembowski8, Coulter and Matthews6 and Blokhuis et al.3.

hfe: submitted to World Scientific on February 19, 2005 5
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For any p-polynomial L ∈ Fq[X ] and any DO polynomial D ∈ Fq[X ], L ◦ D

and D ◦ L are both DO polynomials. In other words, DO polynomials are
closed under composition with p-polynomials. Also, it can be established that
the reduction of a DO polynomial modulo Xq −X is again a DO polynomial.
The HFE description given above works in exactly the same way as that given
by Patarin22 precisely because of the above comments, coupled with the well
known fact that any function over Fq can be represented by a polynomial in
Fq[X ] of degree less than q and a well known result concerning linear operators
(discussed below).

Kipnis and Shamir16 note several problems an attacker faces when they
consider this scheme. We address some of their concerns here. In the original
description of HFE, two linear transformations (or linear operators) over the
vector space F

e
p are chosen, rather than two linearised polynomials as described

above. Kipnis and Shamir comment that “these mixing operations have nat-
ural interpretation over Fp but not over Fpe , and it is not clear apriori that
the e published polynomials over Fp can be described by a single univariate
polynomial G over Fpe”. In fact, there is a natural interpretation. Roman24

(pages 184-5) shows that every linear operator on F
e
p can be represented by a

linearised polynomial over Fpe . So the description of HFE as given above is
equivalent. As DO polynomials are closed under composition with linearised
polynomials and their reduction modulo Xq −X still results in a DO, we are
guaranteed that the published polynomials can be described by a single uni-
variate polynomial: it must be a DO. Kipnis and Shamir continue “Even if it
exists (a single univariate polynomial), it may have an exponential number of
coefficients, and even if it is sparse, it may have an exponentially large degree
which makes it practically unsolvable”. As the resulting polynomial is a DO
polynomial, it has O(e2) terms (compare to a random polynomial which has
O(pe) terms), which is not exponential. Certainly, the degree may be large.
It remains our objective, then, of finding a method of reducing the size of the
degree.

We can make more comments concerning the univariate description of
HFE given above. Let E(X) be the public key, which is a DO polynomial.
Suppose we can determine p-polynomials L1 and L2 which are permutation
polynomials and satisfy L1 ◦ f ◦ L2 = E. Clearly, f must also be a DO
polynomial. Then we can decrypt any message sent to the owner of E using
exactly the same method used to decrypt in the standard way, but using
the polynomials L1, L2 and f , providing the degree of f is sufficiently small.
Of course, it may not be possible to determine p-polynomials that permute
Fq which are left or right decompositional factors of E(X). However, when
considering this problem, the following result by Coulter and Matthews6,

hfe: submitted to World Scientific on February 19, 2005 6
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immediately draws our attention. For any a ∈ Fq and any polynomial t ∈
Fq[X ], define the difference polynomial of t with respect to a by ∆t,a(X) =
t(X + a) − t(X) − t(a).

Theorem 1 Let f ∈ Fq[X ] with deg(f) < q. The following conditions are
equivalent.
(i) f = D + L, where D is a Dembowski-Ostrom polynomial and L is a p-
polynomial.
(ii) For each a ∈ F

∗

q, ∆f,a = La where La is a p-polynomial depending on a.

This result provides an alternative definition of DO polynomials and estab-
lishes an important connection between DO polynomials and p-polynomials.

Let E be the published DO polynomial used in the HFE cryptosystem.
We wish to find L1, L2 and D satisfying E = L1 ◦D ◦L2. For the remainder,
we set f = D ◦ L2 so that E = L1 ◦ f and underline that f is also a DO
polynomial. Our objective is to determine some information regarding L1.
By Theorem 1, ∆E,a is a p-polynomial for any choice of a. Moreover, we have

∆E,a(X) = E(X + a) − E(X) − E(a)

= L1 (f(X + a)) − L1 (f(X)) − L1 (f(a))

= L1 (f(X + a) − f(X) − f(a))

= L1 ◦ ∆f,a.

Thus for any non-zero choice of a, the polynomial L1 is a left decompositional
factor of ∆E,a. Ore20 shows that there exists a left and right decomposi-
tion algorithm similar to the well known greatest common divisor algorithm
for a large class of non-commutative polynomial rings (note that, in gen-
eral, commutativity for composition does not hold). He uses these results
in Ore19 to establish and describe such algorithms for p-polynomials specif-
ically. In particular, using a variant of the Euclidean algorithm, we can de-
termine the Greatest Common Left-Decompositional Factor (GCLDF) of two
p-polynomials. This suggests the following method of attack to determine the
polynomial L1.

1. Choose distinct elements a1, a2 ∈ F
∗

q .

2. Calculate L(X) = GCLDF(∆E,a1
(X), ∆E,a2

(X)).

3. Test to see if L is a left decompositional factor of E. If it is, then L1 = L

and we are done.

4. If L is not a left decompositional factor of E, then choose a new
a ∈ F

∗

q , distinct from previous choices, and calculate L(X) =
GCLDF(L(X), ∆E,a(X)). Return to Step 3.

hfe: submitted to World Scientific on February 19, 2005 7
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We make the following observations. Step 3 can be carried out in time
O(logp(deg(E))) so has complexity much less than the Euclidean algorithm
calculation required in step 2 or 4. Note also that as Ore’s work does not ex-
tend to DO polynomials, one cannot simply calculate GCLDF(L(X), E(X))
to obtain L1.

As mentioned, Giesbrecht’s algorithm determines a complete decomposi-
tion of a p-polynomial in probabilistic polynomial-time. However, this does
not mean we can determine L1 methodically by completely decomposing L

after step 2. Due to the nature of Ritt’s theorem, we are not guaranteed that
in a full decomposition the proper factors of L1 would be determined strictly
on the left. Further, the number of possible full decompositions is exponential
in the number of indecomposable factors. We make no claims at this point
concerning the number of GCLDF calculations required in step 4 to determine
L1. It may require O(q) such calculations, making the algorithm no better
than exhaustive search. Finally, we note that this attack does not necessarily
break HFE as the DO polynomial may not have a non-trivial GCLDF and
even if it did then the resulting DO polynomial may not be of “sufficiently
small” degree. We are undertaking further research to analyse this attack and
to determine other methods of attacking HFE using the connections between
the DO polynomial and ps-polynomial classes.
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