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Abstract

Using the left regular action of a group on itself, we develop a general representation theory for
constructing groups of permutation polynomials. As an application of the method, we compute poly-
nomial representations of several abelian and nonabelian groups, and we determine the equivalence
classes of the groups of polynomials we construct. In particular, when the size of the group is equal to
the size of the field in which the group is represented, all non-identity representation polynomials are
necessarily fixed-point free permutation polynomials.

§ 1. Introduction

We begin by fixing some notation. Throughout, we will let q = pn for some prime p and let Fq denote
the finite field of order q. The multiplicative group of Fq will be denoted F×q = 〈ζ〉 for some fixed, but
arbitrary, primitive element ζ of Fq . We will be concerned with elements of Fq [X], the ring of polynomials
over Fq in the indeterminate X. Any function ϕ : Fq → Fq can be represented by a polynomial f ∈ Fq [X],
for example, via the interpolation formula

f(X) =
∑
x∈Fq

(
1− (X − x)q−1

)
ϕ(x).

This representation is unique if one restricts the degree of the polynomials to less than q; polynomials in
Fq [X] with degree less than q are called reduced. If, under evaluation, a polynomial f ∈ Fq [X] induces a
bijection on Fq , then we call f(X) a permutation polynomial over Fq .

This paper is motivated by two problems concerning permutation polynomials. The first problem is to
find new classes of permutation polynomials (problem P2 in [9]). Permutation polynomials are a central
object of study in finite field theory, and determining whether a given polynomial is a permutation polynomial
is a non-trivial task. Hermite [8] proved the initial results over prime fields, introducing the criterion that
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now bears his name, and Dickson [6] expanded these to arbitrary finite fields. While it is a simple exercise
to show that the monomial Xk is a permutation polynomial over Fq if and only if gcd(k, q− 1) = 1, much
less simple is the result by Matthews [11] that the “all-ones” polynomial hk(X) = 1+X+X2 + · · ·+Xk is
a permutation polynomial over Fq (of odd characteristic) if and only if k ≡ 1 (mod p(q − 1)). The reader
who is interested in the basic theory of permutation polynomials is referred to Chapter 7 of [10], which is
a standard reference in the field.

The second problem is concerned with representation theory and the structure of permutation polyno-
mials. A representation is a homomorphism G → Sym(S) of a group G into the group of symmetries of
some object S. When G is finite and S is a set of cardinality |G|, the representation is called a permutation
representation. In this paper, we will investigate a certain type of permutation representation. Taking the
set S to be the underlying set of a finite field Fq , we can consider Sym(S) to be the set of reduced per-
mutation polynomials over Fq . Since two reduced permutation polynomials can be composed and reduced
modulo Xq −X to produce another, it is natural to investigate the types of permutation groups that can
be represented by certain permutation polynomials.

There are several other results describing groups of permutation polynomials with relatively simple
polynomial generators. For example, Carlitz [4] showed the full symmetric group on q letters can be
generated by Xq−2 and all linear polynomials in Fq [X], while Wells determined polynomial generators for
several small-index subgroups of Sq in [15]. Additionally, Wan and Lidl [14], in the course of proving when
polynomials of the form Xrf(Xs) were permutation polynomials, also determined that they have the group
structure of a generalized wreath product.

We are interested specifically in whether it is possible to represent given groups of order roughly q by
permutation polynomials over Fq . This is possible in the loosest sense via a consideration of the standard
proof of Cayley’s Theorem, so we focus on the question of whether some groups can be represented
by permutation polynomials that are aesthetically pleasing in some way. For example, it is easy to see
that the elementary abelian group of order q can be represented by the set of (permutation) polynomials
{X + a : a ∈ Fq}, while the cyclic group of order q− 1 can be represented by {aX : a ∈ F×q }. These linear
polynomials are as simple as can possibly be achieved; in general, the form of the permutation polynomials
representing a given group will be significantly more complicated.

In Section 3, we describe a method for constructing permutation polynomials representing a given finite
group G and prove in Theorem 3.3 that the resulting group of polynomials is indeed isomorphic to G.
This method is based on the aforementioned proof of Cayley’s Theorem, which in turn relies on the left
regular action of G on itself and an assignation σ between the elements of G and the elements of Fq .
Generally speaking, one can make this assignment arbitrarily, and using interpolation produce many groups
of permutation polynomials representing G. However, almost certainly a random assignation will result
in unpredictable forms for the representation polynomials, lacking any sort of aesthetic. Our approach to
producing permutation polynomials with a better aesthetic, that is, with relatively few terms or easily-
described coefficients, is to preserve as much of the structure of G as possible in the assignation; we
introduce the notions of “preserved subgroup” and “hemimorphism” to make more precise this concept of
preservation of structure. In particular, we prove in Theorem 3.7 that the restriction of σ to the preserved
subgroup is a group homomorphism. One interesting property of our method is that in the case when
|G| = q, all permutation polynomials not representing the identity are fixed point free; we know of no other
method for constructing permutation polynomials where this is guaranteed. Section 3 also addresses, via
quasiequivalence of representations, when two groups of permutation polynomials produced by this method
are essentially the same.

As applications of the general theory, we represent several families of groups by polynomials. Repre-
sentations of cyclic groups which preserve some of the group structure in the additive group of Fq are
considered in Section 4, and representations of cyclic groups which preserve some of the group structure
in the multiplicative group F×q are considered in Section 5. We also consider polynomial representations of
dihedral groups in Section 6.1 and certain Hamiltonian groups in Section 6.2. New classes of permutation
polynomials produced by our approach are given in Theorems 4.1, 4.3, 4.5, 5.1, 5.2, and 5.3, and Corol-
lary 4.7. Theorems 6.1 and 6.4 exhibit families of permutation polynomials which, while already known, are
shown to possess a nice group structure. In most cases, the forms obtained look somewhat complicated.
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However, they still have either relatively few non-zero terms or a very simple description of the coefficients
of each term; for example, we obtain permutation binomials for the Hamiltonian groups we consider. We
also determine a new set of polynomial generators for GL(Fp2) in Theorem 4.9.

§ 2. Useful lemmas

Before developing the theory, we give several formulae which we will use in subsequent sections to simplify
computations. Proofs are omitted as they are elementary and the results listed are standard.

Lemma 2.1. Let x ∈ F×q , and recall that hk(X) = 1 +X +X2 + · · ·+Xk. Then

(X − x)q−1 = Xq−1 + hq−2(x−1X).

Lemma 2.2. Let x ∈ Fq and let r, t ∈ {1, 2, . . . , q − 1} such that (q − 1) | rt. Then

t−1∑
s=0

(xr)s =

{
t, xr = 1,

0, xr 6= 1.

Lemma 2.3. For any finite field Fq , we have

∑
x∈Fq

xd =

{
0, if d = 0 or (q − 1) - d,

−1, if d 6= 0 and (q − 1) | d.

§ 3. A general theory for polynomial representation of groups

In this section, we define a method of constructing permutation polynomials which represent the left regular
action of a group G on (the underlying set of) a field Fq . We also examine several ways in which group
structure can be reflected in field structure and when two representations are effectively the same.

§ 3.1. Constructing polynomial representations of groups

Let G be a group of order |G| ≤ q and associate elements of G with elements of Fq according to an injective
function σ : G → Fq . In general, we choose σ to preserve some of the group structure, though this is not
necessary for the basic theory. Define the binary operation ∗ : G× Fq → Fq by

g ∗ x :=

{
σ
(
g · σ−1(x)

)
, x ∈ Im(σ),

x, x /∈ Im(σ),

for all g ∈ G and all x ∈ Fq . Note that ∗ is essentially the left regular action of G on itself. Indeed, the
field is first relabeled by the group according to σ so that G then acts naturally on itself (while fixing any
field element not corresponding to a group element). The following lemma is therefore easy to verify.

Lemma 3.1. The binary operation ∗ defines an action of G on Fq .

The action ∗ of each g ∈ G on Fq defines a permutation ϕg of Fq . Interpolating will thus produce a
reduced (permutation) polynomial fg ∈ Fq [X] which represents ϕg and hence also represents the action of
g on Fq . Explicitly, we compute fg (X) according to the formula

fg (X) =
∑
x∈Fq

(
1− (X − x)q−1

)
(g ∗ x).
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Often the representation will rely on a collection Z of parameters, and we will write f
[Z]
g (X) as an indication

of the dependence of the representation on these parameters. For g ∈ G, we call the permutation polynomial

fg (X) (or f
[Z]
g (X)) the representation polynomial of g as it represents the left regular action of G on itself,

under composition modulo Xq − X. We shall prove this claim forthwith after noting some properties of
representation polynomials. In computations, we will denote the composition of a polynomial f(X) with
itself k times, reduced modulo Xq −X, by f(X)[k].

Lemma 3.2. Representation polynomials are permutation polynomials which possess the following proper-
ties.

1. The composition of two representation polynomials, reduced modulo Xq−X, is again a representation
polynomial. In fact, (

fg1 ◦ fg2
)
(X) = fg1g2(X).

2. The composition of the representation of g with itself k times, reduced modulo Xq − X, is the
representation of gk. Explicitly,

fg(X)[k] = fgk(X),

and in particular,
(
fg(X)

)[−1]
= fg−1(X).

3. If g 6= e, then fg(X) fixes precisely the elements of Fq \ Im(σ). In particular, fg fixes no point of Fq
when |G| = q.

4. The constant term of fg (X) is g ∗ 0. In particular, the constant term is σ(g) when σ(e) = 0.

Proof. Let x ∈ Fq and g1, g2 ∈ G. Then g1 ∗ (g2 ∗ x) = (g1g2) ∗ x since ∗ defines a group action, so
fg1(fg2(X)) = fg1g2(X). Applying induction easily gives the second statement.

It follows immediately from the definition of the action ∗ that every element of G fixes Fq \ Im(σ)
pointwise. If the action of some g ∈ G fixed an element x ∈ Im(σ), then we would have

x = g ∗ x = σ(g · σ−1(x)),

and applying σ−1 to both sides yields σ−1(x) = g · σ−1(x). Since σ is injective, the element g acts as the
identity of G, hence must be the identity of G, proving the third statement.

To prove the fourth statement, note first that for a fixed x ∈ Fq and any y ∈ Fq ,

(y − x)q−1 =

{
1, y 6= x,

0, y = x,

and hence 1− (y − x)q−1 is nonzero precisely when y = x. Thus,

fg (0) =
∑
x∈Fq

(
1− (0− x)q−1

)
(g ∗ x) =

(
1− (0− 0)q−1

)
(g ∗ 0) = g ∗ 0.

Moreover, when σ(e) = 0 we have

g ∗ 0 = σ
(
g · σ−1(0)

)
= σ(g · e) = σ(g).

Note that statement 1 above shows that the map defined by g 7→ fg is a homomorphism, that is,
representation polynomials indeed describe the representation

G→ Sym(Fq ) ↪→ Fq [X]/(Xq −X).

Moreover, this representation is faithful since distinct group elements produce distinct permutations of Fq ,
and hence distinct representation polynomials. We shall denote the set of representation polynomials of
G by Γ =

{
fg(X) : g ∈ G

}
; when the representation polynomials depend on a parameter set Z, we will

accordingly denote the set of representation polynomials by Γ[Z].
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Theorem 3.3. The set Γ of representation polynomials of a group G forms a group isomorphic to G under
composition modulo Xq −X.

Proof. The first two statements of Lemma 3.2 show that Γ is closed and possesses mutliplicative inverses.
We claim fe(X) acts as the identity for Γ. Indeed, since ∗ is a group action, we have e ∗ x = x for all
x ∈ Fq . Thus fe(X) = X as desired, and we have shown that Γ is a group. As noted above, the first
statement in Lemma 3.2 shows that Γ behaves under composition and reduction precisely as the group G
itself does, hence Γ ∼= G.

§ 3.2. Preserving group structure in field structure

The motivation for developing the method just described is to produce new families of permutation polyno-
mials (which happen to be endowed with a group structure inherited from the construction). The previous
theorem guarantees that we indeed produce groups of permutation polynomials, but it is not clear whether
they will come from families of permutation polynomials which are already known. Our intuition is that
choosing σ to preserve some of the group structure will lead to the most visually appealing families of
permutation polynomials, that is those with simply-described coefficients, relatively few terms, etc. We
make this precise as follows.

Typically, we construct σ so that the images of some of the group elements in the field maintain their
group structure even under the field arithmetic; that is, by “preserving structure” we mean that σ restricts
to a homomorphism on some subset of G. The requirement that σ be injective means that σ can be a
homomorphism only if G is an elementary abelian p-group (for a representation into the additive group
of Fq ) or a cyclic group of order dividing q − 1 (for a representation into the multiplicative group of Fq ).
Thus, we do not expect σ to be a homomorphism itself, but rather to behave like a homomorphism only
on some portion of the group.

We will write F+
q for the additive group of Fq and F×q for the multiplicative group of Fq . It will often

be convenient to treat the theory for both of these groups at once, so we will write F?q to denote either
F+
q or F×q , with ? representing the appropriate group operation in computations. Accordingly, for any
a1, . . . , ak ∈ Fq and any nonnegative integers δ1, . . . , δk we define

k

?
i=1

aiδi :=
(
a1 ? a1 ? · · · ? a1︸ ︷︷ ︸

δ1 times

)
? · · · ?

(
ak ? ak ? · · · ? ak︸ ︷︷ ︸

δk times

)
,

and we let id? denote the identity of F?q , so that id+ = 0 and id× = 1. In what follows, we consider
only functions σ which satisfy σ(e) = id?, and we will call σ and its corresponding representation additive
(respectively, multiplicative) if σ(e) = 0 (respectively, if σ(e) = 1). In either case, we refer to such a
function σ as an assignation; we will only consider representations for which σ is an assignation. Note that
an assignation cannot simultaneously be both additive and multiplicative, so we will restrict ourselves to
considering only the appropriate operation as being denoted by ? instead of both operations simultaneously.

By itself, an assignation indicates that a small amount of structure has already been preserved, namely,
that there is a natural algebraic correspondence between the identities of the group and the field. We
think of this as a sort of local preservation of structure; the following theorem tells us something about the
structure preserved at a global level.

Lemma 3.4. Let σ and σ′ be two assignations of a group G. If σ(G) and σ′(G) are both subgroups of
F?q , then σ(G) ∼= σ′(G).

Proof. Since the assignations are injective by definition, we have that |σ(G)| = |σ′(G)| = |G|.
Suppose first that σ and σ′ are additive assignations. The subgroups of F+

q are elementary abelian
p-groups, and since |σ(G)| = |σ′(G)|, σ(G) and σ′(G) are elementary abelian p-groups of the same order.
Therefore they are isomorphic.

If σ and σ′ are multiplicative assignations, then σ(G) ∼= C|G| and σ′(G) ∼= C|G| since the cyclic group
Cm has a unique (cyclic) subgroup Cd for each divisor d of m. Thus σ(G) and σ′(G) are isomorphic in
this case as well.
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It will prove useful to define a measure of how much structure an assignation preserves. Given an
assignation σ : G→ F?q , we call the set

P ?(G, σ) = {g ∈ G : ∀ x ∈ σ(G), g ∗ x = σ(g) ? x}

preserved subset of the assignation. We remark that since g ∗ x = σ
(
g · σ−1(x)

)
, for g ∈ P ?(G, σ) we

have
σ
(
g · σ−1(x)

)
= σ(g) ? x = σ(g) ? σ

(
σ−1(x)

)
for all x ∈ σ(G), that is, σ behaves like a homomorphism on the preserved subset. We will see shortly that
this is, in fact, the case: the preserved subset P ?(G, σ) is a group and the restriction of σ to it is indeed a
homomorphism from P ?(G, σ) into F?q .

Lemma 3.5. Let g ∈ G and let σ : G → F?q be an assignation. Then for some c ∈ Fq and all x ∈ σ(G),
g ∗ x = c ? x if and only if c = σ(g) and g ∈ P ?(G, σ).

Proof. Suppose g ∗ x = c ? x for some c ∈ Fq and all x ∈ σ(G). Then in particular, g ∗ id? = c ? id? = c.
Since

g ∗ id? = σ
(
g · σ−1(id?)

)
= σ(g · e) = σ(g),

we have that c = σ(g). Thus g ∗ x = σ(g) ? x for all x ∈ σ(G), and hence g ∈ P ?(G, σ).
On the other hand, for g ∈ P ?(G, σ) we have g ∗ x = σ(g) ? x for all x ∈ σ(G) by definition. Taking

c = σ(g) completes the proof.

Corollary 3.6. Let σ : G → Fq be an assignation and suppose σ(G) = F?q . Then the linear polynomial
c ? X is a representation polynomial if and only if c = σ(g) for some g ∈ P ?(G, σ).

From the above corollary, we see that there is a correspondence, via linear representation polynomials,
between group elements on which σ behaves like a homomorphism and linear representation polynomials.
This correspondence indicates that the preserved subset is indeed a decent measure of the amount of
structure preserved by the assignation; the next result will make this statement precise.

Theorem 3.7. Let σ : G → F?q be an assignation. Then the preserved subset P ?(G, σ) is an abelian

subgroup of G, and the restriction σ
∣∣
P?(G,σ)

: P ?(G, σ)→ F?q is a homomorphism.

Proof. Let g, h ∈ P ?(G, σ). Since ∗ defines a group action, for all x ∈ σ(G) we have

gh ∗ x = g ∗ (h ∗ x) = σ(g) ? (σ(h) ? x) = (σ(g) ? σ(h)) ? x.

In particular, taking x = id? yields gh ∗ id? = (σ(g) ? σ(h)) ? id? = σ(g) ? σ(h). But we also have

gh ∗ id? = σ
(
gh · σ−1(id?)

)
= σ(gh · e) = σ(gh),

and hence σ(gh) = σ(g) ? σ(h) for all g, h ∈ P ?(G, σ). Then for any x ∈ σ(G), we now have

gh ∗ x = (σ(g) ? σ(h)) ? x = σ(gh) ∗ x,

which shows that gh ∈ P ?(G, σ). Therefore P ?(G, σ) is closed. Moreover, for all x ∈ σ(G),

e ∗ x = x = id? ? x = σ(e) ? x

shows that e ∈ P ?(G, σ), and hence P ?(G, σ) is indeed a group.
That P ?(G, σ) is abelian follows immediately from the commutativity of F?q since

σ(gh) = σ(g) ? σ(h) = σ(h) ? σ(g) = σ(hg)

for all g, h ∈ P ?(G, σ).
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In light of this theorem, we shall refer to P ?(G, σ) as the preserved subgroup from now on.
Since the restriction of an assignation is a homomorphism on the preserved subgroup, we can preserve

the most group structure by constructing assignations which are homomorphisms on large subgroups of G;
that is, those for which many representation polynomials are linear (by Corollary 3.6). The intuition is that
by preserving more structure, the remaining representation polynomials will also have a relatively nice form.

One very strong way to preserve structure is by defining the assignation as follows. Fix a presenta-
tion G = 〈a1, . . . , ak | R1, . . . , Rj〉 with generators a1, . . . , ak and relations R1, . . . , Rj . We say that an

assignation σ : G→ F?q is a hemimorphism if for all g =
∏k
i=1 a

δi
i ∈ G, we have

σ(g) = σ

(
k∏
i=1

aδii

)
=

k

?
i=1

σ(ai)δi.

In general, σ is a hemimorphism if each element of σ(G) is uniquely representable as a sum or product (as
appropriate to the type of assignation) of images of generators of G. Thus a hemimorphism behaves like
a homomorphism with respect to a product of generators of G, though not (in general) with respect to
products of arbitrary elements of G.

In addition to representations which are hemimorphisms, we will also be interested in multiplicative
representations of cyclic groups which are nearly hemimorphisms, in the following sense. For a cyclic group
G = 〈g〉 such that (|G| − 1) | (q− 1), we say that a multiplicative assignation σ : G→ F×q preserves a long

cycle if σ(g) is a generator of the subgroup of F×q of order q−1
|G|−1 and g ∗ x = σ(g)x for all but two values

of x ∈ σ(G). Note that this is a weakening of the condition from the definition of preserved subgroup,
which requires that g ∗ x = σ(g)x for all x ∈ σ(G). The “long cycle” that is preserved is the cyclic group
〈σ(g)〉 ≤ F×q of order |G| − 1, with the element 0 inserted to extend it artificially to a cycle of length |G|.
In computations, the exceptional elements will be indicated by the parameter z, so that g ∗ σ(gz−1) = 0
and g ∗ 0 = σ(gz). Thus the action of g on F×q is described by the cycle(

σ(g), σ(g2), . . . , σ(gz−1), 0, σ(gz), . . . , σ(g|G|−1)
)
.

Note that when σ preserves a long cycle, the preserved subgroup P×(G, σ) is necessarily trivial.

§ 3.3. Equivalence of representations

It is of interest to know when various polynomial representations of a given group are essentially the same;
that is, when they act in the same way on the underlying set. For a given group G, suppose the assignations
σ and σ′ are either both additive or both multiplicative, and let their corresponding groups of representation
polynomials be denoted Γ = {fg (X) : g ∈ G} and Γ′ = {f ′g (X) : g ∈ G}, respectively. We say that Γ and
Γ′ are quasiequivalent if there exist group automorphisms ψ : G→ G and α : F?q → F?q such that

fg (X) = (α−1 ◦ f ′ψ(g) ◦ α)(X)

for all g ∈ G. If ψ is the identity automorphism, then Γ and Γ′ are said to be equivalent. We remark
that our definition follows Aschbacher [1, p. 9], which requires that α be an isomorphism in the category
containing the structure on which the group G acts. Thus we require that α be a group isomorphism of F?q ;
a more general definition used elsewhere in the literature requires only that α be a bijection of Fq (cf. [7,
p. 17]). Note that any α ∈ AutF×q is given by a function α(x) = xa for some (a, q − 1) = 1, and hence
we can naturally consider α to be defined on Fq by specifying α(0) = 0.

We now prove a very useful result giving a condition for two representations to be quasiequivalent.

Theorem 3.8. Let σ : G → F?q and σ′ : G → F?q be two assignations. The representations Γ and Γ′

corresponding to σ and σ′, respectively, are quasiequivalent if and only if there exist α ∈ Aut(F?q ) and
ψ ∈ Aut(G) such that σ = α−1 ◦ σ′ ◦ ψ.
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Proof. Suppose Γ and Γ′ are equivalent. Then there exist α ∈ Aut(F?q ) and ψ ∈ Aut(G) such that

fg (x) = α−1
(
f ′ψ(g)(α(x))

)
for all g ∈ G and all x ∈ Fq . In particular, taking x = id? ∈ σ(G), we obtain

fg (x) = fg (id?) = σ
(
g · σ−1(id?)

)
= σ(g · e) = σ(g)

on the one hand, and

α−1
(
f ′ψ(g)(α(x))

)
= α−1

(
f ′ψ(g)(α(id?))

)
= α−1

(
f ′ψ(g)(id?)

)
= α−1

(
σ′
(
ψ(g) · (σ′)−1(id?)

))
= α−1 (σ′(ψ(g) · e))
= α−1 (σ′(ψ(g)))

on the other. Thus, σ(g) = (α−1 ◦ σ′ ◦ ψ)(g) for all g ∈ G, and we see that σ = α−1 ◦ σ′ ◦ ψ.
Now suppose that there exist α ∈ Aut(F?q ) and ψ ∈ Aut(G) satisfying σ = α−1 ◦ σ′ ◦ ψ. If x ∈ σ(G),

then for all g ∈ G we have

fg (x) = σ
(
g · σ−1(x)

)
= α−1

(
σ′
(
ψ
(
g · ψ−1

(
(σ′)−1(α(x))

))))
= α−1

(
σ′
(
ψ(g) · ψ

(
ψ−1

(
(σ′)−1(α(x))

))))
= α−1

(
σ′
(
ψ(g) · (σ′)−1(α(x))

))
= α−1

(
f ′ψ(g)(α(x))

)
.

Now let x ∈ Fq \ σ(G) so that fg (x) = x. If α(x) ∈ σ′(G), then α(x) = σ′(g) for some g ∈ G. Writing
g′ = ψ−1(g), we have

x = α−1 (σ′(g)) = α−1 (σ′(ψ(g′))) = σ(g′),

a contradiction. Thus α(x) /∈ σ′(G) whenever x /∈ σ(G). Then

α−1
(
f ′ψ(g)(α(x))

)
= α−1 (α(x)) = x,

and hence fg (x) = α−1
(
f ′ψ(g)(α(x))

)
for all x /∈ σ(G). We conclude that fg (X) = α−1

(
f ′ψ(g)(α(X))

)
,

so that Γ and Γ′ are quasiequivalent.

For hemimorphisms, we can significantly strengthen the statement of the previous theorem. We omit
the proof as it is a simple computation using the definition of hemimorphism to show that the hypotheses
satisfy the theorem.

Theorem 3.9. Let G = 〈a1, . . . , ak | R1, . . . , Rj〉 be a group with two hemimorphisms σ and σ′. The
representations Γ and Γ′ corresponding to σ and σ′, respectively, are quasiequivalent if and only if there
exist α ∈ Aut(F?q ) and ψ ∈ Aut(G) such that σ(ai) = α−1(σ′(ψ(ai))) for each 1 ≤ i ≤ k.

We actually know more about additive hemimorphisms, as demonstrated by the next two corollaries.
Recall that F+

q , as an elementary abelian p-group, can be considered as an n-dimensional vector space over
Fp , and that any two vector subspaces of the same dimension are isomorphic.

Corollary 3.10. Let G = 〈a1, . . . , ak | R1, . . . , Rj〉 be a group with two additive hemimorphisms σ and
σ′, and suppose σ(G) and σ′(G) are both vector subspaces of Fq of the same dimension. Then the
representations Γ and Γ′ corresponding to σ and σ′, respectively, are equivalent.
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Since we can consider F+
q as a vector space over Fp , we have Aut(F+

q ) ∼= GL(Fq ), so every auto-
morphism of F+

q can be represented by a linear map. We will describe GL(Fq ) by polynomials of the
form

L(X) =

n−1∑
i=0

`iX
pi

where `i ∈ Fq . Berlekamp [2, Chapter 11] called such polynomials linearized polynomials. It is an easy
exercise to show that they indeed behave linearly over Fp , that is

L(aX + b) = aL(X) + L(b)

for any a ∈ Fp and any b ∈ Fq . Vaughan [13] showed that the algebra of linear transformations of
Fq (considered as a vector space over Fp) is isomorphic to the algebra of all linearized polynomials in
Fq [X]. For our purposes, we only require the fact, established by Dickson [6], that the elements from the
set of invertible linear transformations of Fq (i.e. from the set GL(Fq )) are in bijective correspondence
with elements from the set of linearized permutation polynomials satisfying one of the following equivalent
conditions:

1.

∣∣∣∣∣∣∣∣∣∣∣∣∣

`0 `pn−1 `p
2

n−2 · · · `p
n−1

1

`1 `p0 `p
2

n−1 · · · `p
n−1

2

`2 `p1 `p
2

0 · · · `p
n−1

3
...

...
...

...

`n−1 `pn−2 `p
2

n−3 · · · `p
n−1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0;

2. The unique root of L(X) in Fq is 0.

(Bottema [3] and Carlitz [5] showed a fortiori that GL(Fq ) is isomorphic to the group of invertible linearized
polynomials over Fq ; see [10, p. 382] for further historical information.) Therefore each element of GL(Fq )
can be represented by a unique reduced linearized (permutation) polynomial L(X) ∈ Fq [X].

Corollary 3.11. Let L(X) ∈ Fq [X] denote the polynomial representation of the element of GL(Fq ) which
corresponds to the change of basis of Fq from [βi] to [γi]. Then the following formula holds:

f
[βi]
g (X) = L(X)[−1] ◦ f [γi]g (X) ◦ L(X).

Unlike the additive representation of cyclic groups where all polynomial representations are equivalent
(see Section 4), in general there are several inequivalent multiplicative representations among assignations
which preserve a long cycle. Explicitly, consider a cyclic group G = 〈g〉 with (|G| − 1) | (q − 1). Let
z ∈ {1, 2, . . . , |G| − 1} and choose a generator ξ of 〈σ(g)〉 ≤ F×q . Define σ : G → Fq by σ(gd) = ξd for
z− (|G| − 1) ≤ d ≤ z− 1 and σ(gz) = 0 so that σ preserves a long cycle and the action of g describes the
cycle (ξ, ξ2, . . . , ξz−1, 0, ξz, . . . , ξ|G|−1) in Fq . The representation group will be denoted Γ[ξ;z] to emphasize
the dependence of the representation on both ξ and z. For more detail on the computations in the proof
below, see the representations of Cp and Cq in Section 5.

In what follows, given αa ∈ AutF×q we will consider 1 ≤ a ≤ q − 1 to be the representative of the
corresponding residue class modulo q−1, so that the condition (a, q−1) = 1 means that a−1 is well-defined
as the multiplicative inverse of a in the ring Z/(q − 1)Z. Similarly, any automorphism of G is of the form
ψj(x) = xj for j satisfying (j, |G|) = 1, since G is cyclic.

Theorem 3.12. Let G be a cyclic group such that (|G| − 1)m = q − 1 for some integer m, and consider
assignations that preserve a long cycle, as described above. Then for a, a′ ∈ {1, 2, . . . , q−1 : (a, q−1) = 1}
and z, z′ ∈ {1, 2, . . . , |G| − 1}, the polynomial representations Γ[ζma;z] and Γ[ζma

′
;z′] of G are:

1. equivalent for z = z′ and any a and a′;
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2. quasiequivalent whenever z′ ≡ 1− z (mod |G| − 1); or

3. not quasiequivalent whenever z′ 6≡ 1− z (mod |G| − 1).

Proof. We begin by proving the equivalence statement. Let z ∈ {1, 2, . . . , |G| − 1} and αa ∈ AutF×q , and

note that α−1a = αa−1 . That Γ[ζm;z] and Γ[ζma;z] are equivalent follows immediately since direct calculation
shows

f
[ζm;z]
gj (x) = f

[ζm;z]
g (x)[j] = (α−1a ◦ f

[(ζm)a;z]
g ◦ αa)(x)[j] = (α−1a ◦ f

[ζma;z]
gj ◦ αa)(x)

for each x ∈ Fq and each j ∈ {1, 2, . . . , |G|}.
Now let z, z′ ∈ {1, 2, . . . , |G|−1} and consider two representations of G with distinct parameters z and

z′. In light of the equivalence statement just proved, it will suffice to consider representations which both

use the fixed parameter ξ = ζm. Suppose the representations f
[ξ;z]
g (X) and f

[ξ;z′]
gj (X) are quasiequivalent

so that f
[ξ;z]
g (X) = (α−1a ◦ f

[ξ;z′]
gj ◦ αa)(X) for some αa ∈ AutF×q and ψj ∈ AutG. We will show that

Γ[ξa;z] and Γ[ξa
′
;z′] are quasiequivalent only when z′ ≡ z (mod |G| − 1) by determining several conditions

that a and j must satisfy.

First, f
[ξ;z]
g (0) = ξz, and

α−1a

(
f
[ξ;z′]
gj (αa(0))

)
= αa−1

(
f
[ξ;z′]
gj (0)

)
= αa−1

(
ξz
′+j−1

)
= ξa

−1(z′+j−1),

so we must have z ≡ a−1(z′ + j − 1) (mod q−1
m ), or equivalently,

z′ ≡ az − j + 1 (mod q−1
m ). (1)

Next, f
[ξ;z]
g (ξz−1) = 0, and

α−1a

(
f
[ξ;z′]
gj

(
αa(ξa

−1(z′−j))
))

= αa−1

(
f
[ξ;z′]
gj (ζz

′−j)
)

= αa−1 (0) = 0,

so we must also have z − 1 ≡ a−1(z′ − j) (mod q−1
m ), or equivalently,

z′ ≡ az − a+ j (mod q−1
m ). (2)

Subtracting congruences (1) from congruence (2) gives the condition

a+ 1 ≡ 2j (mod q−1
m ). (3)

Continuing, f
[ξ;z]
g (1) = ξ, and

f
[ξ;z′]
gj (1) =


ξj , j ≤ z′ − 1,

0, j = z′,

ξj−1, j ≥ z′ + 1.

Since αa(1) = 1, we also have

α−1a

(
f
[ξ;z′]
gj (αa(1))

)
=


ξja
−1

, j ≤ z′ − 1,

0, j = z′,

ξ(j−1)a
−1

, j ≥ z′ + 1.

This leads to three cases: j = z′, j ≤ z′ − 1, and j ≥ z′ + 1. In the first case, when j = z′, we must have
ξ = 0, which is impossible since ξ = ζm ∈ F×q .
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The second case j ≤ z′ − 1 implies ξ = ξja
−1

, or a ≡ j (mod q−1
m ). Substituting this into congru-

ence (3), we obtain a + 1 ≡ 2a (mod q−1
m ), or a ≡ 1 (mod q−1

m ). Thus j ≡ 1 (mod q−1
m ) as well, and

hence z ≡ z′ (mod q−1
m ) follows from congruence (1). But this means z = z′, contradicting the assumption

that z and z′ are distinct.
Finally, when j ≥ z′ + 1, we must have ξ = ξ(j−1)a

−1

, or equivalently, a ≡ j − 1 (mod q−1
m ).

Substituting this expression into congruence (3), we obtain the congruence (j − 1) + 1 ≡ 2j (mod q−1
m ),

or j ≡ 0 (mod |G| − 1). Since j ∈ {1, 2, . . . , |G|}, this means j = |G| − 1 and a ≡ (|G| − 1) − 1 ≡ −1
(mod |G| − 1). Substituting back into (1), we find that z′ ≡ 1 − z (mod |G| − 1), proving case (2) and
completing the proof.

§ 4. Additive representations of cyclic groups

In this section we construct additive representations of cyclic p-groups in F+
q . Each assignation we use is

a hemimorphism and the images of the group are always subgroups of F+
q ; therefore all representations of

a given group will be equivalent by Corollary 3.10. Although we do not do so here, the theory we develop
can be used to build additive representations of direct products of cyclic p-groups, Cpn1 × · · · ×Cpnk with
n1 + · · ·+ nk ≤ n, which are all equivalent.

§ 4.1. Representation of Cp

Let Cp = 〈g〉 and choose arbitrary β ∈ F×q . Define σ : Cp → Fq by σ(gk) = kβ, so that the action of g
describes the cycle (0, β, 2β, . . . , (p− 1)β) in Fq . This is a hemimorphism, and

gk ∗ `β = σ
(
gk · σ−1(`β)

)
= σ

(
gk · g`

)
= σ(gk+`) = (k + `)β = kβ + `β = σ(gk) + `β

shows that the preserved subgroup P+(Cp , σ) is the group Cp itself. Since σ(Cp) = 〈β〉 is a subgroup of
F+
q , it follows from Corollary 3.10 that all additive representations of Cp are equivalent.

Theorem 4.1. Let β ∈ F×q . Then the polynomial representing the element gk of Cp in F+
q is

f
[β]

gk
(X) = X + kβhb q−2

p−1c((β
−1X)p−1).

Proof. As we saw above, the action of gk on x ∈ Fq is

gk ∗ x =

{
x+ kβ, x ∈ 〈β〉,
x, otherwise.

Interpolating, we obtain

f
[β]

gk
(X) =

∑
x∈Fq

(
1− (X − x)q−1

)
(gk ∗ x)

=

 ∑
x∈Fq\〈β〉

(
1− (X − x)q−1

)
(x)

+

∑
x∈〈β〉

(
1− (X − x)q−1

)
(x+ kβ)


=

∑
x∈Fq

(
1− (X − x)q−1

)
(x)


+

∑
x∈〈β〉

( (
1− (X − x)q−1

)
(x+ kβ)−

(
1− (X − x)q−1

)
(x)
)
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= X +

p−1∑
i=0

(
1− (X − iβ)q−1

)
(kβ)

= X + kβ(1−Xq−1) + kβ

p−1∑
i=1

(
1−Xq−1 − hq−2((iβ)−1X)

)
= X +

(
kβ(1−Xq−1)

p−1∑
i=0

1

)
−

(
kβ

p−1∑
i=1

hq−2((iβ)−1X)

)

= X + 0− kβ
p−1∑
i=1

q−2∑
k=0

i−k(β−1X)k

= X − kβ
q−2∑
k=0

(β−1X)k
p−1∑
i=1

i−k

= X − kβ
b q−2
p−1c∑
k=0

(β−1X)(p−1)k(−1)

= X + kβhb q−2
p−1c

(
(β−1X)p−1

)
,

where we used Lemma 2.1 to get from the fourth to the fifth line, and Lemma 2.3 was used to simplify the
inner sum on the third-to-last line.

We remark that this proof is typical in that it consists of a list of simplifications to the interpolation of
a given action. These computations are routine, and will be omitted in the future.

§ 4.2. Representation of Cq

Let Cq = 〈g〉 and fix a basis [βi] = [β0, β1, . . . , βn−1] of Fq over Fp . Define the bijection σ : Cq → Fq by

σ(gk) = σ
(
g
∑n−1
i=0 κip

i
)

=

n−1∑
i=0

κiβi.

In summary, we rewrite the exponent k of a general element gk of Cq p-adically, and then assign the digit
in the i-th position as the coefficient of the i-th basis element of Fq . As we will see shortly, the form of

the representation polynomial reflects where there are p-adic carries when adding 1 and
∑n−1
i=0 κip

i. Thus
it will be convenient to define the family of affine subspaces

F [βi]
j =


j−1∑
i=0

(p− 1)βi +

n−1∑
i=j

δiβi : δi ∈ Fp


of Fq over Fp for 1 ≤ j ≤ n− 1, which will correspond to where these carries occur. Note that since F [βi]

j

is an affine linear subspace of dimension n− j over Fp , it has order pn−j .
While the above form of assignation will be most useful in the following computations, it will be easier

to see that σ is a hemimorphism if we consider a slight variation. To that end, let Cq have the presentation

〈a1, . . . , an | aiaj = ajai for all i, api = ai+1 for i ≤ n− 1, apn = 1〉 .

By taking ai = gp
i−1

, we see that this presentation in fact describes Cq. The assignation σ then becomes

σ(gk) = σ
(
g
∑n−1
i=0 κip

i
)

= σ

(
n−1∏
i=0

(
gp
i
)κi)

= σ

(
n−1∏
i=0

aκii+1

)
=

n−1∑
i=0

κiβi.

Using this second form of the assignation, it is clear that σ is a hemimorphism.
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Lemma 4.2. We have P+(Cq, σ) = 〈an〉 = 〈gpn−1〉, and P+(Cq, σ) is represented by the linear polynomials
X + κn−1βn−1 for κn−1 ∈ Fp .

Proof. Let k =
∑n−1
i=0 κip

i ∈ {0, 1, . . . , q − 1} and let x =
∑n−1
i=0 λiβi ∈ Fq . The elements of P+(Cq, σ)

will be precisely those elements gk ∈ Cq for which gk ∗ x = σ(gk) + x for all x ∈ Fq . Using the above
computations, we have

gk ∗ x = σ(g · σ−1(x))

= σ

((
n−1∏
i=0

aκii+1

)
· σ−1

(
n−1∑
i=0

λiβi

))

= σ

((
n−1∏
i=0

aκii+1

)
·

(
n−1∏
i=0

aλii+1

))
,

and

σ(gk) + x =

(
n−1∑
i=0

κiβi

)
+

(
n−1∑
i=0

λiβi

)

=

n−1∑
i=0

(κi + λi)βi

= σ

(
n−1∏
i=0

aκi+λii+1

)
.

Thus gk ∗ x = σ(gk) + x if and only if
(∏n−1

i=0 a
κi
i+1

)
·
(∏n−1

i=0 a
λi
i+1

)
=
∏n−1
i=0 a

κi+λi
i+1 . The latter statement

occurs if and only if there are no p-adic carries when adding
∑n−1
i=0 κip

i and
∑n−1
i=0 λip

i for any x ∈ Fq ;
that is, when κi + λi ≤ p − 1 for all 0 ≤ i ≤ n − 2 and any choice of λi. In particular, we may choose
x =

∑n−1
i=0 (p− 1)βi, and hence it is clear that we must have κi = 0 for all 0 ≤ i ≤ n− 2. Therefore,

P+(Cq, σ) = {gκn−1p
n−1

: κn−1 ∈ Fp} = 〈gp
n−1

〉 = 〈an〉,

proving the first claim, and by Corollary 3.6, we have

f
[βi]

gκn−1p
n−1 (X) = σ(gκn−1p

n−1

) +X = X + κn−1βn−1,

proving the second one.

We now determine the polynomial generator of Cq in the additive representation. To obtain this, we
only need to keep track of carries from the first position; the representation of a general element is much
more complex since multiple carries need to be accounted for simultaneously.

Theorem 4.3. The permutation polynomial representing the additive action of g on Fq is

f
[βi]
g (X) = X + β0 −

n−1∑
j=1

βj
∑

x∈F [βi]

j

hq−2(x−1X).

Proof. For an element x ∈ Fq , we will write x =
∑n−1
i=0 λiβi. Let us assume that λ0 = · · · = λj−1 = p− 1

and λj < p − 1, so that j is the position of lowest index where there is not a p-adic carry when adding 1

to
∑n−1
i=0 λip

i. Then the action of g on x is

g ∗ x = σ

(
g · σ−1

(
n−1∑
i=0

λiβi

))
= σ

(
g · g

∑n−1
i=0 λip

i
)

= σ
(
g1+

∑n−1
i=0 λip

i
)
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=

j∑
i=0

(1 + λi)βi +

n−1∑
i=j+1

λiβi =

n−1∑
i=0

λiβi +

j∑
i=0

βi = x+ β0 +

j∑
i=1

βi.

Interpolating then gives the desired result.

Corollary 4.4. The coefficient of the Xk term of f
[βi]
g (X) is

−
n−1∑
j=1

βj
∑

x∈F [βi]

j

xq−1−k.

The general form of the representation polynomial of gk, for k =
∑n−1
i=0 κip

i, is:

f
[βi]

gk
(X) = X +

n−1∑
i=0

κiβi −
n−1∑
i=0

(∑
x∈Bi

hq−2(x−1X)

)
βi

where

Bi =

{
n−1∑
i=0

λiβi ∈ Fq :

n−1∑
i=0

λip
i +

n−1∑
i=0

κip
i has a base-p carry at pi

}
.

Based on computational evidence, we suspect there is a correspondence between the degree of the repre-
sentation polynomial and the order of the element of Cq that it represents.

Conjecture 1. The degree of f
[βi]

gk
(X) is pn − pn+1

o(gk)
when o(gk) > p.

§ 4.3. Representation of Cp2 in Fp2

For Cp2 , there is only one carry to keep track of, and hence we can explicitly compute the form of the
representation polynomial of any element of Cp2 . Since Lemma 4.2 gives the form of representation
polynomial for elements of the subgroup of Cp2 of order p, with the following theorem we have described

the entire group Γ[β0,β1] of representation polynomials of Cp2 . Recall that the additive representation groups
of Cp2 in Fp2 are equivalent by Corollary 3.10.

Theorem 4.5. The representation polynomial of gκ0+κ1p for κ0 6= 0 is given by

f
[β0,β1]

gκ0+κ1p
(X) = X + κ0β0 + κ1β1 − β1

p−1∑
λ0=p−κ0

p−1∑
λ1=0

hp2−2
(
(λ0β0 + λ1β1)−1X

)
.

Proof. Let x = λ0β0 + λ1β1 ∈ Fp2 . Then the action of gκ0+κ1p ∈ Cp2 on x is

gκ0+κ1p ∗ x = σ
(
gκ0+κ1p · σ−1(λ0β0 + λ1β1)

)
= σ

(
gκ0+κ1p · gλ0+λ1p

)
= σ

(
g(κ0+λ0)+(κ1+λ1)p

)
=

{
(κ0 + λ0)β0 + (κ1 + λ1)β1, κ0 + λ0 < p,

(κ0 + λ0)β0 + (κ1 + λ1 + 1)β1, κ0 + λ0 ≥ p,

=

{
(λ0β0 + λ1β1) + (κ0β0 + κ1β1), κ0 + λ0 < p,

(λ0β0 + λ1β1) + (κ0β0 + κ1β1) + β1, κ0 + λ0 ≥ p,

=

{
x+ (κ0β0 + κ1β1), λ0 < p− κ0,
x+ (κ0β0 + κ1β1) + β1, λ0 ≥ p− κ0.

Interpolation gives the desired result.
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Lemma 4.6. The leading term of f
[β0,β1]

gκ0+κ1p
(X) is κ0β

p
1X

p2−p when κ0 6= 0.

Proof. Using Lemmas 2.1 and 2.3 to simplify the representation polynomial of gκ0+κ1p (with κ0 6= 0) from
the previous theorem, we obtain

f
[β0,β1]

gκ0+κ1p
(X) = X + κ0β0 + κ1β1 − β1

p−1∑
λ0=p−κ0

p−1∑
λ1=0

hp2−2
(
(λ0β0 + λ1β1)−1X

)
= X + κ0β0 + κ1β1 −

p−1∑
λ0=p−κ0

∑
0≤k<p2−1
p−1|k

(X − λ0β0)kβp
2−k

1 (−1),

Since there are only linear and constant terms outside the double sum on the right, the leading term of

f
[β0,β1]

gκ0+κ1p
(X) must occur inside the sum. In particular, the highest power of X comes from the leading term

of (X − λ0β0)k for the largest value of k, and this occurs when k = p2 − p. Therefore, the leading term is

−
p−1∑

λ0=p−κ0

Xkβp
2−k

1 (−1) = κ0X
p2−pβ

p2−(p2−p)
1 = κ0β

p
1X

p2−p.

Corollary 4.7. The polynomials X ±Xp−1hp−1(Xp−1) are permutation polynomials over Fp2 .

Proof. Recall that the composition of permutation polynomials is again a permutation polynomial. To
prove the corollary, one easily checks that

f
[β0,β1]

g(p−1)+κ1p
(X) = X − β0 + κ1β1 − β1(β−11 X)p−1hp−1

(
(β−11 X)p−1

)
,

from which it follows that

(X + β0) ◦ f [β0,1]
gp−1 (X) = X −Xp−1hp−1(Xp−1)

and

(X + β0) ◦ f [β0,−1]
gp−1 (X) = X +Xp−1hp−1(Xp−1)

are also permutation polynomials.

The corollary may also be proved directly, independent of the fact that these polynomials arise as
representation polynomials of a particular group. Indeed,

x+ axp−1hp−1(xp−1) =

{
x, x ∈ Fp ,
x− a, x ∈ Fp2 \ Fp ,

which shows that X + aXp−1hp−1(xp−1) is a permutation polynomial for any a ∈ Fp .

Lemma 4.8. The representation polynomial f
[β0,β1]
g (X) is conjugate to

1. f
[rβ0,rβ1]
g (X) by rX for any r ∈ F×p2 ;

2. f
[β0+sβ1,β1]
g (X) by Ms(X) = 1

βp0β1−β0β
p
1

(
sβ2

1X
p + (βp0β1 − β0β

p
1 − sβ

p+1
1 )X

)
for any s ∈ Fp ;

3. f
[tβ0,β1]
g (X) by Nt(X) = 1

βp−1
0 −βp−1

1

(
(t− 1)Xp + (βp−10 − tβp−11 )X

)
for any t ∈ F×p .
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Proof. It follows from Corollary 3.11 that to show

L(X)[−1] ◦ f [β0,β1]
g (X) ◦ L(X) = f

[β′0,β
′
1]

g (X)

for a linearized polynomial L(X), it will suffice to verify that L(β0) = β′0 and L(β1) = β′1. This computation
is straightforward.

Theorem 4.9. Let ρ ∈ F×p2 be primitive and let ψ, τ ∈ Fp with τ primitive. Then the polynomials ρX,

Mψ(X), and Nτ (X) (as defined in Lemma 4.8) generate a group of permutation polynomials isomorphic
to GL(Fp2).

Proof. Recall that the elements of the group GL(Fp2) are precisely the linearized polynomials which produce

a change of basis of f
[β0,β1]
g (X) upon conjugation. We will show that any change of basis can be accom-

plished by composition of (conjugations by) ρX, Mψ(X), and Nτ (X), demonstrating that they indeed
generate a group of polynomials under composition modulo Xq −X which is isomorphic to GL(Fp2).

Let the basis [β0, β1] be fixed and the basis [γ0, γ1] be arbitrary. We first show that there are unique
r ∈ F×p2 , s ∈ Fp , and t ∈ F×p for which the basis [γ0, γ1] can be rewritten as [r(tβ0 + sβ1), rβ1]. Since we

must have rβ1 = γ1, r is uniquely determined. That there are unique s and t for which tβ0 + sβ1 = r−1γ0
follows at once since the right-hand side may be written as a unique Fp-linear combination of the basis
elements β0 and β1. Thus the bases [r(tβ0 + sβ1), rβ1] and [γ0, γ1] are the same.

Now write r = ρκ1 , s = κ2ψ, and t = τκ3 . Then

(ρX)[−κ1] ◦ f [β0,β1]
g (X) ◦ (ρX)[κ1] = (ρX)[−(κ1−1)] ◦ f [ρβ0,ρβ1]

g (X) ◦ (ρX)[κ1−1],

and inductively, we have

(ρX)[−κ1] ◦ f [β0,β1]
g (X) ◦ (ρX)[κ1] = f

[ρκ1β0,ρ
κ1β1]

g (X) = f
[rβ0,rβ1]
g (X).

Thus conjugation by (ρX)[κ1] changes the basis of representation from [β0, β1] to [rβ0, rβ1]. This change
of basis is accomplished by a unique linearized polynomial, so we conclude that (ρX)[κ1] = rX. It follows
similarly that Mψ(X)[κ2] = Ms(X) and Nτ (X)[κ3] = Nt(X).

Finally, the computation

(rX)[−1] ◦Ms(X)[−1] ◦Nt(X)[−1] ◦ f [β0,β1]
g (X) ◦Nt(X) ◦Ms(X) ◦ (rX)

= (rX)[−1] ◦Ms(X)[−1] ◦ f [tβ0,β1]
g (X) ◦Ms(X) ◦ (rX)

= (rX)[−1] ◦ f [tβ0+sβ1,β1]
g (X) ◦ (rX)

= f
[r(tβ0+sβ1),r(β1)]
g (X)

= f
[γ0,γ1]
g (X)

shows that conjugation by Lr,s,t(X) = Nt(X) ◦Ms(X) ◦ (rX) changes the basis of the representation
from [β0, β1] to [r(tβ0 + sβ1), rβ1]. As r, s, and t vary, the latter basis runs over all bases of F+

p2 over Fp ,

and hence the set {Lr,s,t(X) : r ∈ F×p2 , s ∈ Fp , t ∈ F×p } produces all changes of basis of F+
p2 over Fp ; that

is, this set is in fact a group isomorphic to GL(Fp2).

Corollary 4.10. Let [β0, β1] and [γ0, γ1] be two bases of F+
p2 over Fp . Then there exist unique r ∈ F×p2 ,

s ∈ Fp , and t ∈ F×p such that

f
[γ0,γ1]
g (X) = L(X)[−1] ◦ f [β0,β1]

g (X) ◦ L(X),

where L(X) = Lr,s,t(X) = Nt(X) ◦Ms(rX).
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§ 5. Multiplicative representations of cyclic groups

In this section, we construct multiplicative representations of several families of cyclic groups, some whose
order divides q − 1 and others with order a power of p.

§ 5.1. Representation of Cm for m | (q − 1)

Let Cm = 〈g〉 for some m | (q − 1) and choose z ∈ {1, 2, . . . ,m − 1} such that (z,m) = 1. Writing ξ =(
ζ
q−1
m

)z
, define σ : Cp → Fq by σ(gk) = ξk so that the action of g describes the cycle (ξ, ξ2, . . . , ξm = 1)

in Fq . This defines a hemimorphism with preserved subgroup P×(Cm, σ) = Cm since

gk ∗ ξ` = σ
(
gk · σ−1(ξ`)

)
= σ

(
gk · g`

)
= σ(gk+`) = ξk+` = ξkξ` = σ(gk)ξ`,

and hence gk ∗ x = σ(gk)ξ` holds for all gk ∈ Cm and all ξ` ∈ σ(Cm).
Theorem 3.9 shows that all representations of Cm in F×q are equivalent. Indeed, the presentation of Cm

has a single generator which is mapped to a generator of the (unique) subgroup of F×q of order (q− 1)/m.
Since there exists an automorphism of F×q mapping any generator of this subgroup to any other, the
conditions of the theorem are satisfied.

Theorem 5.1. Let z ∈ {1, 2, . . . ,m − 1} such that (z,m) = 1 and define ξ =
(
ζ
q−1
m

)z
. Then the

polynomial representing the element gk of Cm in F×q is

f
[ξ;z]

gk
(X) = X + (ξk − 1)Xhb q−2

m c(X
m).

Proof. The action of gk on x ∈ Fq is

gk ∗ x =

{
ξkx, x ∈ 〈ξ〉,
x, x ∈ Fq \ 〈ξ〉.

The result follows from interpolation.

§ 5.2. Representations of Cp and Cq

We will now construct representations of the cyclic p-groups Cp and Cq that preserve a long cycle. Thus
Theorem 3.12 shows that all representations with a fixed value of the parameter z are equivalent, and those
with differing values of z are not quasiequivalent.

Let Cp = 〈g〉 and choose z ∈ {1, 2, . . . , p− 1}. Writing ξ = ζ
q−1
p−1 , define σ : Cp → Fq by

σ(gk) =


ξk, 1 ≤ k ≤ z − 1,

0, k = z,

ξk−1, z + 1 ≤ k ≤ p,

so that the action of g describes the cycle (ξ, ξ2, . . . , ξz−1, 0, ξz, . . . , ξp−1) in Fq . In particular, σ preserves
a long cycle in Cp .

Theorem 5.2. Let z ∈ {1, 2, . . . , p − 1} and define ξ = ζ
q−1
p−1 . Then the polynomial representing the

generator g of Cp in F×q is

f
[ξ;z]
g (X) = X + (ξ − 1)Xhb q−2

p−1 c
(Xp−1) + ξzhq−2(ξ1−zX).
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Proof. The action of g on x ∈ Fq is

g ∗ x =


x, x /∈ 〈ξ〉 ∪ {0},
0, x = ξz−1,

ξz, x = 0,

ξx, x ∈ 〈ξ〉 \ {ξz−1},

and interpolating, we obtain the desired result.

Let Cq = 〈g〉, choose a generator ξ of F×q , and choose z ∈ {1, 2, . . . , q − 1}. Define the bijection
σ : Cq → Fq by

σ
(
gk
)

=


ξk, 1 ≤ k ≤ z − 1,

0, k = z,

ξk−1, z + 1 ≤ k ≤ q.

For z + 1 ≤ k ≤ q, we have gk−q = gk, hence

σ
(
gk−q

)
= σ

(
gk
)

= ξk−1 = ξk−1−(q−1) = ξk−q;

that is, σ
(
gk
)

= ξk for z + 1− q ≤ k ≤ 0. Therefore, we can rewrite the bijection as

σ
(
gk
)

=

{
ξk, z + 1− q ≤ k ≤ z − 1,

0, k = z,

and it is clear that σ preserves a long cycle.

Theorem 5.3. The polynomial representing the multiplicative action of g on Fq is

f
[ξ;z]
g (X) = ξX + ξzhq−2(ξ1−zX),

and the polynomial representing the multiplicative action of gk on Fq for 2 ≤ k ≤ q − 1 is

f
[ξ;z]

gk
(X) = ξkX + ξzhq−2(ξk−zX) + (ξk − ξk−1)

k−1∑
i=1

hq−2(ξk−zX)ξz−i.

Proof. The action of g on 0 ∈ Fq is

g ∗ 0 = σ
(
g · σ−1(0)

)
= σ (g · gz) = σ

(
gz+1

)
= σ

(
gz+1−q) = ξz+1−q,

while for z + 1− q ≤ ` ≤ z − 1,

g ∗ ξ` = σ
(
g · σ−1(ξ`)

)
= σ

(
g · g`

)
= σ

(
g`+1

)
=

{
ξ`+1, z + 1− q ≤ ` ≤ z − 2,

0, ` = z − 1.

For 2 ≤ k ≤ q − 1, the action of gk on Fq is

gk ∗ 0 = σ
(
gk · σ−1(0)

)
= σ

(
gk · gz

)
= σ

(
gz+k

)
= σ

(
gz+k−q

)
= ξz+k−q = ξz+k−1,

while for 1 ≤ k + ` ≤ q − 1,

gk ∗ ξ` = σ
(
gk · σ−1(ξ`)

)
= σ

(
gk · g`

)
= σ

(
gk+`

)
=


ξk+`, 1 ≤ k + ` ≤ z − 1,

0, k + ` = z,

ξk+`−1, z + 1 ≤ k + ` ≤ q − 1,
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=


ξk+`, 1− k ≤ ` ≤ z − k − 1,

0, ` = z − k,
ξk+`−1, z − k + 1 ≤ ` ≤ q − 1− k.

But for z ≤ ` ≤ q − 1− k, we have

σ
(
gk+`−q

)
= σ

(
gk+`

)
= ξk+`−1 = ξk+`−1−(q−1) = ξk+`−q,

so gk ∗ ξ` = ξk+` when z − (q − 1) ≤ ` ≤ −k. Therefore,

gk ∗ ξ` =


ξk+`, z + 1− q ≤ ` ≤ z − k − 1,

0, ` = z − k,
ξk+`−1, z − k + 1 ≤ ` ≤ z − 1.

Finally, interpolation yields the desired polynomials.

We remark that it is straightforward to prove directly that each representation polynomial f
[ξ;z]
g (X) =

ξX + ξzhq−2(ξ1−zX) is in fact a permutation polynomial. First, observe that

hq−2(x) =


1, x = 0,

−1, x = 1,

0, otherwise.

Consequently, it can be seen that

f
[ξ;z]
g (x) =


ξz, x = 0,

0, x = ξz−1,

ξx, otherwise,

from which the permutation behavior of f
[ξ;z]
g (X) is clear. Of course, Theorem 5.3 tells us more than this.

§ 6. Multiplicative representations of nonabelian groups

In this section, we use hemimorphisms to construct polynomial representations of certain dihedral and
Hamiltonian groups. In both cases, the preserved subgroup P ?(G, σ) is a large (index 2) subgroup of G,
and accordingly half of the polynomials in the representation group Γ are linear by Corollary 3.6.

§ 6.1. Representation of dihedral groups of order q − 1

Suppose q − 1 = 2m for some m ∈ N and consider the dihedral group of order 2m with presentation

D2m =
〈
r, t | rm = t2 = rtrt = 1

〉
.

Let ρ be a generator of 〈ζ2〉, let τ be a generator of 〈ζ〉 = F×q , and define σ : D2m → Fq by σ(rktε) = ρkτε

for all k ∈ {0, 1, . . . ,m− 1} and all ε ∈ {0, 1}. By construction, σ is a hemimorphism.
Let x = ρ`τε ∈ F×q . Then the action of rk on x is

rk ∗ x = σ
(
rk · σ−1(ρ`τε)

)
= σ

(
rk · r`tε

)
= σ

(
rk+`tε

)
= ρk+`τε = ρk · ρ`τε = ρkx = σ(rk)x,

which shows that 〈r〉 ≤ P×(D2m, σ). In fact, we have P×(D2m, σ) = 〈r〉 since 〈r〉 ∼= Cm is a maximal
cyclic subgroup of D2m.
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Theorem 6.1. The polynomial representing rk is

f
[ρ,τ ]

rk
(X) = ρkX,

and the polynomial representing t is

f
[ρ,τ ]
t = τXq−2.

Proof. By Corollary 3.6, it is clear that f
[ρ,τ ]

rk
(X) = σ(rk)X = ρkX.

Note that tε = t−ε, so that the action of t on x = ρ`τε ∈ F×q is

t ∗ x = σ
(
t · σ−1(ρ`τε)

)
= σ

(
t · r`tε

)
= σ

(
r−`t · t−ε

)
= σ

(
r−`t1−ε

)
= ρ−`τ1−ε.

We interpolate to obtain

f
[ρ,τ ]
t (X) =

∑
x∈F×q

(
1− (X − x)q−1

(
t ∗ x)

=

m−1∑
`=0

[(
1− (X − ρ`)q−1

)
(ρ−`τ) +

(
1− (X − ρ`τ)q−1

)
(ρ−`)

]
=

m−1∑
`=0

[(
1−Xq−1 − hq−2

(
(ρ`)−1X

))
ρ−`τ +

(
1−Xq−1 − hq−2

(
(ρ`τ)−1X

))
ρ−`
]

=

(
m−1∑
`=0

(1−Xq−1)(ρ−` + ρ−`τ)

)
−

(
m−1∑
`=0

ρ−`
[
τhq−2(ρ−`X) + hq−2(ρ−`τ−1X)

])

=

(1−Xq−1)
∑
x∈F×q

x

−(m−1∑
`=0

ρ−`
q−2∑
k=0

[
τ(ρ−`)k + (ρ−`τ−1)k

]
Xk

)

= 0−
m−1∑
`=0

ρ−`
q−2∑
k=0

ρ−`k(τ + τ−k)Xk

= −
q−2∑
k=0

(τ + τ−k)Xk
m−1∑
`=0

ρ−`(k+1),

where the third line follows from Lemma 2.1. The innermost sum on the last line simplifies to

m−1∑
`=0

(
ρ−(k+1)

)`
=

{
m, ρ−(k+1) = 1,

0, ρ−(k+1) 6= 1,

by Lemma 2.2. Since o(ρ) = m, we have ρ−(k+1) = 1 when m | (k + 1), and hence either k = m − 1 or
k = 2m− 1 as 0 ≤ k ≤ q − 2 = 2m− 1.

It will be helpful at this point to perform several auxiliary computations. Since 2m = q−1, we have that
τ−m = τm. Thus o(τm) = 2 shows that τm is the unique element of F×q of order 2, that is, τ−m = −1.
Additionally, τ−2m = (τ−1)q−1 = 1.

Continuing the computation of f
[ρ,τ ]
t (X), we have

f
[ρ,τ ]
t (X) = −

q−2∑
k=0

(τ + τ−k)Xk
m−1∑
`=0

ρ−`(k+1)

= −m(τ + τ1−m)Xm−1 −m(τ + τ1−2m)X2m−1

= −mτ
[
(1 + τ−m)Xm−1 + (1 + τ−2m)X2m−1]
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= −mτ
[
(1 + (−1))Xm−1 + (1 + 1)X2m−1]

= −2mτX2m−1.

Since 2m = q − 1 ≡ −1 (mod p), we conclude that f
[ρ,τ ]
t (X) = τXq−2.

Corollary 6.2. The polynomial representing rktε ∈ D2m is

f
[ρ,τ ]

rktε
(X) =

{
ρkX, when ε = 0,

ρkτXq−2, when ε = 1.

Theorem 6.3. Any two hemimorphisms representing D2m are quasiequivalent. If we let σ and σ′ be two
such hemimorphisms with parameters ρ, τ and ρ′, τ ′, repsectively, then writing ρ = τd and ρ′ = (τ ′)d

′
, we

have that σ and σ′ are equivalent if and only if d = d′.

Proof. Without loss of generality, we may fix the assignation σ to be

σ(r) = ρ = ζ2, σ(t) = τ = ζ.

Now let σ′ be defined by
σ′(r) = ρ′ = (ζy)2, σ′(t) = τ ′ = ζz

for some (y, 2m) = (z, 2m) = 1 (so that ζy and ζz are generators of F×q ). By Theorem 3.9, to prove that
σ and σ′ are quasiequivalent, it will suffice to show that there exist α ∈ Aut(F×q ) and ψ ∈ Aut(D2m) such
that

σ(r) = α−1 (σ′(ψ(r))) , σ(t) = α−1 (σ′(ψ(t))) .

To this end, define the number s to be the least positive integer satisfying s ≡ y−1z (mod 2m); we
know that y is invertible modulo 2m since (y, 2m) = 1. Note that s is also invertible modulo 2m, since
y and z are, and hence that s is odd. We claim that the functions α and ψ defined by α(x) = xz and
ψ(x) = xs, respectively, satisfy the above equations.

First, we verify that α and ψ are automorphisms of the appropriate groups. That α ∈ Aut(F×q ) is clear
since (z, 2m) = (z, q− 1) = 1. Thus if we can show that ψ(r) and ψ(t) satisfy the same relations as r and
t, respectively, then ψ(r) and ψ(t) will be generators for a group isomorphic to D2m; that is, ψ will be an
automorphism of D2m.

Since s is invertible modulo 2m, it is also invertible modulo m. Hence ψ(r) = rs is also a generator of
〈r〉, and so has order m. Moreover, ψ(t) has order two since ψ(t) = ts = t as s is odd. Finally,

ψ(r)ψ(t)ψ(r)ψ(t) = rstsrsts = rs(trst) = rs(r−s) = 1

shows that ψ(t) and ψ(r) satisfy all the necessary relations, so ψ ∈ Aut(D2m).
Now it remains to verify that the conditions of Theorem 3.9 are satisfied. Note that

ysz−1 ≡ y(y−1z)z−1 ≡ 1 (mod 2m)

and α−1(x) = α(x)[−1] = xz
−1

. Then

α−1 (σ′(ψ(r))) = α−1 (σ′(rs)) =
(
(ζ2y)s

)z−1

= ζ2 = σ(r)

and
α−1 (σ′(ψ(t))) = α−1 (σ′(t)) = (ζz)

z−1

= ζ = σ(t),

as desired.
For the assignations σ and σ′ to be equivalent, we require that we can choose ψ to be the identity, that

is, s = 1. Consider the more-general case where σ is defined by

σ(r) = ρ = τd, σ(t) = τ,
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and σ′ is defined by
σ′(r) = ρ′ = (τ ′)d

′
= τzd

′
, σ′(t) = τ ′ = τz.

Let α ∈ Aut(F×q ) be defined by α(x) = xa. In order to satisfy the conditions of Theorem 3.9, we require
that

τ = σ(t) = α−1 (σ′(t)) = α−1 (τz) = τza
−1

,

which shows that we must have a ≡ z (mod 2m). Thus α(x) = xz, and indeed α ∈ Aut(F×q ) since
(z, 2m) = 1. Furthermore, the theorem also requires that

τd = σ(r) = α−1 (σ′(r)) = α−1
(
τzd

′
)

= τzd
′z−1

= τd
′
.

Therefore σ and σ′ define equivalent representations if and only if d = d′.

§ 6.2. Representation of certain Hamiltonian groups of order q − 1

Hamiltonian groups are defined to be those nonabelian groups in which every subgroup is normal. A finite
Hamiltonian group must be isomorphic to a direct product of a quaternion group of order 8, an elementary
abelian 2-group, and an abelian group of odd order; see [12, pp. 143–145] for a proof. We will not consider
the representation of Hamiltonian groups generally, but rather those of the following type.

Suppose q − 1 = 8m for some odd m ∈ N and let H8m be the Hamiltonian group of order 8m which
is a direct product of the quaternion group and a cyclic group of odd order with presentation

H8m = Q×O =
〈
i, j | i2 = j2 = −1, (−1)2 = 1, ji = −ij

〉
× 〈g | gm = 1〉 .

Let ρ be a generator of 〈ζ2〉, let τ be a generator of 〈ζ〉, and define σ : H8m → Fq by σ(iδjεgk) = ρmδ+4kτε

for all δ ∈ {0, 1, 2, 3}, all ε ∈ {0, 1}, and all k ∈ {0, 1, . . . ,m− 1}. By construction, σ is a hemimorphism.
Let x = ρmγ+4`τε ∈ F×q . Then the action of iδgk on x is

iδgk ∗ x = σ
(
iδgk · σ−1(ρmγ+4`τε)

)
= σ

(
iδgk · iγjεg`

)
= σ

(
iδ+γjεgk+`

)
= ρm(δ+γ)+4(k+`)τε = ρmδ+4k · ρmγ+4`τε = ρmδ+4kx = σ(iδgk)x,

which shows that 〈i, g〉 ≤ P×(H8m, σ). In fact, we have P×(H8m, σ) = 〈i, g〉 since 〈i, g〉 ∼= C4m is a
maximal cyclic subgroup of H8m.

Theorem 6.4. The polynomial representing iδgk is

f
[ρ,τ ]

iδgk
(X) = ρmδ+4kX,

and the polynomial representing j is

f
[ρ,τ ]
j (X) = 2−1τ

[
(1− τ−2−2m)X2m+1 + (1 + τ−2−2m)X6m+1

]
.

Proof. By Corollary 3.6, it is clear that f
[ρ,τ ]

iδgk
(X) = σ(iδgk)X = ρmδ+4kX.

The action of j on x = ρmγ+4`τε ∈ F×q is

j ∗ ρmγ+4`τε = σ
(
j · σ−1(ρmγ+4`τε)

)
= σ

(
j · iγjεg`

)
=

{
σ
(
i−γjg`

)
, ε = 0,

σ
(
i2−γg`

)
, ε = 1,

=

{
ρ−mγ+4`τ, ε = 0,

ρm(2−γ)+4`, ε = 1.

Interpolation proceeds in a similar to the proof of Theorem 6.1, and yields the desired result.
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Corollary 6.5. The polynomial representing iδjεgk ∈ H8m is

f
[ρ,τ ]

iδjεgk
(X) =

{
ρmδ+4kX, when ε = 0,

2−1ρmδ+4kτ
[
(1− τ−2−2m)X2m+1 + (1 + τ−2−2m)X6m+1

]
, when ε = 1.

Theorem 6.6. Any two hemimorphisms representing H8m are quasiequivalent. If we let σ and σ′ be two
such hemimorphisms with parameters ρ, τ and ρ′, τ ′, repsectively, then writing ρ = τd and ρ′ = (τ ′)d

′
, we

have that σ and σ′ are equivalent if and only if d ≡ d′ (mod 4m).

Proof. Without loss of generality, we may fix the assignation σ to be

σ(i) = ρm = ζ2m, σ(j) = τ = ζ, σ(g) = ρ4 = ζ8.

Now let σ′ be defined by

σ′(i) = (ρ′)m = (ζy)2m, σ′(j) = τ ′ = ζz, σ′(g) = (ρ′)4 = (ζy)8

for some (y, 8m) = (z, 8m) = 1 (so that ζy and ζz are generators of F×q ). By Theorem 3.9, to prove that
σ and σ′ are quasiequivalent, it will suffice to show that there exist α ∈ Aut(F×q ) and ψ ∈ Aut(D2m) such
that

σ(i) = α−1 (σ′(ψ(i))) , σ(j) = α−1 (σ′(ψ(j))) , σ(g) = α−1 (σ′(ψ(g))) .

We claim that the functions α and ψ, defined as follows, satisfy the above equations. Define the
function α by α(x) = xz. Let s be the least positive integer satisfying s ≡ y−1z (mod 8m); we know that
y is invertible modulo 8m since (y, 8m) = 1. Now let ψ to be the homomorphism defined by ψ(i) = is,
ψ(j) = j, and ψ(g) = gs.

First, we verify that α and ψ are automorphisms of the appropriate structures. That α ∈ Aut(F×q ) is
clear since (z, 8m) = (z, q − 1) = 1. Note that s is invertible modulo 8m since (y, 8m) = (z, 8m) = 1.
Thus, in particular, s is invertible modulo m and modulo 4, and hence ψ(i) and ψ(g) are generators of 〈i〉
and 〈g〉 = O, respectively. Certainly ψ induces an automorphism of O, and moreover, ψ also induces an
automorphism of Q since Aut(Q) ∼= S24, and hence there exists an automorphism of Q which maps i to
is = i±1 and fixes j. Therefore ψ ∈ Aut(H8m).

It remains to verify that the conditions of Theorem 3.9 are satisfied. Note that

ysz−1 ≡ y(y−1z)z−1 ≡ 1 (mod 8m)

and α−1(x) = α(x)[−1] = xz
−1

. Then

α−1 (σ′(ψ(i))) = α−1 (σ′(is)) =
(
(ζ2my)s

)z−1

= ζ2m = σ(i),

α−1 (σ′(ψ(j))) = α−1 (σ′(j)) = (ζz)
z−1

= ζ = σ(j),

and

α−1 (σ′(ψ(g))) = α−1 (σ′(gs)) =
(
(ζ8y)s

)z−1

= ζ8 = σ(g),

as desired.
For the assignations σ and σ′ to be equivalent, we require that we can choose ψ to be the identity, that

is, s = 1. Consider the more-general case where σ is defined by

σ(i) = ρm = τmd, σ(j) = τ, σ(g) = ρ4 = z4d,

and σ′ is defined by

σ′(i) = (ρ′)m =
(

(τ ′)d
′
)m

= τmd
′z, σ′(j) = τ ′ = τz, σ(g) = (ρ′)4 =

(
(τ ′)d

′
)

= τ4d
′z.
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Let α ∈ Aut(F×q ) be defined by α(x) = xa. In order to satisfy the conditions of Theorem 3.9, we require
that

τ = σ(t) = α−1 (σ′(t)) = α−1 (τz) = τza
−1

,

which shows that we must have a ≡ z (mod 8m). Thus α(x) = xz, and indeed α ∈ Aut(F×q ) since
(z, 8m) = 1. Furthermore, the theorem also requires that

τmd = σ(i) = α−1 (σ′(i)) = α−1
(
τmd

′z
)

= τmd
′zz−1

= τmd
′

and
τ4d = σ(g) = α−1 (σ′(g)) = α−1

(
τ4d

′z
)

= τ4d
′zz−1

= τ4d
′
.

From the first equation, we have md ≡ md′ (mod 4), and hence d ≡ d′ (mod 4) (since m is odd); similarly,
we have d ≡ d′ (mod m) since the second equation implies 4d ≡ 4d′ (mod m). Thus we conclude that σ
and σ′ define equivalent representations if and only if d ≡ d′ (mod 4m).
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