
ON THE EVALUATION OF A CLASS OF WEIL SUMS IN

CHARACTERISTIC 2

ROBERT S. COULTER

Abstract. We consider a class of Weil sums involving polynomials of a par-
ticular shape. In all cases, explicit evaluations are obtained.

1. Introduction

Let p be a prime and q = pe for some integer e. We denote the finite field of q
elements by Fq and the non-zero elements of Fq by F

∗
q . A Weil sum is an exponential

sum of the form
∑

x∈Fq
χ
(

f(x)
)

, where χ is a non-trivial additive character of Fq

and f ∈ Fq[X ]. In this article we consider the evaluation of all Weil sums where

f(X) = aXpα+1 +L(X) and p = 2. Here, a ∈ Fq, α is any natural number and L ∈
Fq[X ] is any additive polynomial (by which it is meant that L(x+y) = L(x)+L(y)
for all x, y ∈ Fq). A result from [4] reduces the problem to the case χ = χ1, the
canonical additive character, and L(X) = bX for some b ∈ Fq. Hence our objective
in this paper is to explicitly determine the value of the sum

Sα(a, b) =
∑

x∈Fq

χ1(axpα+1 + bx)

for all a, b ∈ Fq and where p = 2. Carlitz explicitly determined Sα(a, b) with α = 1
in [1] (for p = 2) and [2] (for p odd). For general α, the author has completed the
evaluation of Sα(a, b) in odd characteristic in [3] and [4]. Here, we complete the
evaluation of Sα(a, b) for all characteristics by considering the case p = 2. For the
most part, this article uses methods similar to those developed in [3] and [4], which
are generalisations of methods employed by Carlitz in [2].

If t is an integer dividing e then we denote by Trt the trace function mapping
Fq onto Fpt . Formally,

Trt(x) = x + xpt

+ xp2t

+ . . . + xp(e/t−1)t

for all x ∈ Fq. The absolute trace function, Tr1, is simply denoted Tr. The
trace function satisfies Trt(ax) = aTrt(x), Trt(x + y) = Trt(x) + Trt(y) and

Trt(x
pt

) = Trt(x) for all x, y ∈ Fq and a ∈ Fpt . The canonical additive character,
χ1, is given by

χ1(x) = exp
(

2πiTr(x)/p
)

for all x ∈ Fq. Due to the properties of the trace function, χ1(x + y) = χ1(x)χ1(y)
and χ1(x

p) = χ1(x) for all x, y ∈ Fq. Any additive character of Fq can be obtained
from χ1: for any a ∈ Fq, χa(x) = χ1(ax) for all x ∈ Fq . Finally, a polynomial
f ∈ Fq[X ] is called a permutation polynomial if it induces a permutation of Fq .
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2 ROBERT S. COULTER

Throughout this article, unless otherwise stated, q = 2e for some integer e and
d = gcd(α, e) = (α, e). As Sα(0, 0) = q and Sα(0, b) = 0 for all b ∈ F

∗
q , we always

assume a 6= 0. We note that, throughout this article, χa(x) = ±1 for all x ∈ Fq and
therefore Sα(a, b) is always an integer. The problem of evaluating Sα(a, b) splits
into two distinct cases: e/d odd and e/d even.

2. Preliminary results

In this section, we provide some preliminary results. Our first result concerns
greatest common divisors. For want of a reference, we provide a proof.

Lemma 2.1. Let d = (α, e). Then

(2α + 1, 2e − 1) =

{

1 if e/d is odd,

2d + 1 if e/d is even.

Proof. It is well known that

(22α − 1, 2e − 1) = 2(2α,e) − 1 =

{

2d − 1 if e/d is odd,

22d − 1 if e/d is even.

Further, it is clear that (2α + 1, 2d − 1) = 1 since (2α + 1, 2α − 1) = 1. Now

(22α − 1, 2e − 1) = (2α − 1, 2e − 1)

(

2α + 1,
2e − 1

(2α − 1, 2e − 1)

)

= (2d − 1)
(

2α + 1, (2e − 1)/(2d − 1)
)

= (2d − 1) (2α + 1, 2e − 1)

from which we can derive the lemma. �

We require the following lemma from [4].

Lemma 2.2 ([4, Lemma 4.2]). Denote by χ1 the canonical additive character of

Fq with q = pe, p any prime. Let a ∈ Fq be arbitrary and let d be some integer

dividing e. Then
∑

β∈F
pd

χ1(aβ) =

{

pd if Trd(a) = 0,

0 otherwise.

Theorem 2.3 ([4, Theorem 5.1]). Let q = pe and L ∈ Fq[X ] be a linearised

polynomial of the form

L(X) =

e−1
∑

i=0

biX
pi

with bi ∈ Fq for all i. Let χc be any additive character of Fq with c ∈ Fq and let

b =
∑e−1

i=0 (bic)
pe−i

. Then
∑

x∈Fq

χc

(

axpα+1 + L(x)
)

= Sα(ca, b).

Theorem 2.3 reduces the overall problem to that of evaluating Sα(a, b). Conse-
quently, for the remainder of the paper, we consider Sα(a, b) only.



N
ew

 Z
ea

la
n

d
 J

. M
at

h
. 2

8 
(1

99
9)

, 1
71

-1
84

A CLASS OF WEIL SUMS IN CHARACTERISTIC 2 3

3. Solvability of the equation a2α

x22α

+ ax = 0

The next result is the characteristic 2 version of [3, Theorem 4.1]. As in odd
characteristic, this theorem plays a central role in the evaluation of Sα(a, b).

Theorem 3.1. Let g be a primitive element of Fq. For any a ∈ F
∗
q consider the

equation a2α

x22α

+ ax = 0 over Fq.

(i) If e/d is odd then there are 2d solutions to this equation for any choice of

a ∈ F
∗
q .

(ii) If e/d is even then there are two possible cases. If a = gt(2d+1) for some t

then there are 22d solutions to the equation. If a 6= gt(2d+1) for any t then

there exists one solution only, x = 0.

Proof. We wish to solve the equation x22α−1 = a1−2α

. Let a = gs for some integer
s. Then we wish to solve for r in the equation

gr(22α−1) = gs(1−2α)

where x = gr. Equivalently, we need to find solutions r of the equation

r(22α − 1) ≡ s(1 − 2α) mod (q − 1).

Again recall iu ≡ v mod n has a solution i if and only if (u, n) divides v. If e/d is
odd we have (22α−1, 2e−1) = 2d−1 which divides s(1−2α) regardless of the choice
of s. Thus, for e/d odd, there are always solutions to the equation for any choice
of a ∈ F

∗
q . It is obvious that there are 2d solutions in this case. If e/d is even then

(22α − 1, 2e − 1) = 22d − 1. This divides s(1− 2α) if and only if s ≡ 0 mod (2d + 1)
because, by Lemma 2.1, (2d + 1, 1 − 2α) = 1. If s 6≡ 0 mod (2d + 1) then x = 0 is
the only solution. �

4. Evaluating Sα(a, b) when e/d is odd

In this section we assume e/d is odd. The following theorem is a direct conse-
quence of Lemma 2.1.

Theorem 4.1. Let χ be any non-trivial additive character of Fq. If e/d is odd then

∑

x∈Fq

χ(ax2α+1) =

{

q if a = 0,

0 otherwise.

Note that the evaluation of Sα(a, 0) when e/d is odd is covered by the above theo-
rem. We now consider Sα(a, b) for e/d odd.

Theorem 4.2. Let b ∈ F
∗
q and suppose e/d is odd. Then Sα(a, b) = Sα(1, bc−1)

where c ∈ F
∗
q is the unique element satisfying c2α+1 = a. Further, Sα(1, b) = 0 if

Trd(b) 6= 1 and Sα(1, b) = ±2(e+d)/2 if Trd(b) = 1.
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4 ROBERT S. COULTER

Proof. Let e/d be odd. The polynomial X2α+1 is a permutation polynomial over
Fq and so there exists a unique c ∈ F

∗
q such that c2α+1 = a. We have

Sα(a, b) =
∑

x∈Fq

χ1(ax2α+1 + bx)

=
∑

x∈Fq

χ1

(

(cx)2
α+1 + bc−1(cx)

)

= Sα(1, bc−1).

So we need only be concerned with the sum Sα(1, b).

S2
α(1, b) =

∑

w,y∈Fq

χ1(w
2α+1 + bw + y2α+1 + by)

=
∑

x,y∈Fq

χ1

(

(x + y)2
α+1 + b(x + y) + y2α+1 + by

)

=
∑

x∈Fq

(

χ1(x
2α+1 + bx)

∑

y∈Fq

χ1(x
2α

y + xy2α

)
)

=
∑

x∈Fq

(

χ1(x
2α+1 + bx)

∑

y∈Fq

χ1

(

y2α

(x22α

+ x)
)

)

.

The inner sum is zero unless x22α

+ x = 0, i.e., if x ∈ F2d . So we can simplify to

S2
α(1, b) = q

∑

x∈F
2d

χ1(x
2α+1 + bx)

= q
∑

x∈F
2d

χ1(x
2 + bx)

= q
∑

x∈F
2d

χ1(x
2) χ1(bx)

= q
∑

x∈F
2d

χ1(x) χ1(bx)

= q
∑

x∈F
2d

χ1

(

x(b + 1)
)

=

{

2e+d if Trd(1 + b) = 0,

0 if Trd(1 + b) 6= 0.

As e/d is odd, Trd(1) = 1. The result follows. �

We make a few remarks concerning the trace function. These observations are
used to prove the next result. There are 2e−d distinct elements a ∈ Fq satisfying

Trd(a) = 0. For any element c ∈ Fq it is clear that Trd(c
22α

+ c) = 0. Furthermore,

when e/d is odd the polynomial X22α

+ X has 2e−d distinct images as x22α

+ x =

y22α

+ y if and only if x + y ∈ F2d . Hence, when e/d is odd, every a ∈ Fq which

satisfies Trd(a) = 0 can be written in the form a = c22α

+ c for a suitable choice

of c. For e/d odd we also have Trd(c
22α

+ c + 1) = 1. So every element b ∈ Fq

satisfying Trd(b) = 1 can be written in the form b = c22α

+ c + 1 for a suitable
choice of c ∈ Fq .
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A CLASS OF WEIL SUMS IN CHARACTERISTIC 2 5

Lemma 4.3. Let b ∈ F
∗
q satisfy Trd(b) = 1 and suppose e/d is odd. Then

Sα(1, b) = χ1(c
2α+1 + c)Sα(1, 1)

where b = c22α

+ c + 1 for some c ∈ Fq.

Proof. Let c ∈ Fq satisfy b = c22α

+ c + 1. We have

Sα(1, 1) =
∑

x∈Fq

χ1(x
2α+1 + x)

=
∑

x∈Fq

χ1

(

(x + c2α

)2
α+1 + (x + c2α

)
)

=
∑

x∈Fq

χ1(x
2α+1 + x + x2α

c2α

+ xc22α

+ c22α+2α

+ c2α

)

= χ1(c
22α+2α

+ c2α

)
∑

x∈Fq

χ1

(

x2α+1 + x(1 + c + c22α

)
)

= χ1(c
2α+1 + c)Sα(1, b).

As χ1(c
2α+1 + c) = ±1 we have the identity claimed. �

In Theorem 4.2 we failed to determine the sign of Sα(1, b) when Trd(b) = 1.
Lemma 4.3 reduces this problem to determining the sign of Sα(1, 1), which we shall
now do. The method employed is a generalisation of the method used by Carlitz
in [1]. We will need the following lemmas on two arithmetic functions.

Lemma 4.4. Let n and d be any positive integers with n odd. Define fd(n) to be

the arithmetic function

fd(n) =
∑

s|n

µ(n/s)

[(

2

s

)

2(s−1)/2)

]d

,

where µ is the Möbius function and
(

2
s

)

is the Jacobi symbol. If m is the product of

distinct divisors of n then fd(n) ≡ 0 mod m.

Proof. It is readily established that fd(p) ≡ 0 mod p for any odd prime p and all
positive integers d. Suppose that, for some odd integer n and m the product of
distinct divisors of n, we have fd(n) ≡ 0 mod m for all d. Consider fd(np) for some
prime p. We have

fd(np) =
∑

s|n,r|p

µ(np/rs)

[(

2

sr

)

2(sr−1)/2)

]d

= −fd(n) +
∑

s|n

µ(n/s)

[(

2

sp

)

2(sp−1)/2)

]d

.
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6 ROBERT S. COULTER

To begin with,

fd(np) ≡
∑

s|n

µ(n/s)

[(

2

p

)(

2

s

)

(2(s−1)/2)p+12(p−s)/2

]d

mod m

≡

[(

2

p

)

2(p−1)/2

]d
∑

s|n

µ(n/s)

[(

2

s

)

2(s−1)/2

]pd

mod m

≡

[(

2

p

)

2(p−1)/2

]d

fpd(n) mod m

≡ 0 mod m.

If (n, p) = p then we are done. If (n, p) = 1 then we also have

fd(np) ≡ −fd(n) +
∑

s|n

µ(n/s)

[(

2

s

)

2(p−1)/22(sp−1)/2)

]d

mod p

≡ −fd(n) +
∑

s|n

µ(n/s)

[(

2

s

)

(2(p−1)/2)s+12(s−1)/2)

]d

mod p

≡ −fd(n) + fd(n) mod p

≡ 0 mod p.

Hence, fd(np) ≡ 0 mod mp. The lemma follows by induction. �

Lemma 4.5. Let n and d be any positive integers with n odd. Define gd(n) to be

the arithmetic function

gd(n) =
∑

s|n

µ(n/s)2sd.

If m is the product of distinct divisors of n then gd(n) ≡ 0 mod m.

Proof. It is easily established that gd(p) ≡ 0 mod p for any odd prime p and all
possible d. Suppose gd(n) ≡ 0 mod m for all d. Consider gd(np). We have gd(np) =
gdp(n) − gd(n). Clearly, gd(np) ≡ 0 mod m. If (n, p) = p then we are done. If
(n, p) = 1 then

gd(np) ≡ −gd(n) +
∑

s|n

µ(n/s)2spd mod p

≡ −gd(n) +
∑

s|n

µ(n/s)2sd mod p

≡ 0 mod p.

Hence, gd(np) ≡ 0 mod mp and the lemma is established. �

Theorem 4.6. Let e/d be odd. Then Sα(1, 1) =
(

2
e/d

)d
2(e+d)/2

Proof. By Theorem 4.2, Sα(1, 1) = εe/d2
(e+d)/2. We need to prove εe/d =

(

2
e/d

)d

for all odd e/d. Let

N(q) = #{(x, y) ∈ Fq × Fq | x2α+1 + x = y2d

+ y}
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A CLASS OF WEIL SUMS IN CHARACTERISTIC 2 7

and, for t ≥ 1, let

N ′(2td) = #{(x, y) ∈ F2td × F2td | x2α+1 + x = y2d

+ y and x not in any

proper subfield of F2td containing F2d}.

From these definitions it is clear that

N(q) =
∑

s|(e/d)

N ′(2sd).

By the Möbius Inversion Formula,

N ′(q) =
∑

s|(e/d)

µ
(

(e/d)/s
)

N(2sd).

Furthermore, in regards to N ′(2td), if (x, y) is such a solution then (x2id

, y2id

),
0 ≤ i ≤ t − 1, are also distinct solutions. Hence, N ′(2td) ≡ 0 mod t and, in
particular, N ′(q) ≡ 0 mod e/d. Also, it is easily seen that N ′(2d) = N(2d) = 2d+1.
Now

qN(q) =
∑

a∈Fq

∑

x∈Fq

(

χ1

(

a(x2α+1 + x)
)

∑

y∈Fq

χ1

(

y2d

(a2d

+ a)
)

)

= q
∑

a∈F
2d

∑

x∈Fq

χ1(ax2α+1 + ax).

As e/d is odd, X2α+1 is a permuation polynomial over Fq . Hence

N(q) = q +
∑

a∈F
∗

2d

∑

x∈Fq

χ1(ax2α+1 + ax)

= q +
∑



γ∈F∗
2d

γ2α+1=a

ff

∑

x∈Fq

χ1

(

(γx)2
α+1 + (aγ−1)γx)

= q +
∑

γ∈F
∗

2d

∑

x∈Fq

χ1(x
2α+1 + γ2α

x)

= q +
∑

γ∈F
∗

2d

Sα(1, γ).

However, Sα(1, γ) = 0 unless Trd(γ) = 1. For γ ∈ F
∗
2d , Trd(γ) = γ as e/d is odd.

So N(q) = q + Sα(1, 1) = 2e + εe/d2
(e+d)/2, where εe/d = ±1.

We now proceed by induction on e/d. Firstly, suppose e/d = p, an odd prime.
We have N ′(2e) ≡ 0 mod p. However,

N ′(2e) = N(2e) − N(2d)

= 2e + εe/d2
(e+d)/2 − 2d+1

= (2e/d)d − 2d+1 + εe/d(2
((e/d)+1)/2)d

≡ (2p)d − 2d+1 + εp(2
(p+1)/2)d mod p

≡ −2d + 2dεp

(

2

p

)d

mod p.



N
ew

 Z
ea

la
n

d
 J

. M
at

h
. 2

8 
(1

99
9)

, 1
71

-1
84

8 ROBERT S. COULTER

Simplifying yields εe/d =
(

2
e/d

)d
if e/d is prime. Now suppose e/d = pr for p an odd

prime and r > 1. We have N ′(2prd) ≡ 0 mod pr, in which case N ′(2prd) ≡ 0 mod p
also holds. Further,

N ′(2prd) = N(2prd) − N(2pr−1d)

= 2prd + εpr(2(pr+1)/2)d − 2pr−1d − εpr−1(2(pr−1+1)/2)d.

As 2prd ≡ 2pr−1d mod p, we can simplify to the equation

εpr

(

2

pr

)d

= εpr−1

(

2

pr−1

)d

.

As εp =
(

2
p

)d
, induction on r shows εpr =

(

2
pr

)d
.

It remains to deal with the general case. Let e/d = n be some odd number and m

the product of distinct divisors of n. Assume that εs =
(

2
s

)d
for all proper divisors

of n. As before, we have N ′(2e) ≡ 0 mod e/d, which implies N ′(2e) ≡ 0 mod m.
Also,

N ′(2e) =
∑

s|(e/d)

µ
(

(e/d)/s
)

N(2sd)

=
∑

s|(e/d)

µ
(

(e/d)/s
)

2sd +
∑

s|(e/d)

µ
(

(e/d)/s
)

εs(2
(s+1)/2)d

= gd(n) +
∑

s|n

µ(n/s)εs(2
(s+1)/2)d

≡
∑

s|n

µ(n/s)εs(2
(s+1)/2)d mod m,

where the last step follows from Lemma 4.5. Hence
∑

s|n

µ(n/s)εs(2
(s+1)/2)d ≡ 0 mod m.

Dividing by 2d yields

0 ≡
∑

s|n

µ(n/s)εs(2
(s−1)/2)d mod m

≡ εn(2(n−1)/2)d +
∑

s|n
s<n

µ(n/s)

[(

2

s

)

2(s−1)/2

]d

mod m

≡ εn(2(n−1)/2)d + fd(n) −

(

2

n

)d

(2(n−1)/2)d mod m.

By Lemma 4.4, we have

εn(2(n−1)/2)d ≡

(

2

n

)d

(2(n−1)/2)d mod m

from which εn =
(

2
n

)d
. Therefore, by induction, εe/d =

(

2
e/d

)d
for all e/d odd. �
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A CLASS OF WEIL SUMS IN CHARACTERISTIC 2 9

5. Evaluating Sα(a, b) when e/d is even

Throughout this section we assume e/d is even. Our first result determines the
absolute value of Sα(a, 0) for this case.

Lemma 5.1. Let e/d be even so that e = 2m for some integer m. Then

Sα(a, 0) = ±

{

2m+d if a = gt(2d+1) for some integer t,

2m if a 6= gt(2d+1) for any integer t.

Proof. We have

S2
α(a, 0) =

∑

w,y∈Fq

χ1(aw2α+1 + ay2α+1)

=
∑

x,y∈Fq

χ1

(

a(x + y)2
α+1 + ay2α+1

)

=
∑

x∈Fq

(

χ1(ax2α+1)
∑

y∈Fq

χ1(ax2α

y + axy2α

)
)

=
∑

x∈Fq

(

χ1(ax2α+1)
∑

y∈Fq

χ1

(

(a2α

x22α

+ ax)y2α)

)

.

The inner sum is zero unless a2α

x22α

+ ax = 0, in which case the inner sum is q. If

a 6= gt(2d+1) for any integer t then by Theorem 3.1 we have Sα(a, 0) = ±2m.

Now suppose a = gt(2d+1) for some integer t. Let x0 be any non-zero solution of

the equation a2α

x22α

+ ax = 0. Then there are 22d solutions of this equation given
by βx0, β ∈ F22d , see Theorem 3.1. We have

S2
α(a, 0) = q

∑

β∈F
22d

χ1(ax2α+1
0 β2α+1).

For any non-zero β ∈ F22d we have β2α+1 = δ2d+1 = γ ∈ F2d . Further, every
non-zero γ ∈ F2d occurs 2d + 1 times. Therefore

∑

β∈F
22d

χ1(ax2α+1
0 β2α+1) = 1 + (2d + 1)

∑

γ∈F
∗

2d

χ1(ax2α+1
0 γ)

= 1 + (2d + 1)

{

2d − 1 if Trd(ax2α+1
0 ) = 0,

−1 if Trd(ax2α+1
0 ) 6= 0,

=

{

22d if Trd(ax2α+1
0 ) = 0,

−2d if Trd(ax2α+1
0 ) 6= 0.

The middle step follows from Lemma 2.2. Now a2α

x22α

0 = ax0 and so (ax2α+1
0 )2

α

=

ax2α+1
0 . Thus ax2α+1

0 ∈ F2d and since e/d is even we have Trd(ax2α+1
0 ) = 0. This

completes the proof. �

It remains to determine the sign.

Theorem 5.2. Let e/d be even so that e = 2m for some integer m. Then

Sα(a, 0) =

{

(−1)m/d2m if a 6= gt(2d+1) for any integer t,

−(−1)m/d2m+d if a = gt(2d+1) for some integer t.
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10 ROBERT S. COULTER

Proof. Let N denote the number of solutions (x, y) ∈ Fq × Fq of the equation

ax2α+1 = y2d

− y. (1)

We have

qN =
∑

w∈Fq

∑

x,y∈Fq

χ1

(

w(ax2α+1 − y2d

+ y)
)

= q2 +
∑

w∈F∗
q

∑

x∈Fq

(

χ1(awx2α+1)
∑

y∈Fq

χ1

(

w(y − y2d

)
)

)

= q2 +
∑

w∈F∗
q

∑

x∈Fq

(

χ1(awx2α+1)
∑

y∈Fq

χ1

(

y2d

(w2d

− w)
)

)

.

The inner sum is zero unless w2d

= w, i.e., w ∈ F2d . Simplifying yields

N = q +
∑

w∈F
∗

2d

∑

x∈Fq

χ1(awx2α+1).

For w ∈ F
∗
2d , the equation wz2α+1

w = 1 is solvable for zw ∈ Fq if (2α+1, q−1) = 2d+1

divides (q − 1)/(2d − 1). If e/d is even then this is always true and so

N = q +
∑

w∈F
∗

2d

∑

x∈Fq

χ1(awx2α+1)

= q +
∑

w∈F
∗

2d

∑

x∈Fq

χ1

(

aw(zwx)2
α+1

)

= q +
∑

w∈F
∗

2d

∑

x∈Fq

χ1(ax2α+1)

= q + (2d − 1)Sα(a, 0).

Let us return to (1). If (x, y) is a solution with x 6= 0 then (wx, y) is also a solution

where w2d+1 = 1. Therefore the solutions of this equation with x 6= 0 occur in
batches of size 2d + 1. In addition there are 2d solutions when x = 0. So according
to this counting argument

N ≡ 2d mod (2d + 1)

≡ −1 mod (2d + 1).

Combining with our previous identity for N and simplifying we deduce

Sα(a, 0) ≡ 1 mod (2d + 1).

For d dividing m,

2m mod (2d + 1) =

{

−1 if m/d odd,

1 if m/d even.

Suppose first that a 6= gt(2d+1) for any integer t. By Lemma 5.1, Sα(a, 0) = ε2m

where ε = ±1. As Sα(a, 0) ≡ 1 mod (2d + 1),

ε =

{

−1 if m/d odd,

1 if m/d even
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or simply ε = (−1)m/d. Now suppose a = gt(2d+1) for some integer t. Then, by
Lemma 5.1, Sα(a, 0) = κ2m+d, with κ = ±1, whereby κ = −ε. This completes the
proof. �

Finally, we consider Sα(a, b) when e/d is even.

Theorem 5.3. Let b ∈ F
∗
q and suppose e/d is even so that e = 2m for some integer

m. Let f(X) = a2α

X22α

+ aX. There are two cases.

(i) If a 6= gt(2d+1) for some integer t then f is a permutation polynomial. Let

x0 ∈ Fq be the unique element satisfying f(x0) = b2α

. Then

Sα(a, b) = (−1)m/d2mχ1(ax2α+1
0 ).

(ii) If a = gt(2d+1) then Sα(a, b) = 0 unless the equation f(x) = b2α

is solvable.

If the equation is solvable, with solution x0 say, then

Sα(a, b) =

{

−(−1)m/d2m+dχ1(ax2α+1
0 ) if Trd(a) = 0,

(−1)m/d2mχ1(ax2α+1
0 ) if Trd(a) 6= 0.

Proof. We have

Sα(a, b)Sα(a, 0) =
∑

w,y∈Fq

χ1(aw2α+1 + bw) χ1(ay2α+1)

=
∑

x,y∈Fq

χ1

(

a(x + y)2
α+1 + b(x + y)

)

χ1(ay2α+1)

=
∑

x,y∈Fq

χ1

(

a(x + y)2
α+1 + b(x + y) + ay2α+1

)

=
∑

x∈Fq

(

χ1(ax2α+1 + bx)
∑

y∈Fq

χ1(ax2α

y + axy2α

+ by)
)

=
∑

x∈Fq

(

χ1(ax2α+1 + bx)
∑

y∈Fq

χ1

(

y2α

(a2α

x22α

+ ax + b2α

)
)

)

=
∑

x∈Fq

(

χ1(ax2α+1 + bx)
∑

y∈Fq

χ1

(

y2α(

f(x) + b2α)

)

)

.

Again there are two cases depending on whether f is a permutation polynomial or
not.

Suppose f is a permutation polynomial. Then, by Theorem 3.1, e/d is even and

a 6= gt(2d+1). The inner sum is zero unless f(x) = b2α

. By assumption there exists
a unique x0 satisfying f(x0) = b2α

. Hence the inner sum is zero unless x = x0 in
which case it is q. Simplifying yields

Sα(a, b)Sα(a, 0) = qχ1(ax2α+1
0 + bx0).

Since f(x0) = b2α

we have

Tr(ax2α+1
0 + bx0) = Tr(a2α

x22α

0 x2α

0 + b2α

x2α

0 )

= Tr
(

x2α

0 (b2α

+ ax0) + b2α

x2α

0

)

= Tr(ax2α+1
0 ).
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12 ROBERT S. COULTER

So χ1(ax2α+1
0 + bx0) = χ1(ax2α+1

0 ). We can complete the proof for this case by
applying Theorem 5.2.

Now suppose f is not a permutation polynomial. We have

Sα(a, b)Sα(a, 0) =
∑

x∈Fq

(

χ1(ax2α+1 + bx)
∑

y∈Fq

χ1

(

y2α

(a2α

x22α

+ ax + b2α

)
)

)

. (2)

The inner sum is zero (and so too is Sα(a, b)) unless f(x) = b2α

has a solution. If
there exists a solution then, overall, there are 22d solutions given by x = x0 + c
where x0 is any solution of f(x) = b2α

and c ∈ F22d . To see that there can only be
22d solutions suppose x1 and x2 are solutions of f(x) = b2α

. Then we must have
f(x1) = f(x2) and f(x2 −x1) = 0. This implies that x2 −x1 = c for some c ∈ F22d .
Thus we have accounted for all solutions of f(x) = b2α

. Returning to (2) we obtain

Sα(a, b)Sα(a, 0) = q
∑

c∈F
22d

χ1

(

a(x0 + c)2
α+1 + b(x0 + c)

)

. (3)

For any x of the form x = x0 + c we have

Tr(ax2α+1 + bx) = Tr
(

a(x0 + c)2
α+1 + b(x0 + c)

)

= Tr(ax2α+1
0 + bx0) + Tr(ac2α+1)

+ Tr(acx2α

0 + ac2α

x0 + bc)

= Tr(ax2α+1
0 + bx0) + Tr(ac2α+1)

+ Tr
(

c2α

(a2α

x22α

0 + ax0 + b2α

)
)

= Tr(ax2α+1
0 + bx0) + Tr(ac2α+1).

Applying this identity to (3) yields

Sα(a, b)Sα(a, 0) = q
∑

c∈F
22d

χ1(ax2α+1
0 + bx0) χ1(ac2α+1)

= q χ1(ax2α+1
0 + bx0)

∑

c∈F
22d

χ1(ac2α+1).

Since (2α + 1, 22d − 1) = 2d + 1 the polynomial X(2α+1)/(2d+1) is a permutation
polynomial over F22d . So, by a change of variable, we have

Sα(a, b)Sα(a, 0) = q χ1(ax2α+1
0 + bx0)

∑

β∈F
22d

χ1(aβ2d+1). (4)

We note that, as in the proof of the first part of this theorem, χ1(ax2α+1
0 + bx0) =

χ1(ax2α+1
0 ). Any β ∈ F22d satisfies β2d+1 ∈ F2d and every element of F

∗
2d will occur

2d + 1 times in this way. Thus the sum in (4) evaluates to
∑

β∈F
22d

χ1(aβ2d+1) = 1 +
∑

β∈F
∗

22d

χ1(aβ2d+1)

= 1 + (2d + 1)
∑

γ∈F
∗

2d

χ1(aγ)

=

{

22d if Trd(a) = 0,

−2d otherwise.
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We have shown

Sα(a, b)Sα(a, 0) =

{

2e+2dχ1(ax2α+1
0 ) if Trd(a) = 0,

−2e+dχ1(ax2α+1
0 ) otherwise,

and dividing by Sα(a, 0) we obtain the results claimed. �

It is interesting to note that the results for odd and even characteristic are very
similar when e/d is even but very different when e/d is odd. The proofs of each of
the cases reflect this relationship.
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