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The known permutation behaviour of the Dickson polynomials of the second
kind in characteristic 3 is expanded and simplified.

1. INTRODUCTION

Let Fq denote the finite field of q = pe elements; p a prime, e a positive
integer. We use F

∗
q to denote the non-zero elements of Fq and shall denote

the quadratic multiplicative character of Fq by η when q is odd. Recall,
for a ∈ F

∗
q , q odd, η(a) = 1 or −1 depending on whether a is a square or

non-square, respectively. A polynomial f ∈ Fq [X ] is called a permutation

polynomial (PP) if it is one to one (and hence onto) when evaluated on Fq .
We say two polynomials f, g ∈ Fq [X ] are permutation equivalent over Fq if
f is a PP over Fq if and only if g is a PP over Fq .

In this article we will consider the permutation behaviour of the Dickson
polynomials of the second kind. The Dickson polynomials of the first kind

(DPFK) and Dickson polynomials of the second kind (DPSK) are defined

1This work was supported by Australian Research Council Large Grant #A49801415
while the author was employed at the Centre for Discrete Mathematics and Computing
at the University of Queensland
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2 R.S. COULTER AND R.W. MATTHEWS

by

gk(X, a) =

bk/2c
∑

i=0

k

k − i

(

k − i

i

)

(−a)iXk−2i (DPFK)

fk(X, a) =

bk/2c
∑

i=0

(

k − i

i

)

(−a)iXk−2i (DPSK)

respectively, where bk/2c is the largest integer ≤ k/2, and a ∈ Fq . Dickson
polynomials are also known as the Chebyshev polynomials of the first and
second kind due to their relation with the Chebyshev polynomials from
analysis. Much is known about them, see the monograph [7]. Note that
both kinds of Dickson polynomials are strictly even or odd functions de-
pending on whether k is even or odd. This implies that, for q odd, k must
be odd if either polynomial is a PP.

The PPs among the DPFK have been completely classified: gk(X, a)
is a PP over Fq if and only if (k, q2 − 1) = 1, [9]. For the DPSK, the
behaviour of fk(X, 0) = Xk is well understood and so we specify a ∈ F

∗
q

for the remainder of this article. Henderson and Matthews, [6, Lemma
2.2], showed fk(X, a) and fk(X, b) are permutation equivalent if η(ab) = 1.
Hence, the permutation behaviour of the Dickson polynomials of the second
kind splits into two distinct cases, based on whether a is a square or non-
square.

Connected to this distinction is the concept of sign classes. For the
moment assume q is odd. Suppose η(a) = 1 and let (k0, k1, k2) ∈ Z

3 be
defined by the congruences

k0 ≡ k + 1 mod p

k1 ≡ k + 1 mod (q − 1)/2

k2 ≡ k + 1 mod (q + 1)/2.

Set A to be the eight pairs of the form (±k0,±k1,±k2) ∈ Z
3, where −ki

is calculated using the appropriate modulus. Likewise, for η(a) = −1, let
(k1, k2) ∈ Z

2 be defined by the congruences

k1 ≡ k + 1 mod (q − 1)

k2 ≡ k + 1 mod (q + 1)

and set A to be the set of four pairs of the form (±k1,±k2) ∈ Z
2, where

−ki is again calculated using the appropriate modulus. If k corresponds to
a triple or pair (depending on η(a)) in A, then we call A the sign class of k.
It was shown by Henderson and Matthews, [6, Theorem4.2], that if k and
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DICKSON POLYNOMIALS OF THE SECOND KIND 3

k′ are in the same sign class, then fk(X, a) and fk′(X, a) are permutation
equivalent on Fq .

For a 6= 0, the classification of PPs among the DPSK is not complete,
although there have been some significant results. For q odd, Matthews,
[8, Theorem 2.5], showed that fk(X, 1) is a PP over Fq if k belongs to the
sign class (2, 2, 2). Cohen showed that these conditions were necessary for
q = p, [1], and q = p2, [2]. The result of Henderson and Matthews on the
permutation equivalence of all square a ∈ F

∗
q obviously extends this result

to all square a ∈ F
∗
q , q = p, p2 odd. For q = pn, n ≥ 3 or p = 2, some PPs

have been identified in the work of Henderson and Matthews, see [5] for
η(a) = 1 and [6] for η(a) = −1. In both cases the new established classes
occur over fields of small characteristic.

It is obvious that the sign class containing the triple (2, 2, 2) for η(a) = 1
or pair (2, 2) for η(a) = −1 is a permutation class (f1(X, a) = X). In this
article we concentrate specifically on the case η(a) = −1 and p = 3. The
case η(a) = −1 was considered by Henderson and Matthews in [6]. They
established that for p = 5 the sign class containing the pair (2, (q − 1)/2)
corresponds to a permutation class ([6, Theorem 5.3]), and for p = 7 the
sign class containing the pair (2, (q − 1)/4) corresponds to a permutation
class if e is odd ([6, Theorme 5.4]). Their description of permutation classes
in characteristic 3 gave 6 classes. For this case we give a new description
of the known permutations.

Theorem 1.1. Let q = 3e and η(a) = −1. The DPSK fk(X, a) is a PP

over Fq if the sign class of k contains the pair (4, 4) with e even, or the

pair (k1, k2), with

k1 =

(

3s − 1

2

)−1

+ 1

where (s, 2e) = 1; and

k2 =











(

3t−1
2

)−1

+ 1 where t is odd, or
(

3t+1
2

)−1

− 1 where t and e/(t, e) are even.

The inverses for k1 and k2 are calculated modulo (q − 1) and (q + 1),
respectively.

This result expands the known PPs among DPSK in characteristic 3 and
dramatically simplifies the description of classes given in [6, Theorem 5.2].
In the next section we provide further relevant background information,
including the definition of S-sets, sign classes and H-functions which have
so far proved to be the most effective tools for dealing with the permutation
behaviour of the DPSK. After some further preliminary work, we describe
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4 R.S. COULTER AND R.W. MATTHEWS

the new classes and give a proof of their permutation behaviour. We end
by discussing how the results of [6, Theorem 5.2] are contained in the above
result.

2. FURTHER BACKGROUND AND DEFINITIONS

Throughout the remainder of this article, unless specified, q is assumed
to be odd. The majority of this section is either developed or described in
[6], and we follow the notation established there and elsewhere.

Central to discussing properties of the Dickson polynomials is the notion
of S-sets, which are dependent on the choice of a. For q odd they can be
defined as follows. If η(a) = 1, then the S-sets are

S0 = {±2
√

a}
S1 = {x = u + au−1 : u ∈ Fq2 | uq−1 = 1 and u 6= ±

√
a}

S2 = {x = u + au−1 : u ∈ Fq2 | uq+1 = a and u 6= ±
√

a}.

If η(a) = −1, then the S-sets are

S1 = {x = u + au−1 : u ∈ Fq2 | uq−1 = 1 and u 6= ±
√

a}
S2 = {x = u + au−1 : u ∈ Fq2 | uq+1 = a and u 6= ±

√
a};

As every quadratic over Fq splits completely in Fq2 , every x ∈ Fq satisfies
x = u + au−1 for some u ∈ Fq2 . As xq = x for all x ∈ Fq , we have
uq + au−q = u + au−1, from which we have

(uq−1 − 1)(uq+1 − a) = 0.

Using this notation, it can be established, see [7, Chapter 2], that for
x ∈ Fq , we have gk(x, a) = uk + aku−k and for u2 6= a

fk(x, a) =
uk+1 − ak+1u−(k+1)

u − au−1
.

When η(a) = 1, the case u2 = a is dealt with separately with fk(ε
√

a, a) =
(k+1)(ε

√
a)k, where ε = ±1, from the original definition. The definition of

S-sets above can be seen to differentiate between the two cases underlying
the quadratic and clearly

⋃

i Si = Fq in either case. It can be shown that
Si, i = 1, 2, consists of those x ∈ Fq for which η(x2 − 4a) = (−1)i−1,
ignoring the zero when η(a) = −1.

In a sense, the congruences of the sign class can be seen to correspond
with the S-sets. This “correspondence” between the sign class and the
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DICKSON POLYNOMIALS OF THE SECOND KIND 5

S-sets is used to prove the permutation behaviour of classes by considering
the mappings on each of the S-sets separately. Effectively, the proof of a
permutation class involves proving that a sign class is S-preserving, in that
it maps Si onto itself.

The following transformation of fk(X, a) will be used.

Lemma 2.1 ([6, Lemma 3.1]). Let gα(X, a) be a PP over Fq . Then

the function H[k,α](X, a), given by

H[k,α](x, a) = fk(gα(x, a), aα)

=
uα(k+1) − aα(k+1)u−α(k+1)

uα − aαu−α

for each x ∈ Fq , is permutation equivalent to fk(X, a). If q is odd then

H[k,α] is an odd function.

This transformation of the DPSK is particularly significant as it differ-
entiates between the behaviour of the DPSK on each S-set.

Lemma 2.2 ([6, Lemma 3.2]). Let k and α satisfy the congruences

k + 1 ≡
{

k1 mod (q − 1)

k2 mod (q + 1)
and α ≡

{

α1 mod (q − 1)

α2 mod (q + 1)

where k1, k2 are even and α1, α2 are odd. Then

H[k,α](x, a) = H[k1−1,α1](x, a)

for all x ∈ S1, and

H[k,α](x, a) = ±anH[k2−1,α2](x, a)

for all x ∈ S2, where n = (α1(k1 − 1) − α2(k2 − 1)) /2.

We end this section with two lemmas on greatest common divisors. A
proof of the first lemma is given in [3, 4]. The authors are unable to find a
reference for the second lemma, and so we provide a proof.

Lemma 2.3. Let d = (n, m) and p be a prime. If n/d is odd then

(pn − 1, pm + 1) =

{

1 if p = 2,

2 otherwise.

If n/d is even then (pn − 1, pm + 1) = pd + 1.
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6 R.S. COULTER AND R.W. MATTHEWS

Lemma 2.4. Let d = (n, m) and p be an odd prime. Then

(pn + 1, pm + 1) =











2 if n
d 6≡ m

d mod 2,

pd + 1 if p ≡ 3 mod 4 and nm ≡ 1 mod 2,
pd+1

2 in all other cases.

Proof. There are effectively two cases: (i) n/d odd, m/d even; and (ii)
n/d and m/d odd. We have

(p2n − 1, pm + 1) = (pn − 1, pm + 1)

(

pn + 1,
pm + 1

(pn − 1, pm + 1)

)

(1)

In case (i), using Lemma 2.3, Equation 1 simplifies to (pn + 1, pm+1
2 ) = 1,

which resolves the first case. For case (ii), we again simplify (1) using the
previous lemma to obtain

(

pn + 1,
pm + 1

2

)

=
pd + 1

2
.

Observing that (pn + 1, pm+1
2 ) = (pn + 1, pm + 1) unless pm + 1 ≡ 0 mod 4

completes the proof.

3. A GENERAL OBSERVATION

We begin by considering the problem of when H[k,α](x, a) = H[k,α](y, a),
for x 6= y.

Lemma 3.5. Let a ∈ F
∗
q and k and α be as in Lemma 2.2. Then

H[k,α](x, a) = H[k,α](y, a) if and only if

(

(uw)α(k+2) − aα(k+2)
)

(

uαk − wαk
)

= aα
(

uα(k+2) − wα(k+2)
)

(

(uw)αk − aαk
)

where x, y ∈ Fq with x = u + au−1 and y = w + aw−1.

If x, y ∈ S1 then H[k,α](x, a) = H[k,α](y, a) if and only if

(

(uw)α1(k1+1) − aα1(k1+1)
)(

uα1(k1−1) − wα1(k1−1)
)

= aα1

(

uα1(k1+1) − wα1(k1+1)
)(

(uw)α1(k1−1) − aα1(k1−1)
)

. (2)
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DICKSON POLYNOMIALS OF THE SECOND KIND 7

If x, y ∈ S2 then H[k,α](x, a) = H[k,α](y, a) if and only if

(

(uw)α2(k2+1) − εaα2(k2+1)
)(

uα2(k2−1) − εwα2(k2−1)
)

= aα2

(

uα2(k2+1) − εwα2(k2+1)
)(

(uw)α2(k2−1) − εaα2(k2−1)
)

(3)

where ε = ±1.

Proof. We prove the first statement only. The rest follows from Lemma
2.1. Suppose H[k,α](x, a) − H[k,α](y, a) = 0. This is equivalent to

(uα(k+1) − aα(k+1)u−α(k+1))(wα − aαw−α)

= (wα(k+1) − aα(k+1)w−α(k+1))(uα − aαu−α).

Multiplying through by (uw)α(k+1) and gathering terms we arrive at

(u2k+2wk+2)α − (w2k+2uk+2)α + (ak+2wk)α − (ak+2uk)α

= (u2k+2wk)α − (w2k+2uk)α + (akwk+2)α − (akuk+2)α

from which the factorisation described is obtained.

4. DESCRIBING THE DPSK PERMUTATIONS IN

CHARACTERISTIC 3

We are now ready to prove our main result. Our proof follows the general
method developed in [5, 6], and although there is some overlap with the
proof of [6, Theorem 5.2], we give a self-contained proof here for complete-
ness.

Proof (of Theorem 1.1). The class (4, 4) with e even can be shown
directly. In fact, f3(X, a) = X3 + aX is a linearised polynomial. It is well
known that a linearised polynomial is a PP over Fq if and only if it has no
non-zero roots in Fq . Thus f3(X, a) is a permutation polynomial over F3e

if and only if −a is a non-square, which holds whenever e is even.
Suppose (k1, k2) is an element of the sign class of k. Throughout the

proof we set

k1 =

(

3s − 1

2

)−1

+ 1
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8 R.S. COULTER AND R.W. MATTHEWS

with (s, 2e) = 1. Let α satisfy the congruence

α ≡
{

α1 mod (q − 1)

α2 mod (q + 1)

with α1 = 3s−1
2 . We will set α2 = 3t−1

2 or α2 = 3t+1
2 , depending on which

of the two cases for k2 we are dealing with. In either case, using Lemma
2.3 or Lemma 2.4 and the conditions on s and t shows (α, q2 − 1) = 1. It
follows that gα(X, a) is a PP and from Lemma 2.1 we have H[k,α](X, a)
and fk(X, a) are permutation equivalent.

We first show the function H[k,α](x, a) is bijective on S1. Let x, y ∈ S1

be given by x = u + au−1 and y = w + aw−1 and suppose H[k,α](x, a) =
H[k,α](y, a). From (2) we have

(u − w)(uw − a)3
s

= a(3s−1)/2(u − w)3
s

(uw − a).

Thus either u = w, uw = a or (uw − a)3
s−1 = a(3s−1)/2(u − w)3

s−1. If
the final condition holds, then as (s, e) = 1, we have (uw − a)2 = a(u −
w)2. Solving for a gives a = u2 or a = w2, contradicting η(a) = −1.
The remaining two possibilities both imply x = y. Hence H[k,α](x, a) is
injective on S1. To show that H[k,α](x, a) is surjective on S1 we calculate
the quadratic character of H[k,α](x, a)2 − 4a. We have

H[k,α](x, a)2 − 4a =

(

u(3s+1)/2 − a(3s+1)/2u−(3s+1)/2

u(3s−1)/2 − a(3s−1)/2u−(3s−1)/2

)2

− a

=

(

u3s+1 − a(3s+1)/2

u3s − a(3s−1)/2u

)2

− a

=
u2(3s+1) − au2.3s − a3s

u + a3s+1

(u3s − a(3s−1)/2u)2

=
(u2 − a)3

s+1

(u3s − a(3s−1)/2u)2

=

(

(u2 − a)(3
s+1)/2

u3s − a(3s−1)/2u

)2

,

which is the square of an element of Fq . Thus H[k,α](x, a) is bijective on
S1.

It remains to show that, for either choice of k2, H[k,α](x, a) is bijective
on S2. For either case, we set d = (t, e).

Let t be odd and set

k2 =

(

3t − 1

2

)−1

+ 1.



F
in

it
e 

F
ie

ld
s 

A
p

p
l. 

8 
(2

00
2)

, 5
19

-5
30

DICKSON POLYNOMIALS OF THE SECOND KIND 9

Let α2 = 3t−1
2 . By Lemma 2.2, fk(X, a) is permutation equivalent on S2 to

H[k2−1,α2](X, a). Let x, y ∈ S2 be given by x = u+au−1 and y = w+aw−1

and suppose H[k,α](x, a) = H[k,α](y, a). From (3) we obtain

(uw − εa)3
t

(u − εw) = a(3t−1)/2(uw − εa)(u − εw)3
t

.

Thus either uw = εa, u = εw, or (uw−εa)3
t−1 = a(3t−1)/2(u−εw)3

t−1. The

first two conditions imply x = ±y. Suppose (uw − εa)3
t−1 = a(3t−1)/2(u−

εw)3
t−1. Raising both sides by (q − 1)/(pd − 1) and recalling a(q−1)/2 =

η(a) = −1, we obtain

(uw − εa)(q−1)(3t−1)/(3d−1) = −(u − εw)(q−1)(3t−1)/(3d−1).

Since (3t−1)/(3d−1) is odd (as t/d is) and relatively prime to q−1, we have
(uw − εa)q−1 = −(u − εw)q−1. Multiplying through by (uw − εa)(u − εw)
and then expanding and simplifying we obtain wq + w = ε(uq + u). Since
a = uq+1 = wq+1 we thus have w + aw−1 = ε(u + au−1), or equivalently
x = ±y again. Now H[k,α](X, a) is an odd polynomial so if x = −y, then

H[k,α](x, a) = H[k,α](y, a) = −H[k,α](y, a).

It follows that H[k,α](x, a) = 0, or equivalently, u3t+1 = a(3t+1)/2. Since t is

odd, u2 = ±a. If u2 = a, then uq+1 = (u2)(q+1)/2 = a(q+1)/2 = −a, which
contradicts uq+1 = a. Hence u2 = −a, so that x = 0. We conclude that
x = y and thus H[k,α](x, a) is injective on S2. To show it is surjective, we
again determine η(H[k,α](x, a)2 − 4a). A similar calculation as for x ∈ S1

yields

H[k,α](x, a)2 − 4a =
(u2 − a)3

t+1

(u3t − a(3t−1)/2u)2
.

Raising this to the power (q − 1)/2 and using uq = au−1 we have

(

H[k,α](x, a)2 − 4a
)(q−1)/2

=

(

(u2 − a)q−1
)(3t+1)/2

(u3t − a(3t−1)/2u)q−1

=
(u2q − aq)(3

t+1)/2(u3t − a(3t−1)/2u)

(u3tq − aq(3t−1)/2uq)(u2 − a)(3t+1)/2

=
(a2u−2 − a)(3

t+1)/2(u3t − a(3t−1)/2u)

(a3tu−3t − a(3t+1)/2u−1)(u2 − a)(3t+1)/2

= −(−1)(3
t+1)/2 = −1
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10 R.S. COULTER AND R.W. MATTHEWS

as t is odd. Thus H[k,α](x, a) is bijective on S2 and H[k,α](X, a) is a per-
mutation polynomial over Fq . Hence fk(X, a) is a permutation polynomial
if (k1, k2) is an element of the sign class of k.

Now assume both t and te/2d are even, and define

k2 = −
(

(

3t + 1

2

)−1

− 1

)

= −
(

3t + 1

2

)−1

+ 1.

Set α2 = 3t+1
2 . Let x, y ∈ S2 be given by x = u + au−1 and y = w + aw−1

and suppose H[k,α](x, a) = H[k,α](y, a). From (3) we again obtain

(uw − εa)3
t

(u − εw) = a(3t−1)/2(uw − εa)(u − εw)3
t

.

Thus either uw = εa, u = εw, or (uw − εa)3
t−1 = a(3t−1)/2(u − εw)3

t−1.
Again we need only deal with the third possibility. If e/d is even, then
(3t − 1)/(3d − 1) is odd, and it follows that x = ±y as in the previous
case. Therefore H[k2−1,α2](X, a) is injective on S2. It remains to prove
H[k2−1,α2](X, a) is surjective on S2. To do this, it is sufficient to show

η
(

H[k,α](x, a)2 − 4a
)

= −1 for x ∈ S2. If x = u + au−1 is an element of
S2, then

H[k,α](x, a)2 − 4a = aα1(k1−1)−α2(k2−1)H[k2−1,α2](x, a)2 − a

= a2 (u3t − a(3t−1)/2u)2

(u3t+1 − a(3t+1)/2)2
− a

= a

(

a(u3t − a(3t−1)/2u)2 − (u3t+1 − a(3t+1)/2)2

(u3t+1 − a(3t+1)/2)2

)

=
a(au2.3t − u2(3t+1) + a3t

u2 − a3t+1

(u3t+1 − a(3t+1)/2)2

=
−a(u2 − a)3

t+1

(u3t+1 − a(3t+1)/2)2
.
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DICKSON POLYNOMIALS OF THE SECOND KIND 11

Raising this to the power (q − 1)/2 and using uq = au−1, we have

(H[k,α](x, a)2 − 4a)(q−1)/2 =
(−1)(q−1)/2a(q−1)/2(u2 − a)(q−1)(3t+1)/2

(u3t+1 − a(3t+1)/2)q−1

=
−(u2q − a)(3

t+1)/2(u3t+1 − a(3t+1)/2)

(uq(3t+1) − a(3t+1)/2)(u2 − a)(3t+1)/2

=
−(a2u−2 − a)(3

t+1)/2(u3t+1 − a(3t+1)/2)

(a3t+1u−(3t+1) − a(3t+1)/2)(u2 − a)(3t+1)/2

=
−(au−2 − 1)(3

t+1)/2(u3t+1 − a(3t+1)/2)

(a(3t+1)/2 − u3t+1)(1 − au−2)(3t+1)/2

= −1.

Hence H[k,α](X, a) is surjective on S2 and fk(X, a) is a permutation polyno-

mial over Fq .

We note that when k2 =
(

3t−1
2

)−1

+ 1, the condition t odd is nec-

essary and sufficient for the inverse to exist. This is not the case when

k2 =
(

3t+1
2

)−1

− 1, where the conditions t and e/(t, e) even are, together,

sufficient but not necessary. We underline that the PP behaviour in this
second case does not extend to all cases where the inverse exists and believe
that the statement as given is best possible.

It remains to discuss how the previous work, [6, Theorem 5.2], is covered
by our new result. (It should be pointed out that the statement given in
[6] is slightly inaccurate in that the condition (s, e) = 1 is omitted from the
final two possibilities, although it is required for the inverses to exist.) We
note without proofs the following: parts (v) and (vi) of [6, Theorem 5.2] is
absorbed by the new case and the case k2 = (q + 1)/2, e odd, is equivalent

to
(

3e−1
2

)−1
+ 1. Finally, part (iv) of [6, Theorem 5.2] is absorbed in the

following manner:

32m + 1

2
− 3m ≡

{

(

3m−1
2

)−1
+ 1 m odd

(

3m+1
2

)−1 − 1 m even;

32m + 1

2
+ 3m ≡











(

33m−1
2

)−1

+ 1 m odd
(

33m+1
2

)−1

− 1 m even;

where e = 2m. Finally, the new description yields new PPs among the
DPSK. The first field in which we obtain new examples is F39 , where the
sign classes (2, 9086), (7382, 9086) and (10086, 9086) give classes of PPs not
previously described.
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We end by restating a conjecture from [6] which suggests that the de-
scription of PPs among the DPSK is not complete.

Conjecture 4.1 (Henderson & Matthews, [6, Conjecture 6.1]). Let p
be an odd prime and set q = p3e. Let a ∈ F

∗
q satisfy η(a) = −1. If the pair

(pe(pe + 1), pe(pe − 1)) belongs to the sign class of k, then the polynomial

fk(X, a) is a PP over Fq .
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