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Abstract. A new class of bilinear permutation polynomials was
recently identified. In this note we determine the class of permu-
tation polynomials which represents the functional inverse of the
bilinear class.

1. Introduction and Main Result

Throughout Fq denotes the finite field of q = pe elements for some
prime p and positive integer e with Fq [X] representing the ring of poly-
nomials in the indeterminate X over Fq . For polynomials f, g ∈ Fq [X],
we write f ◦ g = f(g(X)) for the functional composition of f with g.
A permutation polynomial over Fq is a polynomial which, under eval-
uation, induces a permutation of the elements of Fq . Clearly, permu-
tation polynomials are the only polynomials which have a (functional)
inverse with respect to composition, id est for a permutation polyno-
mial f ∈ Fq [X] there exists (a unique) f−1 ∈ Fq [X] of degree less than
q such that f(f−1(X)) ≡ f−1(f(X)) ≡ X mod (Xq − X). We call f−1

the compositional inverse of f (or vice versa).
The problem of discovering new classes of permutation polynomials

is non-trivial and has generated much interest, see the surveys and
open problems given in [3, 4, 6]. Discovering classes where the inverse
polynomials can also be described seems to be even more difficult: there
are very few known classes of permutation polynomials for which their
compositional inverses are also known. To the authors knowledge, the
classes with explicit formulae for inverses are:

(1) The linear polynomials: X + a where a ∈ Fq is trivially a
permutation polynomial of Fq with the inverse polynomial being
X − a.
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(2) The monomials: Xn is a permutation polynomial over Fq if and
only if (n, q−1) = 1. In such cases, the compositional inverse of
Xn is obviously the monomial Xm where nm ≡ 1 mod (q − 1).

(3) The Dickson polynomials of the 1st kind: Dn(X, a) is a permu-
tation polynomial over Fq if and only if (n, q2 − 1) = 1, see [5,
Chapter 3]. In such cases, for a ∈ {0,±1}, the compositional
inverse of Dn(X, a) is Dm(X, a) where nm ≡ 1 mod (q2 − 1),
see [5, Chapter 3].

We note that there are classes for which inverses can be determined (for
example linearised and sub-linearised polynomials) but that no explicit
formulas for the inverses are known.

Recently, a new class of permutation polynomials was introduced in
[1]. Here we give a description for the compositional inverse of this
class of permutation polynomials.

Theorem 1. Let q = 2k for some integer k. Let n be an odd positive

integer and set Q = qn. Denote the trace mapping from FQ to Fq by

Tr(X) = X + Xq + . . . + Xqn−1

.

For any α ∈ Fq \ {0, 1}, the polynomial

fα(X) = XTr(X) + (α + 1)X2

is a permutation polynomial over FQ. For α as above and for any

integer i satisfying 1 ≤ i ≤ k − 1, define

Ci =
α2k−1+2k−1−i

−1 + 1

α + 1
.

Set

Aα(X) = Ck−1(X
2nk−1

+ α2k−1
−1Tr(X)2k−1

)

and

Bα(X) =
k−1
∑

i=1

CiTr(X)2k−1
−2k−1−i





(n−1)/2
∑

j=1

(XTr(X) + X2)22jk−2−i



 .

The polynomial gα = Aα + Bα is the compositional inverse of fα over

FQ.

The polynomials fα were shown to be permutation polynomials in
[1]. From Theorem 1 we have the following obvious corollary.

Corollary 2. For α ∈ Fq \ {0, 1}, the polynomials gα, as defined in

Theorem 1, are permutation polynomials over FQ.
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2. The Proof of Theorem 1

Our attention from this point is directed to establishing the remain-
ing statements of Theorem 1, which is to show that gα is the composi-
tional inverse of fα. Our proof involves establishing a set of sequential
propositions, basically involving closer examination of fα ◦ gα, primar-
ily in terms of the two polynomials Aα and Bα. For n odd, we have
Tr(Tr(x)) = Tr(x). This identity is used many times in the following
propositions. We begin by collecting some useful identities.

Proposition 3. For Aα, Bα ∈ FQ[X] and Ci as defined in Theorem 1

we have

(i) C2
i = (α(2k−i

−1) + 1)/(α2 + 1),
(ii) A2

α(X) ≡ C2
k−1(X + α−1Tr(X)) mod (XQ + X),

(iii) Tr(Aα) ≡ α2k−1
−1Tr(X)2k−1

mod (XQ + X), and

(iv) Tr(Bα) ≡ 0 mod (XQ + X).

Proof. (i) Squaring Ci we obtain the identity:

C2
i =

α2k+2k−i
−2 + 1

α2 + 1
=

α2k−i
−1 + 1

α2 + 1
.

(ii) Squaring Aα(X) gives C2
k−1(X

2nk

+ α2k
−2Tr2k

(X)) which reduced
modulo (XQ + X) is C2

k−1(X + α−1)
(iv) Using the definition of Aα(X) given in Theorem 1,

Tr(Aα(X)) = Ck−1(Tr(X)2nk−1

+ α(2k−1
−1)Tr(X)2k−1

)

≡ Tr(X)2k−1

Ck−1(1 + α(2k−1
−1)) mod (XQ + X)

≡ α(2k−1
−1)Tr(X)2k−1

mod (XQ + X).

(v) This is immediate as Tr(XTr(X) + X2) = 0. �

The proof of the following result is tedious but seemingly necessary.

Proposition 4. Using the same notation as above then

fα(gα(X)) mod (XQ + X)

= X + cα

(

X2nk−1

Tr(X)2k−1

+ Tr(X) +
k

∑

i=1

Tr(X)2k
−2k−i

Si(X)
)

where cα = (α(2k−1
−1) + 1)/(α + 1) and

(1) Si(X) =

(n−1)/2
∑

j=1

(XTr(X) + X2)22jk−i−1
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Proof. By expanding fα(X) ◦ gα(X) (with gα(X) = Aα(X) + Bα(X))
and using Proposition 3 (iv),

fα(gα(X)) mod (XQ + X)

= (Aα(X) + Bα(X))Tr(Aα(X)) + (α + 1)(A2
α(X) + B2

α(X)).

We split the terms of this sum so that fα(X)◦gα(X) = a(X)+b(X) mod
(XQ+X) where a(X) = Aα(X)Tr(Aα(X))+(α+1)A2

α(X) and b(X) =
Bα(X)Tr(Aα(X)) + (α + 1)B2

α(X). Using Proposition 3 (ii) and (iii),

a(X) =C2
k−1(α

(2k−1
−1) + 1)(X2nk−1

Tr(X)2k−1

+ α(2k−1
−1)Tr(X))

+ C2
k−1(α + 1)(X + α−1Tr(X)) mod (XQ + X).

From Proposition 3 (i), C2
k−1 = (α+1)−1 and as cα = cαα(2k−1

−1) +α−1

then

a(X) = X + cα(X2nk−1

Tr(X)2k−1

+ Tr(X)) mod (XQ + X).

Next put b1(X) = Tr(Aα(X))Bα(X). Identically

b1(X) = α(2k−1
−1)Tr(X)2k−1

k−1
∑

i=1

CiTr(X)(2k
−2k−1−i)Si+1(X).

Using α(2k−1
−1)Ci = (α(2k−1

−1) + α(2k−i
−1))/(α + 1) and re-writing the

sum in b1(X) then we arrive at

(2) b1(X) =

k
∑

i=2

(α(2k−1
−1) + α(2k−i

−1)

α + 1

)

Tr(X)(2k
−2k−i)Si(X).

Finally, put b2(X) = (α + 1)B2
α(X). Then

b2(X) = (α + 1)

k−1
∑

i=1

C2
i Tr(X)(2k

−2k−1−i)S2
i+1(X).

As S2
i+1(X) = Si(X), from Proposition 3 (i) we have

(3) b2(X) =

k−1
∑

i=1

(α(2k−i
−1) + 1

α + 1

)

Tr(X)(2k
−2k−i)Si(X).
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So from Equations 2 and 3 we have

b(X) = b1(X) + b2(X)

=
k−1
∑

i=2

cαTr(X)(2k
−2k−i)Si(X) + cαTr(X)(2k

−2k−1)S1(X) + cαSk(X)

= cα

k
∑

i=1

Tr(X)(2k
−2k−i)Si(X).

The result now follows from calculating the sum a(X) + b(X). �

Proposition 5. For β ∈ Fq then fα(gα(βX)) = βfα(gα(X)).

Proof. As Tr(βX) = βTr(X), it is simple to see

(βX)2nk−1

+ Tr(βX)2k−1

+ Tr(βX) = β(X2nk−1

+ Tr(X)2k−1

).

For β ∈ Fq , from Equation 1

Si(βX) =

(n−1)/2
∑

j=1

β22jk−i

(XTr(X) + X2)22jk−i−1

= β2k−i

Si(X).

and it follows

k
∑

i=1

Tr(βX)(2k
−2k−i)β2k−i

Si(X) =

k
∑

i=1

β2k

Tr(X)(2k
−2k−i)Si(X)

= β

k
∑

i=1

Tr(X)(2k
−2k−i)Si(X).

We then have, using Proposition 4 and these identities, that for β ∈ Fq ,
fα(gα(βX)) = βfα(gα(X)) as required. �

Proof of Theorem 1: For x ∈ FQ, if Tr(x) = 0 then from Proposition 4
it follows directly that fα(gα(x)) = x. Suppose Tr(x) = 1 for x ∈ FQ.
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Using Proposition 4

fα(gα(x)) = x + cα

(

x2nk−1

+ 1 +
k

∑

i=1

(n−1)/2
∑

j=1

(x + x2)22jk−1−i
)

= x + cα

(

x2nk−1

+ 1 +

(n−1)/2
∑

j=1

k
∑

i=0

(x + x2)22jk−1−i
)

= x + cα

(

x2nk−1

+ 1 +

(n−1)/2
∑

j=1

x22jk

+ x2(2j−1)k
)

= x + cα(1 + Tr(x)).

As we have assumed that Tr(x) = 1 then again fα(gα(x)) = x. Every
element y ∈ FQ satisfying Tr(y) 6= 0 can be written in the form y = βx
where β ∈ Fq , and Tr(x) = 1 for some x ∈ FQ. By Proposition 5,
fα(gα(y)) = βfα(gα(x)) = βx = y. Thus fα(gα(X)) ≡ X mod (Xq +
X). �

The determination of the inverse class given in this article relied on
using the MAGMA algebra package [2] to generate examples for small
fields. This result underlines that, in general, inverses for known per-
mutation polynomial classes are not simple to describe.
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