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ABSTRACT. A new class of bilinear permutation polynomials was
recently identified. In this note we determine the class of permu-
tation polynomials which represents the functional inverse of the
bilinear class.

1. INTRODUCTION AND MAIN RESULT

Throughout F, denotes the finite field of ¢ = p° elements for some
prime p and positive integer e with F,[X] representing the ring of poly-
nomials in the indeterminate X over IF,. For polynomials f, g € F,[X],
we write fog = f(g(X)) for the functional composition of f with g.
A permutation polynomial over [Fy is a polynomial which, under eval-
uation, induces a permutation of the elements of F,. Clearly, permu-
tation polynomials are the only polynomials which have a (functional)
inverse with respect to composition, id est for a permutation polyno-
mial f € F,[X] there exists (a unique) f~! € F,[X] of degree less than
q such that f(f~1(X))= f1(f(X)) = X mod (X9— X). We call f~!
the compositional inverse of f (or vice versa).

The problem of discovering new classes of permutation polynomials
is non-trivial and has generated much interest, see the surveys and
open problems given in [3, 4, 6]. Discovering classes where the inverse
polynomials can also be described seems to be even more difficult: there
are very few known classes of permutation polynomials for which their
compositional inverses are also known. To the authors knowledge, the
classes with explicit formulae for inverses are:

(1) The linear polynomials: X + a where a € F, is trivially a
permutation polynomial of F, with the inverse polynomial being
X —a.

1991 Mathematics Subject Classification. 11T06.
*THIS RESEARCH WAS PARTIALLY SUPPORTED BY THE AUS-
TRALIAN RESEARCH COUNCIL
1



2 R. COULTER AND M. HENDERSON

(2) The monomials: X" is a permutation polynomial over F, if and
only if (n,¢—1) = 1. In such cases, the compositional inverse of
X" is obviously the monomial X™ where nm =1 mod (¢ — 1).
(3) The Dickson polynomials of the 1st kind: D, (X, a) is a permu-
tation polynomial over F, if and only if (n,¢* — 1) = 1, see [5,
Chapter 3]. In such cases, for a € {0,41}, the compositional
inverse of D,(X,a) is D,,(X,a) where nm = 1 mod (¢*> — 1),
see [5, Chapter 3.
We note that there are classes for which inverses can be determined (for
example linearised and sub-linearised polynomials) but that no explicit
formulas for the inverses are known.
Recently, a new class of permutation polynomials was introduced in
[1]. Here we give a description for the compositional inverse of this
class of permutation polynomials.

Theorem 1. Let ¢ = 2% for some integer k. Let n be an odd positive
integer and set Q = q". Denote the trace mapping from Fq to F, by

Tr(X)=X+ X7+ ..+ X7
For any a € F, \ {0, 1}, the polynomial
fo(X) = XTrH(X) + (a +1)X?

is a permutation polynomial over Fg. For a as above and for any
integer i satisfying 1 <1 < k — 1, define

k=14 ok—1—i_
042 +2 ¢ 1+1

Gi= a+1
Set
Aa(X) = Cry (X 402 (X))
and
k—1 (n—1)/2
Bo(X) =Y C:T(X)* Y (X X) + X
i=1 j=1

The polynomial g, = Aa + By is the compositional inverse of f, over

Fo,.

The polynomials f, were shown to be permutation polynomials in
[1]. From Theorem 1 we have the following obvious corollary.

Corollary 2. For o € F, \ {0,1}, the polynomials g., as defined in
Theorem 1, are permutation polynomials over Fg.
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2. THE PROOF OF THEOREM 1

Our attention from this point is directed to establishing the remain-
ing statements of Theorem 1, which is to show that g, is the composi-
tional inverse of f,. Our proof involves establishing a set of sequential
propositions, basically involving closer examination of f, o g, primar-
ily in terms of the two polynomials A, and B,. For n odd, we have
Tr(Tr(z)) = Tr(z). This identity is used many times in the following
propositions. We begin by collecting some useful identities.

Proposition 3. For A,, B, € Fo[X] and C; as defined in Theorem 1
we have

(i) C2 = (@@ "D +1)/(a® +1),

(i) A%(X) = CF_(X + a1 Ti(X)) mod (X© + X)),
(i) TH(Ay) = o 1T X)? " mod (X9 + X)), and
(iv) Tr(B )—OmmHXQ+X)

Proof. (i) Squaring C; we obtain the identity:

o Q22" -2 B a2 14
S |

(i) Squaring A, (X) gives C2_ (X2 + o ~2Tv*" (X)) which reduced
modulo (X® + X)is C7 (X +a™1)
(iv) Using the definition of A,(X) given in Theorem 1,

Tr(Aa (X)) = Coy (Tr(X)?" " + o@D Tr(x)? )
=Tr(X)* ' Crr(1+a® V) mod (X + X)
=a® " ITr(X)? mod (X9 + X).
(v) This is immediate as Tr(XTr(X) + X?) = 0. O

The proof of the following result is tedious but seemingly necessary.

Proposition 4. Using the same notation as above then
fa(ga(X)) mod (X9 + X)

=X +c, <X2nki1 THX)* ' + TH(X) + Z Tr(X)2 2" Z(X))

27D 4 1) /(a+1) and
(n—1)/2 o
(1) (XTr(X)+ X

Jj=1

where ¢, = (af
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Proof. By expanding f,(X) 0 go(X) (with g.(X) = Aa(X) + Ba(X))
and using Proposition 3 (iv),
fa(ga(X)) mod (X + X)
= (Aa(X) + Ba(X)Tr(Aa(X)) + (e + 1)(AL(X) + BA(X)).
We split the terms of this sum so that f,(X)og.(X) = a(X)+b(X) mod

(X9+X) where a(X) = An(X)Tr(Aa (X)) + (a+1)A2(X) and b(X) =
Bo(X)Tr(Ao (X)) + (a + 1)B2(X). Using Proposition 3 (ii) and (iii),

2k—1

a(X) =C2_ (@D £ (X Tr(X)? 4 o T (X))
+ O (a+1)(X +a 'Tr(X)) mod (X% + X).

From Proposition 3 (i), C7_, = (a+1)"" and as ¢, = coa® '~V 4o~
then

ok—1

a(X) = X 4 co(X¥" 7 Tr(X)? + Tr(X)) mod (X9 + X).

Next put b1 (X) = Tr(A(X))Ba(X). Identically
k—1 )
bi(X) =@ OT(X)P Y OTe(X) T80 (X).
=1

Using o@ ' "DC; = (@D 4+ o@D /(a+ 1) and re-writing the
sum in by (X) then we arrive at

k

o
2 b=

=2

2k—1_1) + a(2k—i_l)

a—+1

)Tr(X)(zk‘zk_i)Si(X).

Finally, put by(X) = (a + 1)B%(X). Then

k—1
bo(X) = (a+1) ) CITr(X)@ 27082, (X).

i=1
As S2.,(X) = S;(X), from Proposition 3 (i) we have

i Oz(zkii_l) k_ok—i
B )= () m 0@ s ),

i=1
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So from Equations 2 and 3 we have

b(X) = bi(X) + by(X)

k—1

X) P 206(X) 4 o Te(X)F 278 (X) + caSi(X)

I
o
R

ﬁ

The result now follows from calculating the sum a(X) + b(X). O

Proposition 5. For § € F, then fo(g.(8X)) = Bfalga(X)).
Proof. As Tr(5X) = fTr(X), it is simple to see

2nk71 2nk71

(BX)" + Te(BX)? T + Te(BX) = AXT + Te(X)* ).

For g € F,, from Equation 1
(n_l)/2 2jk—1 2jk—i—1 k—1
Si(BX)= Y B (XTe(X)+ X7 =57 5(X).

j=1

and it follows

k k
Y Te(BX)PTTITIS (X)) =Y B Tr(X) I 5(X)
i=1

=1

—ﬁZTr X)@ 208X,

We then have, using Proposition 4 and these identities, that for 5 € F,,
fa(9a(8X)) = Bfa(ga(X)) as required. 0

Proof of Theorem 1: For x € Fg, if Tr(z) = 0 then from Proposition 4
it follows directly that f,(g.(x)) = z. Suppose Tr(z) = 1 for x € Fy,.
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Using Proposition 4

k
znkfl 22]k 1—4
<x 1+ Z (x+o )
k
:x+ca<x2nk_1+1+ Z Zx—l—x 22]k11)

(n—l)/z

As we have assumed that Tr(z) = 1 then again f,(g.(z)) = z. Every
element y € Fg satisfying Tr(y) # 0 can be written in the form y = fx
where § € F,, and Tr(z) = 1 for some = € Fgy. By Proposition 5,

fo(9a(y)) = Bfa(ga(r)) = Bz = y. Thus fu(ga(X)) = X mod (X7 +
X)), 0

The determination of the inverse class given in this article relied on
using the MAGMA algebra package [2] to generate examples for small
fields. This result underlines that, in general, inverses for known per-
mutation polynomial classes are not simple to describe.
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