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1 Introduction and overview

A semifield R is a not necessarily associative ring with no zero-divisors, a multiplicative identity and left and
right distributive laws. A semifield which is not a field is called proper. If a multiplicative identity is not insisted
upon, then we talk of presemifields. It is an easy exercise to show any finite semifield must have prime power
order, and as with finite fields we shall refer to the prime involved as the characteristic of the semifield. The
study of semifields is largely motivated by their equivalence to projective planes of Lenz-Barlotti class V.1, see
Dembowski [5]. Since associativity is not assumed, it is reasonable to ask how nearR is to being associative. To
this end one defines the left, middle and right nucleus ofR, denoted byNl,Nm andNr, respectively, as follows:

Nl(R) = {α ∈ R | (α ? x) ? y = α ? (x ? y) for all x, y ∈ R}
Nm(R) = {α ∈ R | (x ? α) ? y = x ? (α ? y) for all x, y ∈ R}
Nr(R) = {α ∈ R | (x ? y) ? α = x ? (y ? α) for all x, y ∈ R}.

It is easily shown that these sets are finite fields. The setN (R) = Nl ∩Nm ∩Nr is called the nucleus ofR. It is
clear the nuclei provide some measure of how far R is from being associative. Additionally, as Knuth observed
[8], R can be represented as a right vector space over Nl, a left vector space over Nr and both a left and right
vector space over Nm. In the commutative case it can be shown Nl = Nr ⊆ Nm, so that we need only talk of
the middle nucleus and the nucleus.

The recently described equivalence of commutative presemifields of odd order and planar Dembowski-Ostrom
(DO) polynomials, see Coulter and Henderson [2], has exposed a gap in our knowledge of planar DO polynomi-
als. There remain several classical classes of commutative semifields for which a corresponding class of planar
DO polynomial representatives is not known. Even in the case of the semifields of Dickson [6], the first proper
semifields known and arguably the most fundamental, there is no known corresponding planar DO polynomial.

This article is a first step in rectifying this imbalance: we introduce a class of planar DO polynomials describ-
ing a commutative semifield of dimension two over its middle nucleus and dimension four over its nucleus. The
bound given by Ball and Lavrauw [1, Corollary 2] shows any such commutative semifield must be isotopic to a
finite field or a Dickson semifield. Since Dickson’s construction yields only one such commutative semifield, we
therefore fill this gap in our knowledge of planar DO polynomials in this case. We give a further class of planar
DO polynomials which yield this Dickson semifield when the nucleus has order congruent to 1 modulo 4. This
second class consists of binomials, therefore providing a simpler form of planar DO polynomial representative
when |N (R)| ≡ 1 (mod 4) than that provided by our main theorem. This may be of some use for isotopy
questions using the method developed in [2].

∗ Rejected in 2007, and later superseded by other articles by various authors
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2 Background results and notation

Let Fq denote the finite field of q elements, where q is the power of an odd prime, and Fq [X] denote the ring of
polynomials over Fq . We use F∗q to denote the set of non-zero elements of Fq . If q = r2 for some prime power
r, then it is well known Fr = S1 ∪ S2, where

S1 = {z + z−1 : z ∈ Fq and zr−1 = 1},
and S2 = {z + z−1 : z ∈ Fq and zr+1 = 1}.

Moreover, S1 ∩ S2 = {2,−2}. If q = rn, then the trace mapping Trq/r : Fq → Fr is defined by

Trq/r(x) = x+ xr + · · ·+ xrn−1

for all x ∈ Fq .
A polynomial f ∈ Fq [X] is a permutation polynomial over Fq if it induces a bijective map from Fq to itself

under evaluation. The polynomial f is called planar over Fq if the polynomial f(X + a) − f(X) − f(a) is a
permutation polynomial for all a ∈ F∗q . A Dembowski-Ostrom (DO) polynomial is a polynomial D ∈ Fq [X] of
the shape

D(X) =
∑
i,j

aijX
pi+pj

.

For commutative semifields of odd order there is an equivalent representation in terms of planar Dembowski-
Ostrom polynomials over finite fields. Any commutative presemifieldR = (Fq ,+, ?) of odd order q is equivalent
to a planar DO polynomial f ∈ Fq [X] with the field addition and the multiplication in R given by x ? y =
f(x + y) − f(x) − f(y), see [2]. We underline the correspondence by talking of the commutative semifield
Rf . This correspondence was exploited by Coulter, Henderson and Kosick [3] to determine restrictions on the
planar DO polynomials in terms of the nuclei of the corresponding commutative semifield. Most relevant to our
considerations is the following.

Lemma 2.1 Let R be a commutative semifield of order q = r2 with middle nucleus of order at least r = sm

and nucleus of order at least s = pk, p an odd prime. Then there exists an isotope Rf of R with f ∈ Fq [X] a
planar DO polynomial of the shape

f(X) = L(t2(X)) +
1
2
X2, (1)

where L =
∑

i aiX
si

and t(X) = Xr −X . Conversely, any planar DO polynomial of the shape (1) describes
a commutative semifield with the given parameters. The commutative semifield Rf is isotopic to a finite field if
and only if Deg(L) = 1.

The shape of f is a consequence of [3, Theorem 4.3], while the statement on equivalence to a finite field is [3,
Corollary 5.3].

3 A planar polynomial representing a Dickson semifield

Although it is easy to generate specific examples, as mentioned earlier, there is no known planar polynomial class
which represent any subclass of the Dickson semifields. We now introduce a new class of planar polynomials
equivalent to the class of Dickson semifields of dimension two over their middle nucleus and four over their
nucleus.

Theorem 3.1 Let p be an odd prime, k an arbitrary positive integer, and set s = pk, r = s2 and q = r2. Let
α ∈ Fp satisfy α = (−8)−1, L(X) = Xs +X and t(X) = Xr −X . The polynomial

f(X) = αL(t2(X)) +
1
2
X2

is planar over Fq .
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P r o o f. We need to show

La(X) = f(X + a)− f(X)− f(a)

= 2αL(t(a)t(X)) + aX

is a permutation polynomial for all a 6= 0. Noting t(a)r = −t(a), for any a 6= 0 and x ∈ Fq we have

L(t(a)t(x)) = t(a)t(x) + t(a)st(x)s

= t(a)(xs2
− x) + t(a)s(xs3

− xs)

= −t(a)x− t(a)s2
xs2
− t(a)sxs − t(a)s3

xs3

= −Trq/s(t(a)x).

Now La(X) is a p-polynomial and so is a permutation polynomial over Fq if and only if x = 0 is the only root
of La(X) in Fq , see [9]. Fix a ∈ F∗q and let x ∈ Fq be a root of La(X). Since α ∈ Fp and Trq/s(y) ∈ Fs for all
y ∈ Fq , we must have x = a−1β with β ∈ Fs . Hence

0 = −2αTrq/s(t(a)a−1β) + β

= β
(
−2αTrq/s(ar−1 − 1) + 1

)
,

so that β = 0 or −2αTrq/s(ar−1 − 1) + 1 = 0. Since β = 0 implies x = 0, to establish the theorem it remains
to prove −2αTrq/s(ar−1 − 1) + 1 6= 0 if a 6= 0.

Suppose a ∈ F∗q satisfies −2αTrq/s(ar−1 − 1) + 1 = 0. Now

−2αTrq/s(ar−1 − 1) + 1 = −2αTrq/s(ar−1)− 2αTrq/s(−1) + 1

= −2αTrq/s(ar−1) + 8α+ 1

= −2αTrq/s(ar−1).

Thus Trq/s(ar−1) = 0. Set z = ar−1 and note zr = z−1. We therefore have

0 = z + zs + zs2
+ zs3

= (z + z−1) + (z + z−1)s

= Trr/s(z + z−1).

Now for z = ar−1, we have zr+1 = aq−1 = 1, so that z+z−1 ∈ S2. In addition we know Trr/s(z+z−1) = 0,
so that

zs + z−s + z + z−1 = 0.

Multiplying through by zs we find

0 = z2s + zs+1 + zs−1 + 1 = (zs+1 + 1)(zs−1 + 1).

Thus zs+1 = −1 or zs−1 = −1. In either case we find zr−1 = 1, so that z + z−1 ∈ S1. It follows that
z + z−1 ∈ {2,−2}, in which case Trr/s(z + z−1) 6= 0, a contradiction. Hence there is no a ∈ F∗q for which
−2αTrq/s(ar−1 − 1) + 1 = 0, completing the proof.

Corollary 3.2 The commutative semifieldRf , where f is as defined in Theorem 3.1, is isotopic to the Dickson
semifield two dimensional over the middle nucleus and four dimensional over the nucleus.

P r o o f. By [1], Corollary 2, the semifield Rf can only be isotopic to a finite field or a Dickson semifield.
Now f(X) = L(t2(X)) + 1

2X
2 with Deg(L) > 1, so Lemma 2.1 applies, showing Rf is not isotopic to the

finite field. Since there is only one Dickson commutative semifield with the given parameters, the result now
follows.
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4 A second class of planar polynomials

We now wish to introduce an additional class of planar polynomials. The following lemma will be needed.
Though the result was given previously by Heden [7], we provide a proof for convenience.

Lemma 4.1 Let r ≡ 1 (mod 4) be an odd prime power, q = r2, and g be a primitive element of Fq . If
z = ge(r−1), with 0 ≤ e < r + 1, then

z + z−1 − 2 =


0 if e = 0,
a square of F∗r if e is odd,
a non-square of F∗r if e is even.

P r o o f. The case e = 0 is clear. By hypothesis, zr+1 = 1 so that z + z−1 ∈ S2 and so z + z−1 − 2 ∈ Fr .
Set y = ge(r−1)/2 ∈ Fq , so that (y − y−1)2 = z + z−1 − 2. Clearly z + z−1 − 2 is a square in F∗r if and only
if y − y−1 ∈ F∗r . Now (y − y−1)r = y − y−1 if and only if (yr+1 + 1)(yr−1 − 1) = 0, so that yr+1 = −1
or yr−1 = 1. The former case forces e odd, while the latter case forces e = (r + 1)/2, which is odd by
hypothesis.

Theorem 4.2 Let p be an odd prime and k ∈ N satisfy pk ≡ 1 (mod 4). Set s = pk, r = s2, q = r2 and
let g be a primitive element of Fq . If u = ge(s−1) with e odd, then the polynomial Ωu(X) = Xr+1 + uX2s is
planar over Fq .

P r o o f. We need to show

La(X) = Ωu(X + a)− Ωu(X)− Ωu(a)

= aXr + 2uasXs + arX

is a permutation polynomial for all a ∈ F∗q . Fix a ∈ F∗q . Now La(X) = ar+1(Y r + ωY s + Y ) where Y = X/a

and ω = 2ua−(s−1)2 . Setting Ma(Y ) = Y r + ωY s + Y , we note La(X) is a permutation polynomial if and
only if Ma(Y ) is. By the discussion on pages 361–362 of [9], Ma(Y ) is a permutation polynomial over Fq if
and only if Det(A) 6= 0, where

A =


1 0 1 ωs3

ω 1 0 1
1 ωs 1 0
0 1 ωs2

1

 .

A short calculation shows

Det(A) = Trq/s(ωs+1)− ωs3+s2+s+1

= 4Trr/s(z + z−1 − 2),

where z = us+1a−(s−1)(r−1) = gd(r−1) with d odd. By Lemma 4.1, z + z−1 − 2 = β2m for some integer m
and where β is a primitive element of Fr . If Trr/s(β2m) = 0, then β2m(s−1) = −1 = β(r−1)/2, or equivalently,

2m(s− 1) ≡ 1
2

(s− 1)(s+ 1) (mod r − 1). (2)

Now iu ≡ v (mod n) has a solution i if and only if gcd(u, n) divides v. However, gcd(2(s−1), r−1) = 2(s−1)
does not divide 1

2 (s − 1)(s + 1) as (s + 1)/2 is odd by hypothesis. So m cannot satisfy (2) and Ma(Y ) is a
permutation polynomial. Hence Ωu(X) is planar over Fq .

It remains to showRΩu is isotopic toRf .

Theorem 4.3 The commutative semifieldRΩu
is isotopic toRf , where f is as defined in Theorem 3.1.
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P r o o f. Set L(X) = Ωu(X + 1)−Ωu(X)−Ωu(1) = Xr + 2uXs +X . As Ωu is planar, L is a permutation
polynomial and so there exists a linearised polynomialM(X) = aXrs+bXr +cXs+dX such thatM(L(X)) ≡
X (mod Xq −X). An easy calculation shows

M(L(X)) (mod Xq −X) =(a+ c+ 2urb)Xrs + (b+ d+ 2usc)xr

+ (a+ c+ 2ud)Xs + (b+ d+ 2ursa)X.

Equating coefficients yields the system of equations

a+ c = −2urb

= −2ud

b+ d = −2usc

= 1− 2ursa.

Since M is a linearised permutation polynomial, M(Ωu) is a planar polynomial (see [4, Theorem 2.3]). Set
h(X) = M(Ωu(X)) (mod Xq −X). Using the above system of equations, a short calculation shows

h(X) = (a+ c)Xrs+s + (b+ d)Xr+1 + ursaX2 + uscX2r + udX2s + urbX2rs

= N(t(X)2) +
1
2
X2,

whereN(X) = udXs− b+d
2 X and t(X) = Xr−X . NowRh andRΩu

are isotopic by [4, Theorem 5.2]. Lemma
2.1 tells usRh is isotopic to a finite field if Deg(N) = 1 orRf if Deg(N) > 1. But Deg(N) = 1 implies d = 0,
which in turn yields a contradiction via the system of equations; on one hand we find a = b = c = d = 0, while
b+ d = 1− 2ursa. So Deg(N) = s andRh is isotopic toRf .
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