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Abstract

By relating the number of images of a function with finite domain to a certain parameter, we
obtain both an upper and lower bound for the image set. Even though the arguments are elementary,
the bounds are, in some sense, best possible. These bounds are then applied in several contexts. In
particular, we obtain the first non-trivial upper bound for the image set of a planar function over a
finite field.

§ 1. Introduction

Let A and B be sets, with A finite of order n, and let f : A→ B. We define the following notation, which
will be used throughout this article.

• The number of distinct images of f is denoted by V (f). That is, V (f) = |f(A)|.

• For r ∈ N, Mr(f) is the number of y ∈ B for which f(x) = y has r solutions.

• Since A is finite, clearly Mr(f) = 0 for all sufficiently large r. We therefore define m to be the largest
integer for which Mm > 0.

• For each integer r ≥ 2, Nr(f) is the number of r-tuples (x1, . . . , xr) with xi = xj if and only if i = j
which satisfy f(x1) = f(x2) = · · · = f(xr).

Several identities follow immediately from these definitions.

Id#1 V (f) =
∑m

r=1Mr(f).
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Id#2 n =
∑m

r=1 rMr(f).

Id#3 Ns(f) =
∑m

r=s P (r, s)Mr(f).

(Here P (r, s) denotes the number of s-permutations from r distinct objects. Recall P (r, s) = 0 when
r < s.)

In this paper we are interested in the relationship between V (f) and Ns(f) for a fixed s. Intuitively,
knowledge of Ns(f) should imply some knowledge on V (f), and knowledge of Ns(f) should yield more
knowledge concerning V (f) than Ns′(f) would for s′ > s. Our main result is to obtain bounds for V (f)
in terms of Ns(f) which confirm this intuition. Moreover, when s = 2, our lower bound is tight for any
value of N2(f), while our upper bound is tight in infinitely many cases. Our main theorem can be given in
the following form.

Theorem 1. Let f : A→ B with |A| = n. Then

1

s− 1

(
n− Ns(f)

s!

)
≤ V (f) ≤ n−Ns(f)1/s +O(Ns(f)1/(s+1)).

We pay particular attention to the case s = 2 because it is more likely that one has information on pairs
of elements with the same image than, say, 3-tuples or 4-tuples. In addition, the upper bound can be made
explicit in this case.

Theorem 2. Let f : A→ B with |A| = n and set N2(f) = t. Then M1(f) ≥ Max(0, n− t) and

n− t

2
≤M1(f) +M2(f) ≤ V (f) ≤ n− 2t

1 +
√

4t+ 1

Interestingly, the upper bound in Theorem 2 is related to triangular numbers, and a slight improvement
of this bound, in some cases, could be obtained by resolving a problem on them.

Theorems 1 and 2 can be applied in a variety of settings. We choose to limit ourselves to just one main
application – to polynomials over finite fields.

Let q be a positive power of some prime p. We use the standard notation of Fq for the finite field of
q elements, F?

q for the non-zero elements of Fq, and Fq[X] for the ring of polynomials over Fq in X. We
prove that for a polynomial f ∈ Fq[X], the expected value of N2(f) is q − 1. Consequently, we obtain the
following corollary to Theorem 2.

Theorem 3. Suppose f ∈ Fq[X] is a polynomial for which N2(f) = q − 1, the expected value. Then

q + 1

2
≤ V (f) ≤ q − 2(q − 1)

1 +
√

4q − 3
.

Several classes of polynomials which obtain the expected value for N2(f) are then described; these
include the class of planar polynomials (for further definitions, see Section 3). Planar polynomials are
closely related to affine planes [4, 6], semifields [3], and difference sets [7, 11]. Consequently, they have
received a significant amount of attention. However, the bound given by Theorem 3 constitutes the first
non-trivial upper bound obtained on the size of the image set of a planar function. We suspect that, for
planar functions, our upper bound can still be improved as we do not utilise the full set of restrictions implied
by the planar property. The lower bound is, for planar functions, tight, and has been derived previously by
several authors, see [5, 9, 11]. Our result, in this sense, constitutes a generalisation of the respective results
given in each of those three papers.

The paper is set out as follows. In the next section we prove Theorems 1 and 2. We also discuss briefly
the connection between Theorem 2 and triangular numbers. In Section 3 we apply our results to polynomials
over finite fields. The paper ends with some observations in arithmetic combinatorics and coding theory.
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§ 2. Bounding V (f) when Ns(f) is known

For convenience, we set Ns(f) = t. By the definitions above,

s−1∑
r=1

rMr = n− t+

m∑
r=s

(P (r, s)− r)Mr. (1)

(We note that, since the sum on the right is at least m(m − 2), we must have
∑s−1

r=1 rMr ≥ Max(0, n−
t+m(m− 2)).) We may manipulate (1) as follows:

s−1∑
r=1

rMr = n− t+

m∑
r=s

(P (r, s)− r)Mr

= n− t+ (s!− s)Ms +

m∑
r=s+1

(P (r, s)− r)Mr

≥ n− t+ (s!− s)Ms + (s!− 1)

m∑
r=s+1

rMr

= n− t+ (s!− s)Ms

+ (s!− 1)

m∑
r=1

rMr − (s!− 1)

s−1∑
r=1

rMr − (s!− 1)sMs

= s!n− t+ s! (1− s)Ms − (s!− 1)

s−1∑
r=1

rMr.

Rearranging, we find

s!n− t ≤ s!
s−1∑
r=1

rMr + s! (s− 1)Ms

≤ s! (s− 1)

s−1∑
r=1

Mr + s! (s− 1)Ms

= s! (s− 1)

s∑
r=1

Mr

≤ s! (s− 1)V (f),

which establishes the lower bound in Theorem 1. (We mention, in passing, that this proof is a generalisation
of the lower bound obtained by Matthews and the first author [5]; it was that note that formed the motivation
for this article.)

We now move to determine the upper bound. First, we note that Mm > 0, and so P (m, s) ≤ t, which
yields

m ≤ t 1
s +O(t

1
s+1 ). (2)
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Now, we apply the definitions above to obtain

t = Ns(f)

=

m∑
r=s

P (r, s)Mr =

m∑
r=1

P (r, s)Mr

≤ m
m∑
r=1

P (r − 1, s− 1)Mr

≤ m · P (m− 2, s− 2)

m∑
r=1

(r − 1)Mr,

from which we deduce
m∑
r=1

(r − 1)Mr ≥
t

m · P (m− 2, s− 2)
. (3)

Combining (2) and (3), we get
m∑
r=1

(r − 1)Mr ≥ t
1
s −O(t

1
s+1 ). (4)

We can now estimate V (f) using this sum:

V (f) = n− n+ V (f)

= n−
m∑
r=1

rMr −
m∑
r=1

Mr

= n−
m∑
r=1

(r − 1)Mr

Applying (4) yields

V (f) ≤ n− t 1
s +O(t

1
s+1 ), (5)

as claimed.
The proof of Theorem 2 is no more difficult; in fact, the lower bound is precisely that from before, while

the upper bound follows from a careful re-working of the proof of the upper bound. We omit the details.
It is easy to see that, provided N2(f) < 2n, this lower bound is tight, as one can easily construct

functions that meet this bound. Set N2(f) = t. Randomly choose t distinct elements x1, x2, . . . , xt ∈ A
and t/2 distinct elements y1, y2, . . . , yt/2 ∈ B. For 1 ≤ i ≤ t/2, assign f(x2i−1) = f(x2i) = yi. At this
point, N2(f) = t, so that f must be 1-1 on A \ {x1, . . . , xt}. It follows that V (f) = t

2 + n− t = n− t
2 ,

which is the lower bound.
It is clear from symmetry that N2(f) = t is necessarily even. Set t = 2k. Then the bounds read

n− k ≤ V (f) ≤ n− 4k

1 +
√

8k + 1
.

It is natural to ask when is
√

8k + 1 ∈ Z? Interestingly, 8k + 1 is a square precisely when k is a triangular
number. In such cases, we have k = u(u − 1)/2 for some integer u, 8k + 1 = δ2 where δ = 2u − 1, and
the upper bound simplifies neatly to

V (f) ≤ n− δ − 1

2
= n+ 1− u.
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In all cases where k is a triangular number, there exist functions which attain this bound. To construct
such a function, choose u elements x1, x2, . . . , xu ∈ A and set f(x1) = f(x2) = · · · = f(xu). Now set f
to behave 1-1 on the remaining elements of A. It can be seen that N2(f) = 2k and that the upper bound
is attained.

In all cases where k is not a triangular number, our upper bound is not exact. To make our upper bound
tight, one needs to solve the following problem:

Let Tr =
(
r
2

)
for any r ∈ N, and fix k ∈ N. By a triangular sum of length l for k we mean any

instance of the equation

k =

l∑
i=1

Tri ,

where r1 ≥ r2 ≥ · · · ≥ rl. The weight of a given triangular sum is given by −l + (
∑l

i=1 ri).
Given k, we define Bk to be the smallest weight among all triangular sums for k. Find a formula
for Bk.

Clearly, when k = Tu, Bk = u− 1, but we do not know of a general formula for Bk. While Gauss famously
proved that there exists a triangular sum for any k with length at most 3, it may not necessarily be the
case that one such instance will provide the value for Bk. The connection to our bound should be clear: If
N2(f) = 2k, then V (f) ≤ n−Bk, with equality always possible.

§ 3. Polynomials over finite fields and N2(f)

We now look to apply these bounds on V (f) to polynomials over finite fields. It is, of course, well known
that every function over Fq can be represented uniquely, via Lagrange interpolation, by a polynomial of
degree less than q. By the reduced form of a polynomial f ∈ Fq[X] we shall mean the polynomial g(X)
given by g(X) = f(X) mod (Xq −X). A polynomial f ∈ Fq[X] is a permutation polynomial over Fq if
V (f) = q.

Research concerning the value of V (f) for polynomials over finite fields is extensive; we restrict ourselves
to discussing a few outstanding general results. It is clear that, for lower bounds, there are obvious limits
to the results you can expect to obtain – obviously V (f) ≥ 1 with equality possible, while for polynomials
of given degree d, V (f) ≥ 1 + q−1

d is clear. That said, we have the following deep result by Cohen [2]
concerning the average lower bound of V (f).

Theorem 3.1 (Cohen [2]). Let f ∈ Fq[X] be of the form

f(X) = Xd +

d−1∑
i=1

aiX
i.

Let t be any integer such that 0 ≤ t ≤ d − 2 and let ad−1, . . . , ad−t be fixed. Define v(d, t) =∑
V (f)/qd−t−1, where the sum is over all a1, . . . , ad−t−1. Set m = b(d− t)/2c. Then v(d, t) > c(q,m)q,

where

c(q,m) = 1−

(
m∑
r=0

(
q

r

)
(q − 1)−r

)−1
.

Setting t = d− 2 in Cohen’s result, we find that, in particular, on average, V (f) > q2

2q−1 >
q
2 .

A specific lower bound was obtained by Wan, Shiue, and Chen [15] under an additional condition on the
polynomial. For f ∈ Fq[X], define up(f) to be the smallest positive integer k such that

∑
x∈Fq

f(x)k 6= 0.

If no such k exists, define up(f) =∞.

Theorem 3.2 (Wan, Shiue, Chen [15]). If up(f) <∞, then V (f) ≥ up(f) + 1.
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The authors note that up(f) ≥ b q−1
Degree(f)c, so that under the conditions, their bound is at least as

good as the obvious bound noted above.
In terms of an upper bound, there is the following general bound by Wan [14], given in terms of the

degree of the polynomial.

Theorem 3.3 (Wan [14]). Let f ∈ Fq[X]. If f is not a permutation polynomial over Fq, then

V (f) ≤ q −
⌊

q − 1

Degree(f)

⌋
.

A better bound was obtained in [15] using p-adic techniques. To avoid unnecessary technical details,
we simply refer the interested reader to [15], Theorem 3.1.

Integral to applying our bounds is having knowledge of Ns(f) for some s. For simplicity, we only discuss
the case s = 2 here. We do not feel this is particularly limiting as, of the values of Ns(f), knowledge of
N2(f) seems most likely. We approach this issue by first establishing the expected value of N2(f) for any
polynomial f ∈ Fq[X] and applying our bounds to polynomials with this expected value. We then consider
classes of polynomials which meet this expected value.

Denote the standard trace mapping from Fq to Fp by Tr. Let ω be a primitive pth root of unity. Recall
that the canonical additive character, χ1, of Fq is defined by χ1(x) = ωTr(x) for any x ∈ Fq, and that all
additive characters of Fq are given by χh(x) = χ1(hx) for any h ∈ Fq. The following result is a straight
generalisation of a result of Carlitz [1].

Lemma 3.4. Given a random polynomial f ∈ Fq[X], the expected value of N2(f) is q − 1. Equivalently,
for any f ∈ Fq[X], ∑

a∈Fq

N2(f(X) + aX) = q(q − 1). (6)

Proof. Fix a polynomial f ∈ Fq[X]. By the definitions above,

q(N2(f) + q) = q(|{(x, y) : f(x) = f(y), x, y ∈ Fq, x 6= y}|
+ |{(x : f(x) = f(x), x ∈ Fq}|)

=
∑
h∈Fq

∑
x,y∈Fq

χh(f(x)− f(y)).

To generate our average value for N2(f), we consider the average over the set {f(X) + aX : a ∈ Fq}.
We have ∑

a∈Fq

q(N2(f(X) + aX) + q)

=
∑
a∈Fq

∑
h∈Fq

∑
x,y∈Fq

χh(f(x)− f(y) + a(x− y))

= q3 +
∑
h∈F?

q

∑
x,y∈Fq

χh(f(x)− f(y))
∑
a∈Fq

χh(a(x− y))

= q3 +
∑
h∈F?

q

∑
x∈Fq

q

= q3 + q2(q − 1),

where, in the second to last line, we have exploited the fact
∑

a∈Fq
χ(a(x−y)) = 0 unless x = y. Comparing

the left and right hand sides yields ∑
a∈Fq

N2(f(X) + aX) = q(q − 1). (7)



R.S. Coulter and S. Senger, On the number of distinct values of a class of functions 7

The claimed expected value of N2(f) now follows at once, for we can, of course, partition the set of
polynomials into equivalence classes, with two polynomials being equivalent if they differ only by a linear
term aX: the average value of N2(f) for the polynomials in any equivalence class is q − 1 by (7).

Theorem 3 now follows at once from Theorem 2 and Lemma 3.4.
Now suppose f ∈ Fq[X] is a polynomial for which N2(f) = q − 1, the expected value. For our lower

bound, we find V (f) ≥ q+1
2 , which is more or less the same as that obtained by Cohen’s result. In the

other direction, applying our upper bound to f , we find

V (f) ≤ q − 2(q − 1)

1 +
√

4q − 3
.

However, this cannot be compared directly to the result of Wan, for we do not know if N2(f) = q − 1 has
any direct implication on Degree(f).

Given Lemma 3.4, one obvious question arises: Is it possible to describe classes of polynomials for which
the expected value for N2(f) is obtained? Are there natural conditions on f which force N2(f) = q − 1?
We now discuss, for q odd, several such conditions (the case q even is clearly impossible for N2(f) is
necessarily even).

For any a ∈ F?
q , we define the difference polynomial, ∆f,a(X) = ∆a(X), to be the polynomial given

by ∆a(X) = f(X + a) − f(X). A polynomial f ∈ Fq[X] is planar over Fq if, for every a ∈ F?
q , the

polynomial ∆a(X) is a permutation polynomial over Fq. An equivalent definition for planarity is that
|Sh(f(X) + aX)| = |

∑
x∈Fq

χh(f(x) + ax)| = √q for all a, h ∈ Fq, h 6= 0.

Consider the following conditions on a polynomial f ∈ Fq[X]:

C1. f is planar over Fq.

C2. For h ∈ F?
q , |Sh(f)| = |

∑
x∈Fq

χh(f(x))| = √q.

C3. For all a ∈ F?
q , the polynomial ∆f,a(X) has a unique root.

C4. N2(f) = q − 1.

Clearly, C1 → C2 and C1 → C3 → C4. It is shown in the proof of [5], Theorem 1, that C2 → C4, while a
counting argument, also given in [5], shows C1 6≡ C2.

The relationship between C2 and C3 is less clear. Computations show that they are almost certainly
inequivalent for sufficiently large q. Over F3, they are equivalent; over F5, they are not, though (C2∧C3)→
C1. For q ∈ {7, 9}, they are inequivalent, and

• there exist polynomials which satisfy both C2 and C3 but not C1; for example, f(X) = X4 + 2X2 ∈
F7[X]; and

• there exist polynomials which satisfy one or other but not both conditions; for example, with g a
primitive element of F9, X7 + gX2 satisfies C2 but not C3, while X8 + gX2 satisfies C3 but not C2.

This also shows C2 6≡ C4 and C3 6≡ C4. We suspect that the following statement is true, though we have
no direct idea of how to establish it.

Conjecture 3.5. For any finite field of any characteristic, the number of polynomials satisfying C3 is greater
than or equal to the number of polynomials satisfying C2.

§ 4. Two further settings where the bounds apply

We end by describing two settings where our results can be applied, and where we suspect some refinements
of our methods might lead to stronger results than those we give here.
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§ 4.1. Arithmetic combinatorics

Here, we present a setting where N2 arises rather naturally. Let G be a (not necessarily abelian) group.
For subsets A,B ⊂ G, define the product set of A and B to be

A ·B = {ab : a ∈ A, b ∈ B}.

Much interest revolves around the relative sizes of A,B, and A · B. Some examples are the Cauchy-
Davenport Theorem, the Plünnecke-Rusza inequalities, and Freiman’s Theorem; see the books by Nathanson
[10] or Tao and Vu [13]. One useful tool for these questions is the concept of energy. Various types of
energy bounds have been the key ingredient in many recent results, such as the current best known sums
and products bound due to Solymosi [12].

Given G,A, and B as above, we define the multiplicative energy, E(A,B), to be

E(A,B) = |{(a, a′, b, b′) ∈ A×A×B ×B : ab = a′b′}|.

If we consider f : A×B → G, f : (a, b) 7→ ab, we get a very close relationship between N2(f) and E(A,B),
namely

N2(f) = E(A,B)− |A| · |B|,

which we obtain by removing the “diagonal” elements of the form (a, a, b, b) from the energy count. With
this in mind, the following is a direct application of Theorem 2.

Corollary 4.1. Let G be a group, A,B ⊂ G and set n = |A| · |B|. Then we have

3n− E(A,B)

2
≤ |A ·B| ≤ n− 2(E(A,B)− n)

1 +
√

4(E(A,B)− n) + 1
(8)

Notice that these bounds are most effective when energy is small.

§ 4.2. Coding theory

Our second setting is in coding theory. Much is known about the interplay between the redundancy of a
given code and the amount of information that can be communicated per unit time; see Hall’s notes on
coding [8], for a good introduction. Here, we investigate messages transmitted through a noisy medium.

Consider a function f : C → M, where C is the codespace and M is the message space. In order to
increase the likelihood that a message is decoded properly, even with errors in transmission, we will often
give a single message word more than one code word. That is, it will often be the case that f(c) = f(c′)
for distinct c, c′ ∈ C. By definition, V (f) will be precisely the number of distinct words in M, and N2(f)
will be the number of times that two code words represent the same message.

There are situations in which one has a particularly uneven message space, where a small number
of messages have high priority, and need the best chances of being decoded correctly, while all remaining
messages are less important, and their incorrect decodings would have very little consequence. For example,
a message space between fire towers in a forest could have a small number of special words about the
existence or severity of a fire, and the other words could describe other, less important details, like the
weather, in the case that there is no fire. Similar applications exist in a variety of different contexts such
as operations in hostile environments. In such situations, an application of Theorem 2 yields the following.

Corollary 4.2. In a code with a codespace C, a message space M, an assignment function f : C → M,
and t = |{f(c) = f(c′) : c, c′ ∈ C, c 6= c′}|, we have

n− t

2
≤ |C| ≤ n− 2t

1 +
√

4t+ 1

In this setting, our bounds can be viewed as providing a guide for balancing between levels of redundancy
and flexibility within the code.
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