
BENT POLYNOMIALS OVER FINITE FIELDS

ROBERT S COULTER AND REX W MATTHEWS

Abstract. The definition of bent is redefined for any finite field. Our main
result is a complete description of the relationship between bent polynomials
and perfect non-linear functions over finite fields: we show they are equiv-
alent. This result shows that bent polynomials can also be viewed as the
generalisation to several variables of the class of polynomials known as planar
polynomials. An explicit method for obtaining large sets of not necessarily
distinct maximal orthogonal systems using bent polynomials is given and we
end with a short discussion on the existence of bent polynomials over finite
fields.

1. Origins and definitions

Bent functions were introduced by Rothaus in 1976 and have since been shown to
have a wide range of applications. Defined originally over Z2 and then generalised
to Zq for general q they have indirectly been studied over prime fields. In this article
we formally define the notion of bent polynomial for any finite field. The definition
relies on the concept of the Discrete Fourier Transform which we define in terms of
additive characters following the notation used in [6, Chapter 5]. Throughout we
use the following conventions: p is a prime, q = pe for some positive integer e, Fq

denotes the finite field with q elements and F∗

q the non-zero elements of Fq. For a
positive integer n, Fn

q denotes the set of all n-tuples of elements from Fq while Zn
m is

similarly defined from the ring of integers modulo m. Finally, we use Fq [X1, . . . , Xn]
to denote the set of all n-variable polynomials over Fq and Vm

q [X1, . . . , Xn] for the
set of all m-tuples of polynomials in the variables X1, . . . , Xn in Fq.

The function χ1 defined by

χ1(x) = e2πiTr(x)/p

for all x ∈ Fq is called the canonical additive character of Fq. Here Tr : Fq → Fp

denotes the absolute trace function from Fq to Fp. For y ∈ Fq , the function χy(x) =
χ1(yx) for all x ∈ Fq is an additive character of Fq and every character of Fq can
be obtained in this way. Finally, we note that χ0 is the trivial additive character
which satisfies χ0(x) = 1 for all x ∈ Fq .
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2 ROBERT S COULTER AND REX W MATTHEWS

Definition 1.1. Let f ∈ Fq [X1, . . . , Xn]. The Discrete Fourier Transform of f is

the complex valued function cf,χ : Fn
q → C given by

cf,χ(λ) =
1

qn/2

∑

x∈Fn
q

χ
(

f(x) − λ · x
)

where χ : Fq → C is any non-trivial additive character on Fq and · : Fn
q × Fn

q → Fq

is the usual scalar dot product.

The polynomials we shall study within this paper are defined as follows.

Definition 1.2. A polynomial f ∈ Fq [X1, . . . , Xn] is said to be bent if every Fourier

coefficient has unit magnitude for any non-trivial character. Explicitly,
∣

∣

∣

∣

1

qn/2

∑

x∈Fn
q

χ
(

f(x) − λ · x
)

∣

∣

∣

∣

= 1

for all λ ∈ Fn
q and for all χ 6= χ0.

The reason for the term bent used in the above definition is historical. These
polynomials can be viewed as a generalisation to finite fields of a well known class
of functions called bent functions which have been previously defined only on Z

n
m.

These functions were first introduced by Rothaus [10] on Zn
2 and generalised to Zn

m

by Kumar, Scholtz and Welch in [5]. In those cases the motivation for studying
bent functions lies with properties of these functions which are relevant to coding
theory and cryptology. In this paper we consider bent polynomials as multivariate
analogues of planar polynomials defined over a finite field.

2. Some General Properties

In this section we shall establish some properties of bent polynomials. In partic-
ular we shall discuss their permutation behaviour and how they act under composi-
tion with additive polynomials. We will use the following concept for a multivariate
polynomial (see [6, Definition 7.34]).

Definition 2.1. A polynomial f ∈ Fq[X1, . . . , Xn] is called a permutation polyno-
mial in n indeterminates over Fq if the equation

f(x1, . . . , xn) = a

has qn−1 solutions in Fn
q for each a ∈ Fq.

Bent functions have been closely associated with the class of functions called
perfect non-linear functions, which we define here over finite fields.

Definition 2.2. Let f ∈ Fq [X1, . . . , Xn]. Then we call f perfect non-linear if for

every a ∈ F
n
q , a 6= 0, the difference polynomial ∆f,a defined by

∆f,a(X) = f(X + a) − f(X)

is a permutation polynomial.

Over Zn
m bent functions and perfect non-linear functions have been shown to be

closely linked. Nyberg in [8] proved that any perfect non-linear function must be
bent, while a bent function must be perfect non-linear if m is prime. When dealing
with a general finite field the connection between the two classes is much simpler.
In fact, they are equivalent.
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BENT POLYNOMIALS OVER FINITE FIELDS 3

Theorem 2.3. A polynomial f ∈ Fq [X1, . . . , Xn] is perfect non-linear if and only

if it is bent.

Proof. Let f ∈ Fq[X1, . . . , Xn]. Then for arbitrary χ 6= χ0

|cf,χ(λ)|2 = cf,χ(λ)cf,χ(λ)

=
1

qn

∑

x∈Fn
q

χ
(

f(x) − λ · x
)

∑

y∈Fn
q

χ
(

f(y) − λ · y
)

=
1

qn

∑

x∈Fn
q

χ
(

f(x)
)

∑

y∈Fn
q

χ
(

−f(y) − λ · (x − y)
)

=
1

qn

∑

x∈Fn
q

χ
(

f(x)
)

∑

z∈Fn
q

χ
(

−f(x − z) − λ · z
)

=
1

qn

∑

z∈Fn
q

χ(−λ · z)
∑

x∈Fn
q

χ
(

f(x) − f(x − z)
)

. (1)

Suppose f is a perfect non-linear polynomial. Then the inner sum of (1) is zero
unless z = 0 in which case the inner sum has value qn. Hence we have |cf,χ(λ)|2 = 1
and f is a bent polynomial.

Now suppose f is a bent polynomial. Let

Sχ(f, z) =
∑

x∈Fn
q

χ(f(x + z) − f(x)).

Then Equation 1 becomes
∑

z∈Fn
q

χ(λ · z)Sχ(f, z) = qn (2)

for all λ ∈ Fn
q . We need to show that Sχ(f, z) = 0 for all z ∈ Fn

q , z 6= 0. From
Equation 2 we have qn equations in qn unknowns. Ordering the elements of Fn

q by
α0, . . . , αqn−1 with α0 = 0 we can express (2) as the following matrix equation.











1 1 . . . 1
1 χ(α1 · α1) . . . χ(α1 · αqn−1)
...

...
. . .

...
1 χ(αqn−1 · α1) . . . χ(αqn−1 · αqn−1)





















Sχ(f, 1)

Sχ(f, α1)
...

Sχ(f, αqn−1)











=











qn

qn

...
qn











(3)

Let H denote the qn × qn matrix in the above equation. Then using the orthogo-
nality relations for characters we have

H
T
H = qnI.

Multiplying (3) by H
T

on the left yields the qn equations

Sχ(f, αj) =

qn
−1

∑

i=0

χ(αi · αj) (4)

for j = 0, . . . , qn − 1. However for αj 6= 0 the right hand side of Equation 4 is
zero. Hence Sχ(f, z) = 0 for all z ∈ Fn

q , z 6= 0, and so f is a perfect non-linear
polynomial. �
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4 ROBERT S COULTER AND REX W MATTHEWS

As previously mentioned, equivalence in the prime case was established by Ny-
berg in [8]. We illustrate that the above result is a true generalisation of Nyberg’s
work. By choosing a basis (y1, . . . , yr) of a general field Fq , with q = pr, viewed as a
vector space over its prime subfield, a bent polynomial from Fn

q to Fq is equivalent
to a bent transformation from F

rn
p to F

r
p. Thus the above result is fundamentally

different to the result of Nyberg [8, Theorem 2.3] in that there the result is only
shown for the case r = 1. In other words Nyberg proves the result for single valued
polynomials on Fp not vector valued polynomials as is shown here.

A polynomial L ∈ Fq [X ] is called additive on Fq if L(x + y) = L(x) + L(y) for
all x, y ∈ Fq . Any such L can be regarded as an Fp-linear transformation of Fq.
Polynomials which induce an Fp-linear transformation are known in the literature
as linearised polynomials. There is an explicit description of such polynomials: their
reduced form has the shape

L(X) =

e−1
∑

i=0

aiX
pi

where ai ∈ Fq . We note that the existence of an additive polynomial vector mapping
Fn

q to Fn
q is equivalent to the existence of an additive polynomial over Fqn . Here,

by an additive vector polynomial f we mean f ∈ Vn
q [X1, . . . , Xn] and f(x + y) =

f(x) + f(y) for all x, y ∈ Fn
q .

Since the polynomials may always be considered as reduced, we may assume that
any additive polynomial has the above shape. These polynomials form a subset of
the class of polynomials called affine polynomials. Affine polynomials have been
studied extensively and we refer the reader to [6, pages 107-124] for their properties.
The following result is well known, see [6, Theorem 7.9] for example.

Lemma 2.4. Let L ∈ Fq [X ] be defined by

L(X) =

e−1
∑

i=0

aiX
pi

.

Then L is a permutation polynomial over Fq if and only if L has no roots in Fq

other than 0.

If we choose a standard basis for Fn
q over Fq (eg. 1, z, z2, . . . with z a generator)

then an additive polynomial vector will be a permutation polynomial vector if and
only if it has no roots other than the zero vector. This can be shown by using the
linear independence of the basis chosen and relating the additive polynomial vector
back to its additive polynomial which must be a permutation polynomial.

In connection to Theorem 2.3 we shall define ∆f,a ∈ Fq [X1, . . . , Xn] by

∆f,a(X) = f(X + a) − f(X) (5)

where f ∈ Fq[X1, . . . , Xn] and a ∈ Fn
q . In light of Theorem 2.3 it is clear that we

shall be particularly interested in ∆f,a whenever a is not the all zeros vector. The
following two results are the obvious generalisations of [3, Theorem 2.3] and as the
proofs are the same as those given there we omit them.

Theorem 2.5. Let f ∈ Fq[X1, . . . , Xn] and let L ∈ Fq [X ] be additive. Then L(f)
is bent if and only if f is bent and L is a permutation polynomial.
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BENT POLYNOMIALS OVER FINITE FIELDS 5

Theorem 2.6. Let f ∈ Fq[X1, . . . , Xn] and let Ln ∈ Vn
q [X1, . . . , Xn] be an additive

polynomial vector. Then f(Ln(X)) is a bent polynomial if and only if f is bent and

Ln is a permutation polynomial vector.

3. Orthogonal Systems and the Single Variable Case

Definition 3.1. A system of polynomials f1, . . . , fm ∈ Fq[X1, . . . , Xn], 1 ≤ m ≤ n,

is said to be orthogonal in Fq if the system of equations

f1(x1, . . . , xn) = y1, . . . , fm(x1, . . . , xn) = ym

has exactly qn−m solutions in F
n
q for each (y1, . . . , ym) ∈ F

m
q . If n = m then we

shall call the system maximal.

Niederreiter in [7] showed that every polynomial in an orthogonal system must
be a permutation polynomial. We now show that bent polynomials are also related
to orthogonal systems.

Theorem 3.2. Let f ∈ Fqn [X ] be a bent polynomial. Then f defines n distinct

bent polynomials f1, . . . , fn over Fn
q such that the set of polynomials

{

∆fi,a ∈ Fq[X1, . . . , Xn] | ∆fi,a(X) = fi(X + a) − fi(X), i = 1, . . . , n
}

forms a maximal orthogonal system in Fq for each non zero a ∈ Fn
q .

Proof. Let f be a bent polynomial over Fqn . Then f(X+a)−f(X) is a permutation
polynomial for all a ∈ F∗

qn . Select (y1, . . . , yn), yi ∈ Fqn , to be a basis for Fqn over
Fq. Then any a ∈ Fqn can be written in the form

a = a1y1 + a2y2 + . . . + anyn

with each ai ∈ Fq. In particular we may write

f(X) =
n

∑

i=1

fi(X1, . . . , Xn)yi

where fi ∈ Fq [X1, . . . , Xn] for i = 1, . . . , n and X =
∑n

i=1 Xiyi. Similarly we have
for any a ∈ Fqn

f(X + a) =
n

∑

i=1

fi(X1 + a1, . . . , Xn + an)yi

and combining yields

f(X + a) − f(X) =

n
∑

i=1

yi

(

fi(X1 + a1, . . . , Xn + an) − fi(X1, . . . , Xn)
)

for all a ∈ Fqn . As f is bent we have that each fi must be a bent polynomial on
F

n
q . Moreover, for f to be a bent polynomial, the set ∆a given by

{

∆fi,a ∈ Fq[X1, . . . , Xn] | ∆fi,a(X) = fi(X + a) − fi(X), i = 1, . . . , n
}

must form a maximal orthogonal system for each non-zero a ∈ F
n
q . If fi = fj for

some 1 ≤ i < j ≤ n then none of the sets ∆a could be orthogonal. Hence the n
bent polynomials are distinct. �
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6 ROBERT S COULTER AND REX W MATTHEWS

So a bent polynomial in one variable over Fqn describes qn − 1 not necessarily
distinct maximal orthogonal systems in Fq. A bent polynomial in one variable is
also known as a planar polynomial or planar function.

Planar functions were first introduced by Dembowski and Ostrom in [4] in con-
nection with projective planes satisfying certain properties. A recent paper by the
authors [3] considered several aspects of planar functions over finite fields and the
planes described by them. In particular, several classes of planar polynomials were
identified and they can be listed as follows:

(i) f(X) = X2, which gives the Desarguesian plane over Fq, q odd.

(ii) f(X) = Xpα+1, which is planar over Fpe , p odd, if and only if e/(α, e) is
odd.

(iii) f(X) = X10 + X6 − X2, which is planar over F3e if and only if e = 2 or e
is odd.

(iv) f(X) = X(3α+1)/2, which is planar over F3e if and only if (α, e) = 1 and α
is odd.

From experimental data it appears that all known planar polynomials are equivalent
to one of these types in the sense that they can be obtained through multiple
applications of Theorems 2.5 and 2.6, and through the addition of single variabled
additive polynomials. (If f ∈ Fq[X ] is a planar polynomial then so is f + L for any
additive polynomial L ∈ Fq[X ].)

The study of planar functions has so far been motivated essentially by their
connection with projective planes. They are also studied under the name of relative
difference sets. Each planar function describes an affine plane whose projective
closure satisfies certain properties, see [4] for details. Until recently all known finite
planes described by planar functions were either semi-field planes or desarguesian.
However, in [3] a new class of planar polynomials were discovered (the 4th class in
the list above) which described a class of planes which could not be coordinatised
by quasi-fields. These planes were shown to be of Lenz-Barlotti class II (they have
since been shown to be LB Class II.1 by Jill Yaqub). All previously known such
planes had been obtained through derivation or lifting and so had square prime
power order. The new class of planes contains at least one Lenz-Barlotti class II
plane of order 3e for each e ≥ 4. We summarise with the following theorem which
was implicitly proven in [3] but not explicitly stated.

Theorem 3.3. There exist planes of Lenz-Barlotti class II which have non-square

order and hence cannot be obtained by derivation or lifting.

This answers affirmatively a problem which has been in existence virtually since
the introduction of the concept of derivation by Ostrom in the 1960’s.

4. Existence

We end with some remarks on the existence of bent polynomials. As can be
seen from the listing above, bent polynomials in one variable exist over Fq for all
q = pe with p an odd prime – a simple argument shows that bent polynomials in
one variable cannot exist when p = 2, see [9]. In particular, the polynomial X2 is
bent over all finite fields of odd order. The application of Theorem 3.2 to X2 over
Fqn for any n shows that there must exist bent polynomials in n variables over Fq

for any q odd.
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BENT POLYNOMIALS OVER FINITE FIELDS 7

The existence of bent functions over Zq has been dealt with in many papers. In
a similar vein to [5, 10] we have the following.

Lemma 4.1. Let f ∈ Fq [X1, . . . , Xn] and g ∈ Fq[X1, . . . , Xm]. If f and g are bent

then the polynomial F = f + g ∈ Fq [X1, . . . , Xn+m] is bent. If q is prime then the

converse holds also.

Proof. Let f and g be bent. We have

cF,χ(λ) =
1

q(n+m)/2

∑

z∈F
n+m
q

χ
(

F (z) − λ · z
)

=
1

q(n+m)/2

∑

x∈Fn
q ,y∈Fm

q

χ
(

f(x) + g(y) − (λn, λm) · (x, y)
)

=
1

qn/2qm/2

(

∑

x∈Fn
q

χ
(

f(x) − λn · x
)

)(

∑

y∈Fm
q

χ
(

g(y) − λm · y
)

)

= cf,χ(λn)cg,χ(λm).

Clearly F is bent if f and g are. For the converse see [5, 10]. �

For q = 2 this was first shown by Rothaus [10]. Kumar, Scholtz and Welch in
[5] claimed the forward part of the above result for general Zq without proof with
the statement that it was a straight generalisation of Rothaus’ proof. We note
that as the converse part of Rothaus’ proof can also be generalised it seems likely
that Kumar, Scholtz and Welch meant to claim the full generalisation of Rothaus’
Theorem. Thus for q an odd prime we attribute Lemma 4.1 to [5]. We have the
following corollary.

Corollary 4.2. Let f ∈ Fq[X1, . . . , Xn] have the shape

f(X1, . . . , Xn) =

n
∑

i=1

fi(Xi),

with fi ∈ Fq[X ]. Then f is bent if every fi is a planar polynomial.

Of particular interest would be any bent polynomial constructed in this manner

with fi(Xi) = X
(3α+1)/2
i for some i. As these planar monomials were only re-

cently discovered it would be interesting to know whether any corresponding bent
polynomials are already known and if so how they were constructed.

The characteristic 2 case requires special attention as no planar polynomials
exist in this case. Results and constructions by Rothaus in [10] show that bent
polynomials on Fn

q with q = 2 can only occur if n is even and that they do occur
for every even n. It is a simple matter to prove the following.

Lemma 4.3. Let q = 2e. Then the polynomial X1X2 is bent on F2
q.

Thus it is clear that by multiple applications of Lemma 4.1 we can construct
bent polynomials in characteristic 2 for any even number of variables. With the
work of Rothaus just mentioned in mind this is perhaps not a surprising result. We
note that if q = 2e then it is not possible for there to exist bent polynomials over
Fn

q if ne is odd. To see this note that for p = 2 any additive character of Fq will
only take values in the set {0, 1}. Thus the sums involved in the Fourier transform
will be integers only. If ne is odd then qn is not a square and so it is not possible
for any Fourier coefficient to have unit magnitude.
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