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On the splitting case of a semi-biplane

construction

Robert S. Coulter ∗ Marie Henderson ∗

Dedicated to Jennifer Seberry on the occasion of her 60th birthday.

Abstract

We consider the case where a particular incidence structure splits into two sub-
structures. The incidence structure in question was used previously by the authors to
construct semi-biplanes sbp(k2, k) or sbp(k2/2, k). A complete description of the two
substructures is obtained. We also show that none of the three semi-biplanes, sbp(18, 6),
can be described using this construction.

1 Introduction.

Let G and H be finite abelian groups written additively and of the same even order k.
We call a function f : G → H a semi-planar function if for every non-identity a ∈ G the
equation

∆f,a(x) = f(x+ a) − f(x) = y,

with y ∈ H, has either 0 or 2 solutions x ∈ G. Semi-planar functions are better known
in communication security as almost perfect non-linear functions, see [3], or differentially
2-uniform functions, see [2].

A semi-biplane, or sbp(v, k), is a connected incidence structure which satisfies the fol-
lowing.

(i) Any two points are incident with 0 or 2 common lines.

(ii) Any two lines are incident with 0 or 2 common points.

Such a design contains v points, and v lines with every point occurring on k lines, and every
line containing k points. In [1] the authors developed the following method for constructing
semi-biplanes using semi-planar functions.

Let G and H be as above and let f : G→ H. Define the incidence structure S(G,H; f)
by:

Points: (x, y) with x ∈ G and y ∈ H

Lines: L(a, b) with a ∈ G and b ∈ H

Incidence: (x, y) I L(a, b) ⇔ y = f(x− a) + b.

When the context is clear, we shall denote the incidence structure simply by S(f). The
following is Proposition 9 of [1].
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Lemma 1 Let G and H be finite abelian groups written additively and of the same even
order k. Let f : G → H be a semi-planar function. If S(G,H; f) is connected, then it is
a sbp(k2, k). If S(G,H; f) is not connected, then S(G,H; f) splits into two sub-structures;
both are sbp(k2/2, k).

So the designs of [1] are either connected or consist of two separate substructures of
equal size. Also from [1] is the following.

Lemma 2 Let G and H be finite abelian groups written additively and of the same even
order k. Let f : G → H be a semi-planar function. If f is a bijection, then S(G,H; f) is
connected unless k = 2.

As there are bijective semi-planar functions known over the additive group of any finite
field Fq , with q = 2e and e ≥ 3, it follows that there exist sbp(22e, 2e) for all integers
e ≥ 3. There is only one known class of non-bijective semi-planar functions: the monomials
f(X) = X2α+1 over F2e are semi-planar if and only if (α, e) = 1. Here, too, it can be shown
that S(f) is connected provided e ≥ 3, see Lemma 11 of [1]. When e = 2, then we must
have f(X) = X3 and S(f) splits into two identical copies of the hypercube H(4) (H(k) is
the semi-biplane whose incidence graph is the graph of the k-dimensional hypercube). As
H(k) is a sbp(2k−1, k), it is easily seen that S(G,H; f) can only describe a hypercube in
this case.

In this paper we are interested in the case where S(f) splits into two substructures, as
at this point the only known examples which do this are the degenerate case where k = 2 or
the case k = 4 with G = H = Z

+
2
×Z

+
2
, the hypercube case. We look at the general theory

for the case where S(f) splits in Section 2. Our main result gives a complete description of
the two substructures in this case, see Theorem 4. Proposition 16 of [4] shows that there are
exactly three non-isomorphic sbp(18, 6), while there are no sbp(36, 6). So if a semi-planar
function f over Z

+

6
exists, then S(Z+

6
,Z+

6
; f) must split into two substructures. In Section 3,

we show that no semi-planar function exists over Z
+
6

and hence none of the three sbp(18, 6)
can be described by the construction of [1].

2 General Theory

For each pair a ∈ G, b ∈ H define

S(a, b) = {t ∈ G : f(t− a) = f(t) + b}.

Note that if f is semi-planar, then for each pair (a, b) ∈ G×H with a 6= 0, either |S(a, b)| = 2
or |S(a, b)| = 0.

Lemma 3 Let G and H be two finite abelian groups (written additively) of even order k
and f : G → H be semi-planar. For each pair a ∈ G, b ∈ H, with a 6= 0, |S(a, b)| = 2 if
and only if

L(αa, d + b) ∩ L((α+ 1)a, d) 6= ∅

for all d ∈ H and α ∈ Z.

Proof: Let a ∈ G, b ∈ H and a 6= 0. For all d ∈ H and α ∈ Z, the lines L(αa, d + b) and
L((α+ 1)a, d) intersect (twice) if and only if y = f(x− αa) + d+ b = f(x− (α+ 1)a) + d.
Equivalently,

f(x− (α+ 1)a) − f(x− αa) = b



has two solutions. Substituting for z = x−αa, we have f(z−a)−f(z) = b has two solutions,
or in other words, the lines intersect if and only if |S(a, b)| = 2. �

A semi-biplane is called divisible if the points can be partitioned into classes so that the
following property holds: two points from a class lie on no common line and two points
from different classes lie on exactly two lines.

Theorem 1 Suppose G and H are two finite abelian groups (written additively) of even
order k and f : G→ H is semi-planar. If S(G,H; f) splits into two substructures, then the
resulting sbp(k2/2, k) are both divisible.

Proof: A useful property of S(f) is that it is self-dual, see Theorem 7 of [1]. Hence we need
only show the equivalent statement holds for lines. Let S1 and S2 be the two substructures
of S(G,H; f). Let

Pa = {b ∈ H : L(a, b) ∈ S1}

for each a ∈ G. We will show that the set {Pa : a ∈ G} gives the required classes. From
the proof of Proposition 9 of [1] there are exactly k/2 elements in each set Pa. Also, every
point of S1 is in

⋃
b∈Pa

L(a, b) as L(a, b1) ∩ L(a, b2) = ∅ for all distinct b1, b2 ∈ Pa and S1

contains exactly k2/2 points.
Now choose distinct a, c ∈ G. We claim that L(a, b) ∩ L(c, d) 6= ∅ for each b ∈ Pa and

d ∈ Pc. If this was not the case, then there is a non-empty list of lines from Pa which have
a common point with L(c, d), say L(a, b1),L(a, b2), . . . ,L(a, bt), where t < k/2. From the
definition of incidence, and as f is a semi-planar function, we have a pair of solutions (x, y)
for each member of the above list, given by

y = f(x− a) + bi = f(x− c) + d.

By substituting z = x− a we obtain

∆f,c−a(z) = f(z − (c− a)) − f(z) = bi − d.

In other words, ∆f,c−a(z) = bi − d has 2 solutions z ∈ G for each 1 ≤ i ≤ t. Overall,
this accounts for 2t < k of the k values of ∆f,c−a(z). The remaining values of ∆f,c−a(z)
must therefore correspond to elements b ∈ H for which L(a, b) and L(c, d) intersect and
L(a, b) ∈ S2. However this contradicts the assumption that S(G,H; f) splits into two
substructures. It follows that |L(a, b) ∩ L(c, d)| = 2 for any b ∈ Pa and d ∈ Pc where
a, c ∈ G are distinct while L(a, b1) ∩ L(a, b2) = ∅ where b1, b2 ∈ H are distinct. Hence S1

is divisible. A similar argument shows S2 is also divisible. �

Note that from the above proof we know that if S(f) splits, then the lines L(a, b) and L(c, d)
from the same substructure must intersect when a 6= c. This will be used extensively in
what follows.

For the remainder of this section we suppose f : G → H is semi-planar, |G| = |H| =
k > 2, and S(f) splits into two substructures S1 and S2 with L(0, 0) ∈ S1. Note that, by
Lemma 2, f is not a bijection. For i = 1, 2, define

P i
a = {b ∈ H : L(a, b) ∈ Si}.

For each a ∈ G, P 1
a ∩P 2

a = ∅ while P 1
a ∪P 2

a = H, so the subsets P 1
a and P 2

a of H, partition
H.



Lemma 4 For non-zero a ∈ G,

P 1
a = {b ∈ H : |S(a, b)| = 2},

P 2
a = {b ∈ H : |S(a, b)| = 0}.

Proof: As P 1
a and P 2

a partition H then we need only consider one of the subsets, say P 1
a .

By Lemma 3, L(0, 0) ∩ L(a, b) 6= ∅ if |S(a, b)| = 2. But Theorem 1 shows, by duality, that
for a 6= 0, L(a, b) ∈ S1 if and only if L(a, b) and L(0, 0) intersect. �

Theorem 2 The set P 1
0 is the subgroup of H of index 2 and P 2

0 is its coset.

Proof: If 0 ∈ P 1
a , then L(0, d) ∩ L(a, d) 6= ∅ for all d ∈ H, by Lemma 3. Thus P i

a = P i
0 in

this case. Let
T = {a ∈ G : a 6= 0 ∧ |S(a, 0)| = 2}.

As f is not a bijection, there exists a non-zero a ∈ G for which f(t−a) = f(t) has a solution,
which implies T is non-empty. Let a ∈ T . For b1 ∈ P 1

a , |S(a, b1)| = 2 and f(x−a) = f(x)+b1
has two solutions. Hence for any b2 ∈ P 1

a , we must have f(x− a) + b2 = f(x) + b1 + b2 has
two solutions, or equivalently, L(a, b2) ∩ L(0, b1 + b2) 6= ∅. As b2 ∈ P 1

a = P 1
0 and L(a, b2)

intersects L(0, b1 + b2), it follows that b1 + b2 ∈ P 1
a = P 1

0 . To summarise, b1, b2 ∈ P 1
0 implies

that b1 + b2 ∈ P 1
0 , that is P 1

0 is closed under addition. It follows that P 1
0 is a subgroup of

H of index two. As P 1
0 ∩ P 2

0 = ∅ while P 1
0 ∪ P 2

0 = H, P 2
0 is the coset of P 1

0 in H. �

Lemma 5 If P i
a ∩ P

i
c 6= ∅, for i = 1 or i = 2, then P 1

a−c = P 1
c−a = P 1

0 .

Proof: Suppose P i
a ∩ P i

c 6= ∅ where i = 1 or i = 2. Then there exists a b ∈ H such
that L(a, b) ∩ L(c, b) 6= ∅. This, in turn, implies that there is a t ∈ G for which we have
f(t− a) − f(t− c) = 0. By substituting for z = t− c we obtain f(z − (a− c)) − f(z) = 0.
So f(z) = f(z − (a − c)) which implies L(0, 0) ∩ L(a − c, 0) 6= ∅. As shown in the proof
of Theorem 2, since 0 ∈ P 1

a−c, it follows that P 1
a−c = P 1

0 as required. A similar argument
shows P 1

c−a = P 1
0 . �

Consider the set A = {a ∈ G : P 1
0 = P 1

a }. By Lemma 5, whenever P i
a ∩ P i

c 6= ∅ for
i = 1 or i = 2, then a− c ∈ A and c− a ∈ A. Clearly 0 ∈ A and |A| > 1. For any a, c ∈ A,
successive applications of Lemma 5 show −c ∈ A and a − (−c) = a + c ∈ A. Hence A is
closed and since G is finite, A is a subgroup of G. If |A| < k/2, then |G \ A| > k/2. Now
for some fixed a ∈ G \ A we have

|{a− c : c ∈ G \A}| > k/2.

But {a− c : c ∈ G\A} ⊂ A, contradicting |A| < k/2. So we must have |A| ≥ k/2 and since
A is a subgroup of G, |A| = k/2 or A = G. This proves the following statement, common
in theme with Theorem 2.

Theorem 3 The set A = {a ∈ G : P 1
0 = P 1

a } is either the subgroup of G of index 2 or
A = G.

A combination of Theorems 2 and 3 proves our main theorem (which shows that if the
structure splits, there are only two possibilities).



Theorem 4 Let f : G→ H be a semi-planar function where G and H are abelian groups of
even order k and A and B the index two subgroups of G and H, respectively. Let g ∈ G \A
and h ∈ H \ B. If S(f) splits into two substructures S1 and S2, with L(0, 0) ∈ S1, then
either

(i) L(a, b) ∈ S1 if and only if (a ∈ G ∧ b ∈ B), or

(ii) L(a, b) ∈ S1 if and only if (a ∈ A ∧ b ∈ B) ∨ (a ∈ A+ g ∧ b ∈ B + h).

We note that the theorem also holds for the case k = 2. In this case, f(x) = x or
f(x) = x+1. In either case, f is a bijection and the splitting structures correspond to case
(ii). The theorem allows us to show that the two substructures obtained are isomorphic.

Corollary 1 For any h ∈ H \ B, the mapping φh : G×H → G×H defined by

φh(x, y) = (x, y + h)

acts as an isomorphism between the two substructures of S(f).

Our final general result, which is a simple extension of [3], Proposition 1, will be needed
in the next section.

Lemma 6 If f : G→ H is a semi-planar function, then

ψ(f(φ(x) + c)) + d

is a semi-planar function from G to H where φ ∈ Aut(G), ψ ∈ Aut(H), c ∈ G, and d ∈ H.

3 The Case G = H = Z
+
6

In this section we consider the case where G = H = Z
+

k with k even. In this case, we
represent the mapping f : Z

+

k → Z
+

k by f = 〈b0, b1, . . . , bk−1〉 where f(i) = bi for 0 ≤ i ≤
k − 1.

Lemma 7 Let f : Z
+

k → Z
+

k with k > 4. If f(x) = y has more than k/2 solutions x ∈ Z
+

k

for any given y ∈ Z
+

k , then f is not semi-planar.

Proof: Suppose that the claim does not hold. Then f is semi-planar and there exists
y ∈ Z

+

k such that |S| > k/2 where S = {x ∈ Z
+

k : f(x) = y}. We wish to show that there
exists an a ∈ Z

+

k such that f(x + a) − f(x) = 0 has more than two solutions. Consider
f = 〈b0, b1, . . . , bk−1〉. As |S| > k/2 there must be two consecutive elements of this list
which are equal. Using Lemma 6, we may assume b0 = b1 = y.

If f is semi-planar, then ∆f,1(x) = 0 must have two solutions. There are 2 cases. If
b2 = y, then we have three consecutive values of f equal to y and there can be no other
consecutive values of f equal. Thus b3 6= y, and the remaining k/2 − 2 values of y must
be placed in k − 4 places with no consecutive places equal. It can be seen that the only
way to assign the remaining y values is bj = y when j is even. Thus, if k > 4, ∆f,2(x) = 0
has more than two solutions, a contradiction. If b2 6= y, then there are k − 3 remaining
assignments of which k/2 − 1 must be y and where bk−1 6= y as this is equivalent to the
previous case by Lemma 1. Provided k > 4, it follows that ∆f,2(x) = 0 has at least three
solutions, contradicting that f is semi-planar. �



It was shown in [4] that no sbp(36, 6) exists while there are three non-isomorphic
sbp(18, 6). It follows that if a semi-planar function exists over Z

+
6
, then the corresponding

structure necessarily splits. We now show that this case is not possible. Although this
might be tested for computationally, a mathematical proof is preferable.

Theorem 5 There is no semi-planar function over Z
+
6
.

Proof: Suppose f is a semi-planar function over Z
+
6
. By Lemma 6 we may assume that

f(0) = 0 and that no image of f occurs more often than 0 ∈ Z
+
6
. Further, by Lemma 7,

f(x) = 0 has at most three solutions. Let

f = 〈0, b1, b2, b3, b4, b5〉.

As noted, S(f) must split. As before we denote the two substructures by S1 and S2 where
L(0, 0) ∈ S1. It follows from Theorem 4 that there are two cases.

First assume L(a, b) ∈ S1 if and only if b ∈ {0, 2, 4}. It follows that bi ∈ {0, 2, 4} and
that |S(a, 0)| = 2 for all a ∈ Z

+
6
. In particular, from a = 1 there exists two distinct integers

r, s ∈ Z
+
6

such that br−1 = br and bs−1 = bs. Appealing to Lemma 6 we may assume,
without loss of generality, that br−1 = br = 0 and r = 1. Either bs = 0 or bs ∈ {2, 4}.
If bs = 0, then since f(x) = 0 can have at most three solutions, we must have s = 2 and
hence f = 〈0, 0, 0, b3 , b4, b5〉 with b3, b4, b5 ∈ {2, 4}. Now ∆f,3(Z

+

6
) = {2, 4}. However, as

f is semi-planar, the value set of ∆f,3 must have size three. So bs 6= 0 and s > 2. As
φ(x) = −x is an automorphism of Z

+
6
, we may assume bs = 2 by Lemma 6. There are three

possibilities:

f = 〈0, 0, 2, 2, b4 , b5〉,

f = 〈0, 0, b2, 2, 2, b5〉,

f = 〈0, 0, b2, b3, 2, 2〉.

In the first case, b5 6= 0, b4 6= 2 and b4 6= b5. Hence b4 = 0. But then b5 ∈ {2, 4} and
either leads to ∆f,2(x) = 2 having three solutions. Similar arguments remove the other two
possibilities. It follows that no semi-planar function exists in this case.

Now assume that L(a, b) ∈ S1 if and only if a, b ∈ {0, 2, 4} or a, b ∈ {1, 3, 5}. This time
we have bi ≡ i mod 2. By considering ∆f,2(x), an application of Lemma 6 shows we may
assume that b0 = b2 = 0 and b4 = 2. Likewise, we must have bi = bj for a pair i, j ∈ {1, 3, 5}.
We first consider the situation f = 〈0, t, 0, t, 2, v〉 with t 6= v. It is immediate that t = 5
as otherwise ∆f,1(x) = t has at least three solutions. But if t = 5 then obviously v 6= 5,
and also, by considering ∆f,1(x), v 6= 1. So now t = 5 and v = 3. But then ∆f,3(x) = 3
has four solutions. It remains to deal with the case f = 〈0, t, 0, v, 2, v〉. By considering
∆f,3, it follows that t = 5 and v = 1. But then ∆f,1(x) = 1 has three solutions. Hence
no semi-planar function exists in this case either. All possibilities have been exhausted and
the result follows. �

Our last result shows that the splitting case cannot occur when k = 6. It is an open
problem to determine a semi-planar function over any abelian group of order k > 4 where
the splitting case occurs. We conjecture that no such function exists.
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