On the splitting case of a semi-biplane construction

Robert S. Coulter * Marie Henderson *
Dedicated to Jennifer Seberry on the occasion of her $60^{\text {th }}$ birthday.

Abstract

We consider the case where a particular incidence structure splits into two substructures. The incidence structure in question was used previously by the authors to construct semi-biplanes $\operatorname{sbp}\left(k^{2}, k\right)$ or $\operatorname{sbp}\left(k^{2} / 2, k\right)$. A complete description of the two substructures is obtained. We also show that none of the three semi-biplanes, $\operatorname{sbp}(18,6)$, can be described using this construction.

1 Introduction.

Let G and H be finite abelian groups written additively and of the same even order k. We call a function $f: G \rightarrow H$ a semi-planar function if for every non-identity $a \in G$ the equation

$$
\Delta_{f, a}(x)=f(x+a)-f(x)=y,
$$

with $y \in H$, has either 0 or 2 solutions $x \in G$. Semi-planar functions are better known in communication security as almost perfect non-linear functions, see [3], or differentially 2-uniform functions, see [2].

A semi-biplane, or $\operatorname{sbp}(v, k)$, is a connected incidence structure which satisfies the following.
(i) Any two points are incident with 0 or 2 common lines.
(ii) Any two lines are incident with 0 or 2 common points.

Such a design contains v points, and v lines with every point occurring on k lines, and every line containing k points. In [1] the authors developed the following method for constructing semi-biplanes using semi-planar functions.

Let G and H be as above and let $f: G \rightarrow H$. Define the incidence structure $S(G, H ; f)$ by:

Points: (x, y) with $x \in G$ and $y \in H$
Lines: $\mathcal{L}(a, b)$ with $a \in G$ and $b \in H$
Incidence: (x, y) I $\mathcal{L}(a, b) \Leftrightarrow y=f(x-a)+b$.
When the context is clear, we shall denote the incidence structure simply by $S(f)$. The following is Proposition 9 of [1].

[^0]Lemma 1 Let G and H be finite abelian groups written additively and of the same even order k. Let $f: G \rightarrow H$ be a semi-planar function. If $S(G, H ; f)$ is connected, then it is $a \operatorname{sbp}\left(k^{2}, k\right)$. If $S(G, H ; f)$ is not connected, then $S(G, H ; f)$ splits into two sub-structures; both are sbp $\left(k^{2} / 2, k\right)$.

So the designs of [1] are either connected or consist of two separate substructures of equal size. Also from [1] is the following.

Lemma 2 Let G and H be finite abelian groups written additively and of the same even order k. Let $f: G \rightarrow H$ be a semi-planar function. If f is a bijection, then $S(G, H ; f)$ is connected unless $k=2$.

As there are bijective semi-planar functions known over the additive group of any finite field \mathbb{F}_{q}, with $q=2^{e}$ and $e \geq 3$, it follows that there exist $\operatorname{sbp}\left(2^{2 e}, 2^{e}\right)$ for all integers $e \geq 3$. There is only one known class of non-bijective semi-planar functions: the monomials $f(X)=X^{2^{\alpha}+1}$ over $\mathbb{F}_{2^{e}}$ are semi-planar if and only if $(\alpha, e)=1$. Here, too, it can be shown that $S(f)$ is connected provided $e \geq 3$, see Lemma 11 of [1]. When $e=2$, then we must have $f(X)=X^{3}$ and $S(f)$ splits into two identical copies of the hypercube $H(4)(H(k)$ is the semi-biplane whose incidence graph is the graph of the k-dimensional hypercube). As $H(k)$ is a $\operatorname{sbp}\left(2^{k-1}, k\right)$, it is easily seen that $S(G, H ; f)$ can only describe a hypercube in this case.

In this paper we are interested in the case where $S(f)$ splits into two substructures, as at this point the only known examples which do this are the degenerate case where $k=2$ or the case $k=4$ with $G=H=\mathbb{Z}_{2}^{+} \times \mathbb{Z}_{2}^{+}$, the hypercube case. We look at the general theory for the case where $S(f)$ splits in Section 2. Our main result gives a complete description of the two substructures in this case, see Theorem 4. Proposition 16 of [4] shows that there are exactly three non-isomorphic $\operatorname{sbp}(18,6)$, while there are no $\operatorname{sbp}(36,6)$. So if a semi-planar function f over \mathbb{Z}_{6}^{+}exists, then $S\left(\mathbb{Z}_{6}^{+}, \mathbb{Z}_{6}^{+} ; f\right)$ must split into two substructures. In Section 3, we show that no semi-planar function exists over \mathbb{Z}_{6}^{+}and hence none of the three $s b p(18,6)$ can be described by the construction of [1].

2 General Theory

For each pair $a \in G, b \in H$ define

$$
S(a, b)=\{t \in G: f(t-a)=f(t)+b\} .
$$

Note that if f is semi-planar, then for each pair $(a, b) \in G \times H$ with $a \neq 0$, either $|S(a, b)|=2$ or $|S(a, b)|=0$.

Lemma 3 Let G and H be two finite abelian groups (written additively) of even order k and $f: G \rightarrow H$ be semi-planar. For each pair $a \in G, b \in H$, with $a \neq 0,|S(a, b)|=2$ if and only if

$$
\mathcal{L}(\alpha a, d+b) \cap \mathcal{L}((\alpha+1) a, d) \neq \varnothing
$$

for all $d \in H$ and $\alpha \in \mathbb{Z}$.
Proof: Let $a \in G, b \in H$ and $a \neq 0$. For all $d \in H$ and $\alpha \in \mathbb{Z}$, the lines $\mathcal{L}(\alpha a, d+b)$ and $\mathcal{L}((\alpha+1) a, d)$ intersect (twice) if and only if $y=f(x-\alpha a)+d+b=f(x-(\alpha+1) a)+d$. Equivalently,

$$
f(x-(\alpha+1) a)-f(x-\alpha a)=b
$$

has two solutions. Substituting for $z=x-\alpha a$, we have $f(z-a)-f(z)=b$ has two solutions, or in other words, the lines intersect if and only if $|S(a, b)|=2$.

A semi-biplane is called divisible if the points can be partitioned into classes so that the following property holds: two points from a class lie on no common line and two points from different classes lie on exactly two lines.

Theorem 1 Suppose G and H are two finite abelian groups (written additively) of even order k and $f: G \rightarrow H$ is semi-planar. If $S(G, H ; f)$ splits into two substructures, then the resulting $\operatorname{sbp}\left(k^{2} / 2, k\right)$ are both divisible.

Proof: A useful property of $S(f)$ is that it is self-dual, see Theorem 7 of [1]. Hence we need only show the equivalent statement holds for lines. Let S_{1} and S_{2} be the two substructures of $S(G, H ; f)$. Let

$$
P_{a}=\left\{b \in H: \mathcal{L}(a, b) \in S_{1}\right\}
$$

for each $a \in G$. We will show that the set $\left\{P_{a}: a \in G\right\}$ gives the required classes. From the proof of Proposition 9 of [1] there are exactly $k / 2$ elements in each set P_{a}. Also, every point of S_{1} is in $\bigcup_{b \in P_{a}} \mathcal{L}(a, b)$ as $\mathcal{L}\left(a, b_{1}\right) \cap \mathcal{L}\left(a, b_{2}\right)=\varnothing$ for all distinct $b_{1}, b_{2} \in P_{a}$ and S_{1} contains exactly $k^{2} / 2$ points.

Now choose distinct $a, c \in G$. We claim that $\mathcal{L}(a, b) \cap \mathcal{L}(c, d) \neq \varnothing$ for each $b \in P_{a}$ and $d \in P_{c}$. If this was not the case, then there is a non-empty list of lines from P_{a} which have a common point with $\mathcal{L}(c, d)$, say $\mathcal{L}\left(a, b_{1}\right), \mathcal{L}\left(a, b_{2}\right), \ldots, \mathcal{L}\left(a, b_{t}\right)$, where $t<k / 2$. From the definition of incidence, and as f is a semi-planar function, we have a pair of solutions (x, y) for each member of the above list, given by

$$
y=f(x-a)+b_{i}=f(x-c)+d
$$

By substituting $z=x-a$ we obtain

$$
\Delta_{f, c-a}(z)=f(z-(c-a))-f(z)=b_{i}-d .
$$

In other words, $\Delta_{f, c-a}(z)=b_{i}-d$ has 2 solutions $z \in G$ for each $1 \leq i \leq t$. Overall, this accounts for $2 t<k$ of the k values of $\Delta_{f, c-a}(z)$. The remaining values of $\Delta_{f, c-a}(z)$ must therefore correspond to elements $b \in H$ for which $\mathcal{L}(a, b)$ and $\mathcal{L}(c, d)$ intersect and $\mathcal{L}(a, b) \in S_{2}$. However this contradicts the assumption that $S(G, H ; f)$ splits into two substructures. It follows that $|\mathcal{L}(a, b) \cap \mathcal{L}(c, d)|=2$ for any $b \in P_{a}$ and $d \in P_{c}$ where $a, c \in G$ are distinct while $\mathcal{L}\left(a, b_{1}\right) \cap \mathcal{L}\left(a, b_{2}\right)=\varnothing$ where $b_{1}, b_{2} \in H$ are distinct. Hence S_{1} is divisible. A similar argument shows S_{2} is also divisible.

Note that from the above proof we know that if $S(f)$ splits, then the lines $\mathcal{L}(a, b)$ and $\mathcal{L}(c, d)$ from the same substructure must intersect when $a \neq c$. This will be used extensively in what follows.

For the remainder of this section we suppose $f: G \rightarrow H$ is semi-planar, $|G|=|H|=$ $k>2$, and $S(f)$ splits into two substructures S_{1} and S_{2} with $\mathcal{L}(0,0) \in S_{1}$. Note that, by Lemma 2, f is not a bijection. For $i=1,2$, define

$$
P_{a}^{i}=\left\{b \in H: \mathcal{L}(a, b) \in S_{i}\right\} .
$$

For each $a \in G, P_{a}^{1} \cap P_{a}^{2}=\varnothing$ while $P_{a}^{1} \cup P_{a}^{2}=H$, so the subsets P_{a}^{1} and P_{a}^{2} of H, partition H.

Lemma 4 For non-zero $a \in G$,

$$
\begin{aligned}
& P_{a}^{1}=\{b \in H:|S(a, b)|=2\} \\
& P_{a}^{2}=\{b \in H:|S(a, b)|=0\}
\end{aligned}
$$

Proof: As P_{a}^{1} and P_{a}^{2} partition H then we need only consider one of the subsets, say P_{a}^{1}. By Lemma $3, \mathcal{L}(0,0) \cap \mathcal{L}(a, b) \neq \varnothing$ if $|S(a, b)|=2$. But Theorem 1 shows, by duality, that for $a \neq 0, \mathcal{L}(a, b) \in S_{1}$ if and only if $\mathcal{L}(a, b)$ and $\mathcal{L}(0,0)$ intersect.

Theorem 2 The set P_{0}^{1} is the subgroup of H of index 2 and P_{0}^{2} is its coset.
Proof: If $0 \in P_{a}^{1}$, then $\mathcal{L}(0, d) \cap \mathcal{L}(a, d) \neq \varnothing$ for all $d \in H$, by Lemma 3. Thus $P_{a}^{i}=P_{0}^{i}$ in this case. Let

$$
T=\{a \in G: a \neq 0 \wedge|S(a, 0)|=2\}
$$

As f is not a bijection, there exists a non-zero $a \in G$ for which $f(t-a)=f(t)$ has a solution, which implies T is non-empty. Let $a \in T$. For $b_{1} \in P_{a}^{1},\left|S\left(a, b_{1}\right)\right|=2$ and $f(x-a)=f(x)+b_{1}$ has two solutions. Hence for any $b_{2} \in P_{a}^{1}$, we must have $f(x-a)+b_{2}=f(x)+b_{1}+b_{2}$ has two solutions, or equivalently, $\mathcal{L}\left(a, b_{2}\right) \cap \mathcal{L}\left(0, b_{1}+b_{2}\right) \neq \varnothing$. As $b_{2} \in P_{a}^{1}=P_{0}^{1}$ and $\mathcal{L}\left(a, b_{2}\right)$ intersects $\mathcal{L}\left(0, b_{1}+b_{2}\right)$, it follows that $b_{1}+b_{2} \in P_{a}^{1}=P_{0}^{1}$. To summarise, $b_{1}, b_{2} \in P_{0}^{1}$ implies that $b_{1}+b_{2} \in P_{0}^{1}$, that is P_{0}^{1} is closed under addition. It follows that P_{0}^{1} is a subgroup of H of index two. As $P_{0}^{1} \cap P_{0}^{2}=\varnothing$ while $P_{0}^{1} \cup P_{0}^{2}=H, P_{0}^{2}$ is the coset of P_{0}^{1} in H.

Lemma 5 If $P_{a}^{i} \cap P_{c}^{i} \neq \varnothing$, for $i=1$ or $i=2$, then $P_{a-c}^{1}=P_{c-a}^{1}=P_{0}^{1}$.
Proof: Suppose $P_{a}^{i} \cap P_{c}^{i} \neq \varnothing$ where $i=1$ or $i=2$. Then there exists a $b \in H$ such that $\mathcal{L}(a, b) \cap \mathcal{L}(c, b) \neq \varnothing$. This, in turn, implies that there is a $t \in G$ for which we have $f(t-a)-f(t-c)=0$. By substituting for $z=t-c$ we obtain $f(z-(a-c))-f(z)=0$. So $f(z)=f(z-(a-c))$ which implies $\mathcal{L}(0,0) \cap \mathcal{L}(a-c, 0) \neq \varnothing$. As shown in the proof of Theorem 2 , since $0 \in P_{a-c}^{1}$, it follows that $P_{a-c}^{1}=P_{0}^{1}$ as required. A similar argument shows $P_{c-a}^{1}=P_{0}^{1}$.

Consider the set $A=\left\{a \in G: P_{0}^{1}=P_{a}^{1}\right\}$. By Lemma 5, whenever $P_{a}^{i} \cap P_{c}^{i} \neq \varnothing$ for $i=1$ or $i=2$, then $a-c \in A$ and $c-a \in A$. Clearly $0 \in A$ and $|A|>1$. For any $a, c \in A$, successive applications of Lemma 5 show $-c \in A$ and $a-(-c)=a+c \in A$. Hence A is closed and since G is finite, A is a subgroup of G. If $|A|<k / 2$, then $|G \backslash A|>k / 2$. Now for some fixed $a \in G \backslash A$ we have

$$
|\{a-c: c \in G \backslash A\}|>k / 2
$$

But $\{a-c: c \in G \backslash A\} \subset A$, contradicting $|A|<k / 2$. So we must have $|A| \geq k / 2$ and since A is a subgroup of $G,|A|=k / 2$ or $A=G$. This proves the following statement, common in theme with Theorem 2.

Theorem 3 The set $A=\left\{a \in G: P_{0}^{1}=P_{a}^{1}\right\}$ is either the subgroup of G of index 2 or $A=G$.

A combination of Theorems 2 and 3 proves our main theorem (which shows that if the structure splits, there are only two possibilities).

Theorem 4 Let $f: G \rightarrow H$ be a semi-planar function where G and H are abelian groups of even order k and A and B the index two subgroups of G and H, respectively. Let $g \in G \backslash A$ and $h \in H \backslash B$. If $S(f)$ splits into two substructures S_{1} and S_{2}, with $\mathcal{L}(0,0) \in S_{1}$, then either
(i) $\mathcal{L}(a, b) \in S_{1}$ if and only if $(a \in G \wedge b \in B)$, or
(ii) $\mathcal{L}(a, b) \in S_{1}$ if and only if $(a \in A \wedge b \in B) \vee(a \in A+g \wedge b \in B+h)$.

We note that the theorem also holds for the case $k=2$. In this case, $f(x)=x$ or $f(x)=x+1$. In either case, f is a bijection and the splitting structures correspond to case (ii). The theorem allows us to show that the two substructures obtained are isomorphic.

Corollary 1 For any $h \in H \backslash B$, the mapping $\phi_{h}: G \times H \rightarrow G \times H$ defined by

$$
\phi_{h}(x, y)=(x, y+h)
$$

acts as an isomorphism between the two substructures of $S(f)$.
Our final general result, which is a simple extension of [3], Proposition 1, will be needed in the next section.

Lemma 6 If $f: G \rightarrow H$ is a semi-planar function, then

$$
\psi(f(\phi(x)+c))+d
$$

is a semi-planar function from G to H where $\phi \in \operatorname{Aut}(G), \psi \in \operatorname{Aut}(H), c \in G$, and $d \in H$.

3 The Case $G=H=\mathbb{Z}_{6}^{+}$

In this section we consider the case where $G=H=\mathbb{Z}_{k}^{+}$with k even. In this case, we represent the mapping $f: \mathbb{Z}_{k}^{+} \rightarrow \mathbb{Z}_{k}^{+}$by $f=\left\langle b_{0}, b_{1}, \ldots, b_{k-1}\right\rangle$ where $f(i)=b_{i}$ for $0 \leq i \leq$ $k-1$.

Lemma 7 Let $f: \mathbb{Z}_{k}^{+} \rightarrow \mathbb{Z}_{k}^{+}$with $k>4$. If $f(x)=y$ has more than $k / 2$ solutions $x \in \mathbb{Z}_{k}^{+}$ for any given $y \in \mathbb{Z}_{k}^{+}$, then f is not semi-planar.

Proof: Suppose that the claim does not hold. Then f is semi-planar and there exists $y \in \mathbb{Z}_{k}^{+}$such that $|S|>k / 2$ where $S=\left\{x \in \mathbb{Z}_{k}^{+}: f(x)=y\right\}$. We wish to show that there exists an $a \in \mathbb{Z}_{k}^{+}$such that $f(x+a)-f(x)=0$ has more than two solutions. Consider $f=\left\langle b_{0}, b_{1}, \ldots, b_{k-1}\right\rangle$. As $|S|>k / 2$ there must be two consecutive elements of this list which are equal. Using Lemma 6 , we may assume $b_{0}=b_{1}=y$.

If f is semi-planar, then $\Delta_{f, 1}(x)=0$ must have two solutions. There are 2 cases. If $b_{2}=y$, then we have three consecutive values of f equal to y and there can be no other consecutive values of f equal. Thus $b_{3} \neq y$, and the remaining $k / 2-2$ values of y must be placed in $k-4$ places with no consecutive places equal. It can be seen that the only way to assign the remaining y values is $b_{j}=y$ when j is even. Thus, if $k>4, \Delta_{f, 2}(x)=0$ has more than two solutions, a contradiction. If $b_{2} \neq y$, then there are $k-3$ remaining assignments of which $k / 2-1$ must be y and where $b_{k-1} \neq y$ as this is equivalent to the previous case by Lemma 1 . Provided $k>4$, it follows that $\Delta_{f, 2}(x)=0$ has at least three solutions, contradicting that f is semi-planar.

It was shown in [4] that no $\operatorname{sbp}(36,6)$ exists while there are three non-isomorphic $\operatorname{sbp}(18,6)$. It follows that if a semi-planar function exists over \mathbb{Z}_{6}^{+}, then the corresponding structure necessarily splits. We now show that this case is not possible. Although this might be tested for computationally, a mathematical proof is preferable.

Theorem 5 There is no semi-planar function over \mathbb{Z}_{6}^{+}.
Proof: Suppose f is a semi-planar function over \mathbb{Z}_{6}^{+}. By Lemma 6 we may assume that $f(0)=0$ and that no image of f occurs more often than $0 \in \mathbb{Z}_{6}^{+}$. Further, by Lemma 7 , $f(x)=0$ has at most three solutions. Let

$$
f=\left\langle 0, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\rangle
$$

As noted, $S(f)$ must split. As before we denote the two substructures by S_{1} and S_{2} where $\mathcal{L}(0,0) \in S_{1}$. It follows from Theorem 4 that there are two cases.

First assume $\mathcal{L}(a, b) \in S_{1}$ if and only if $b \in\{0,2,4\}$. It follows that $b_{i} \in\{0,2,4\}$ and that $|S(a, 0)|=2$ for all $a \in \mathbb{Z}_{6}^{+}$. In particular, from $a=1$ there exists two distinct integers $r, s \in \mathbb{Z}_{6}^{+}$such that $b_{r-1}=b_{r}$ and $b_{s-1}=b_{s}$. Appealing to Lemma 6 we may assume, without loss of generality, that $b_{r-1}=b_{r}=0$ and $r=1$. Either $b_{s}=0$ or $b_{s} \in\{2,4\}$. If $b_{s}=0$, then since $f(x)=0$ can have at most three solutions, we must have $s=2$ and hence $f=\left\langle 0,0,0, b_{3}, b_{4}, b_{5}\right\rangle$ with $b_{3}, b_{4}, b_{5} \in\{2,4\}$. Now $\Delta_{f, 3}\left(\mathbb{Z}_{6}^{+}\right)=\{2,4\}$. However, as f is semi-planar, the value set of $\Delta_{f, 3}$ must have size three. So $b_{s} \neq 0$ and $s>2$. As $\phi(x)=-x$ is an automorphism of \mathbb{Z}_{6}^{+}, we may assume $b_{s}=2$ by Lemma 6 . There are three possibilities:

$$
\begin{aligned}
& f=\left\langle 0,0,2,2, b_{4}, b_{5}\right\rangle, \\
& f=\left\langle 0,0, b_{2}, 2,2, b_{5}\right\rangle, \\
& f=\left\langle 0,0, b_{2}, b_{3}, 2,2\right\rangle .
\end{aligned}
$$

In the first case, $b_{5} \neq 0, b_{4} \neq 2$ and $b_{4} \neq b_{5}$. Hence $b_{4}=0$. But then $b_{5} \in\{2,4\}$ and either leads to $\Delta_{f, 2}(x)=2$ having three solutions. Similar arguments remove the other two possibilities. It follows that no semi-planar function exists in this case.

Now assume that $\mathcal{L}(a, b) \in S_{1}$ if and only if $a, b \in\{0,2,4\}$ or $a, b \in\{1,3,5\}$. This time we have $b_{i} \equiv i \bmod 2$. By considering $\Delta_{f, 2}(x)$, an application of Lemma 6 shows we may assume that $b_{0}=b_{2}=0$ and $b_{4}=2$. Likewise, we must have $b_{i}=b_{j}$ for a pair $i, j \in\{1,3,5\}$. We first consider the situation $f=\langle 0, t, 0, t, 2, v\rangle$ with $t \neq v$. It is immediate that $t=5$ as otherwise $\Delta_{f, 1}(x)=t$ has at least three solutions. But if $t=5$ then obviously $v \neq 5$, and also, by considering $\Delta_{f, 1}(x), v \neq 1$. So now $t=5$ and $v=3$. But then $\Delta_{f, 3}(x)=3$ has four solutions. It remains to deal with the case $f=\langle 0, t, 0, v, 2, v\rangle$. By considering $\Delta_{f, 3}$, it follows that $t=5$ and $v=1$. But then $\Delta_{f, 1}(x)=1$ has three solutions. Hence no semi-planar function exists in this case either. All possibilities have been exhausted and the result follows.

Our last result shows that the splitting case cannot occur when $k=6$. It is an open problem to determine a semi-planar function over any abelian group of order $k>4$ where the splitting case occurs. We conjecture that no such function exists.

Acknowledgement

This work is based on results published in [1]. During the development of that article, we sought advice from various people about the type of objects we were constructing. It is a
pleasure to acknowledge here that it was Jennifer Seberry who noted our structures were semi-biplanes and suggested several references.

References

[1] R.S. Coulter and M. Henderson, A class of functions and their application in constructing semi-biplanes and association schemes, Discrete Math. 202 (1999), 21-31.
[2] K. Nyberg, Differentially uniform mappings in cryptography, Advances in Cryptology - Eurocrypt '93 (T. Helleseth, ed.), Lecture Notes in Computer Science, vol. 765, 1993, pp. 55-64.
[3] K. Nyberg and L.R. Knudsen, Provable security against differential cryptanalysis, Advances in Cryptology - Crypto '92 (E.F. Brickell, ed.), Lecture Notes in Computer Science, vol. 740, 1992, pp. 566-574.
[4] P. Wild, Generalized Hussain graphs and semibiplanes, Ars Combinatoria 14 (1982), 147-167.

[^0]: *Department of Mathematical Sciences, Ewing Hall, University of Delaware, Newark, DE, 19716, U.S.A. E-mail:\{coulter,marie\}@math.udel.edu

