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Abstract

Let q be a prime power and fix a ∈ Fq2 \ Fq. In this note it is proved that, provided q > 5, the set

Sa = {a− α2 : α ∈ F∗
q}

contains both a square and a non-square of F∗
q2 . In particular, every a ∈ Fq2 \ Fq can be written as a

sum of a square of Fq2 and a square of Fq.

§ 1. The problem and the main result

Throughout we use Fq to denote the finite field of q elements and F∗q to denote the non-zero elements of
the field. We also use �q and �q to denote the squares and non-squares, respectively, of Fq.

In this note we are interested in a specific instance of the following type of problem:

Let A be a subset of F∗q of order O(q). What is the minimum order of a subset S of F∗q so that
for all a ∈ A, the set {a− s : s ∈ S} contains both a square and non-square element of F∗q?

Since there are no non-square elements in a finite field of even characteristic, we assume q is an odd prime
power throughout.

There are variants of the problem. For example, one can insist that S be a subgroup of F∗q instead of
simply a subset; or that A = F∗q ; or that q be a square, and so on. We now discuss two such variations. In
either of these examples, the lower bounds on q avoid degenerate cases.

For q ≥ 7, fix A = F∗q . It is well known that any non-zero element of Fq can be expressed as the
difference of two non-zero squares of the field in many ways. Similar results can be obtained for sums of
squares. Together, these show that S = �∗q or S = �q suffices.
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Now fix A = Fq2 \ Fq. Then it is relatively easy to show that for q ≥ 5, S = F∗q suffices. Let
a ∈ A. Then {1, a} forms a basis for Fq2 over Fq. If {a−s : s ∈ F∗q} only contained elements of �∗q2 , then

{αa−αs : α, s ∈ F∗q} = Fq2 \{αa, α : α ∈ F∗q} would only contain elements of �∗q2 as well. Consequently,

�q2 ⊆ {αa : α ∈ F∗q}, implying (q2 − 1)/2 ≤ q− 1, a contradiction. Thus {a− s : s ∈ F∗q} must contain
a non-square. Now suppose it contains only non-squares, implying Fq2 \ {αa, α : α ∈ F∗q} contains only
non-squares. Hence �q2 ⊆ {αa, α : α ∈ Fq}, giving the inequality

q2 − 1

2
≤

{
2q − 1 if a ∈ �q2 ,

q if a ∈ �q2 .

This yields a contradiction if q ≥ 5. Thus S = F∗q suffices when q ≥ 5 and A = Fq2 \ Fq. (Note that it
is trivial to refine this argument to obtain exact counts for |{a − s : s ∈ F∗q} ∩ �∗q2 | and |{a − s : s ∈
F∗q} ∩�∗q2 |.)

In this note we give an improvement of this second variation; our result is somewhat related to the first
variation. We shall prove that, if A = Fq2 \ Fq and q ≥ 7, then S = �∗q suffices. More specifically, fix
a ∈ Fq2 \ Fq and consider the set

Sa = {a− α : α ∈ �∗q}.

Our main statement is the following.

Theorem 1. For q ≥ 7 and any a ∈ Fq2\Fq, Sa intersects both �q2 and �q2 non-trivially. More specifically,
for q ≥ 5, the following statements hold.

(i) Sa ∩�q2 = ∅ if and only if q = 5 and a satisfies one of a2 = 3, a2 = 2a+ 1, or a2 = 3a+ 1.

(ii) Sa ∩�q2 = ∅ if and only if q = 5 and a satisfies a2 = 2.

As with the earlier examples, there is a degenerate case. When q = 3, |Sa| = 1, so that Sa ⊂ �∗q2
or Sa ⊂ �q2 must hold. The proof is mostly elementary; it relies on the regularity of both the sums
and differences of squares in a field, but in one instance we also invoke Weil’s bound on the number of
Fq-rational points on an absolutely irreducible curve over a finite field. Theorem 1 also resolves a problem
related to Dickson semifields that arose in work of the second author, see [4].

Before proceeding to the proof, we note that the problem considered in the second variation example and
Theorem 1 can be restated as a problem concerning the (ir)reducibility of quadratics over Fq2 . Theorem 1
is equivalent to showing that for any a ∈ Fq2 \Fq, there exists elements α, β ∈ �∗q for which a(a−α) ∈ �q2

and a(a− β) ∈ �∗q2 . This yields the following corollary.

Corollary 2. Let q ≥ 7 be an odd prime power. Then for any a ∈ Fq2 \Fq, there exist elements α, β ∈ �∗q
for which X2 − aX + aα is irreducible over Fq2 and X2 − aX + aβ is reducible over Fq2 .

§ 2. Difference sets and sum sets

We shall need two results concerning sums and differences of squares. For completeness, we recall the
following definitions.

Definition 3. Let G be a group of order v and let D ⊂ G with |D| = k. If there exists non-negative
integers λ and µ such that every non-identity element of D can be written in precisely λ ways as a quotient
in D while every non-identity element of G \ D can be written in µ ways as a quotient in D, then D is
called a (v, k, λ, µ) partial difference set. If λ = µ, then D is called a (v, k, λ) difference set.

Definition 4. Let G be a group of order v and let D ⊂ G with |D| = k. If there exists non-negative
integers λ and µ such that every non-identity element of D can be written in precisely λ ways as a product
in D while every non-identity element of G \ D can be written in µ ways as a product in D, then D is
called a (v, k, λ, µ) partial sum set. If λ = µ, then D is called a (v, k, λ) sum set.
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While difference sets and partial difference sets have been studied for quite some period of time [1], an
in-depth systematic treatment of sum sets and partial sum sets was only initiated recently by Gutekunst
[3], see also the papers [2, 5, 6, 8, 10].

Though the two types of objects are similarly defined, their behaviour is generally quite distinct. However,
in one particular case, there is a very strong connection. The following result is well known.

Lemma 5. If q ≡ 1 mod 4, the set �∗q forms a (q, q−12 , q−54 , q−14 ) partial difference set. If q ≡ 3 mod 4,

the set �∗q forms a (q, q−12 , q−34 ) difference set.

Gutekunst noted [3, Lemma 1.5] the following.

Lemma 6. If q ≡ 1 mod 4, the set �∗q forms a (q, q−12 , q−54 , q−14 ) partial sum set. If q ≡ 3 mod 4, the set

�∗q forms a (q, q−12 , q−34 , q+1
4 ) partial sum set.

Let a ∈ F∗q . We denote by sna the number of ways in which a can be written as x − y with x ∈ �∗q
and y ∈ �q. Similarly, we use nsa to denote the number of ways in which a can be written as y − x with
x ∈ �∗q and y ∈ �q. One can use the previous two lemmas to prove the following.

Lemma 7. If q ≡ 1 mod 4, then sna = nsa = q−1
4 . If q ≡ 3 mod 4, then

sna =

{
q−3
4 if a ∈ �∗q ,
q+1
4 if a ∈ �q;

and nsa =

{
q+1
4 if a ∈ �∗q ,
q−3
4 if a ∈ �q.

These counts will prove crucial in our proof of Theorem 1

§ 3. Proof of Theorem 1

We proceed to establishing our main result. Fix a ∈ Fq2 \ Fq}. Define the set T by

T = {βa− α : (α, β ∈ Fq) ∧ (βα ∈ �∗q)}
= {β(a− α) : β ∈ F∗q ∧ α ∈ �∗q}.

Note that if a− α, a− β ∈ F∗qb for some b ∈ Fq2 \ Fq and α, β ∈ Fq, then α = β is forced. Consequently,
every coset of F∗q in F∗q2 , apart from F∗q itself, contains a unique element a − α with α ∈ Fq. This also
means

T =
⋃
α∈�∗

q

F∗q(a− α). (1)

Lemma 8. Fix a ∈ Fq2 \ Fq.

(i) If Sa ∩�q2 = ∅, then T ⊂ �q2 . Furthermore, if a ∈ �q2 , then

�q2 = T ∪ F∗qa and �∗q2 = {βa− α : (α, β ∈ Fq) ∧ (βα ∈ �q)} ∪ F∗q ;

and if a ∈ �q2 , then there exists a unique β ∈ �q for which

�q2 = T ∪ F∗q(a− β).

(ii) If Sa ∩�q2 = ∅, then a ∈ �q2 , �∗q2 = T ∪ F∗q and �q2 = T a ∪ F∗qa.

Proof. Suppose first that Sa ∩ �q2 = ∅. Since every coset of F∗q in F∗q2 consists entirely of squares or

non-squares of Fq2 , it follows from (1) that T ⊂ �q2 . Note a 6∈ T . Straightforward counting shows

|T | = (q−1)2
2 and so |�q2 \T | = q − 1. Thus, if a ∈ �q2 , then �q2 = T ∪ F∗qa, while if a ∈ �q2 , then the

discussion preceding (1) implies there must exist a unique β ∈ �q for which �q2 = T ∪ F∗q(a− β).
For (ii), a similar argument to the above establishes T ⊂ �∗q2 . Since F∗q ⊂ �∗q2 , we have �∗q2 = T ∪F∗q

and a ∈ �q2 .
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Lemma 9. Fix a ∈ Fq2 \Fq. Then there exist c, d ∈ Fq satisfying a2 = ca−d with X2−cX+d irreducible
over Fq. If c = 0, then −d ∈ �q. Otherwise, c 6= 0 and{

cd ∈ �q if Sa ∩�q2 = ∅, or

cd ∈ �∗q if Sa ∩�q2 = ∅.

Proof. Since a ∈ Fq2 \ Fq, a must be the root of an irreducible polynomial X2 − cX + d. If c = 0 and
−d ∈ �∗q , then a ∈ Fq, a contradiction. Now suppose c 6= 0. Since ca− d ∈ �∗q2 , an appeal to Lemma 8
establishes the remaining claims.

Theorem 1 is established in the following two lemmas.

Lemma 10. Let q ≥ 5 and suppose a ∈ Fq2 \ Fq satisfies a2 = −d for some −d ∈ �q. The following
statements hold.

(i) Sa ∩�q2 = ∅ if and only if q = 5 and a2 = 3.

(ii) Sa ∩�q2 = ∅ if and only if q = 5 and a2 = 2.

Proof. We first note

T a = {βa2 − αa : (α, β ∈ Fq) ∧ (βα ∈ �∗q)}
= {−αa− βd : (α, β ∈ Fq) ∧ (βα ∈ �∗q)}
= {β′a− α′ : (α′, β′ ∈ Fq) ∧ (β′α′ ∈ �q)}.

Hence T ∩ T a = ∅.
As a2 ∈ Fq and a 6∈ Fq, we have aq−1 = −1. Consequently, a(q

2−1)/2 = (−1)(q+1)/2, so that a ∈ �q2
if q ≡ 3 mod 4 and a ∈ �q2 if q ≡ 1 mod 4.

Suppose q ≡ 3 mod 4, so that a ∈ �q2 . By Lemma 8, we need only consider the case where Sa∩�q2 =

∅. If this holds, then T ∪ T a ⊆ �q2 , and |T | + |T a| = (q − 1)2 ≤ q2−1
2 , so that q ≤ 3, the degenerate

case we need not consider.
Now suppose q ≡ 1 mod 4, so that a ∈ �q2 . Consider x2 − a with x ∈ Fq. Let N(x) = x1+q denote

the norm from Fq2 into Fq. Then

N(x2 − a) = (x2 − a)(x2 − a)q = (x2 − a)(x2 + a) = x4 − a2 = x4 + d.

Now N(x) ∈ �∗q if and only if x ∈ �∗q2 . Set f(X,Y ) = X4 + d− Y 2 and let C be the number of solutions

(x, y) ∈ Fq × Fq satisfying f(x, y) = 0. By the above argument, we have

C =

{
0 if Sa ∩�q2 = ∅,

2(q − 1) if Sa ∩�q2 = ∅.

However, since X4+d is not a square, f(X,Y ) is absolutely irreducible, and so by [9, page 70], |C−q| < 3
√
q.

Thus q = 5 is forced if Sa ∩�q2 = ∅, while q ∈ {5, 9} if Sa ∩�q2 = ∅. It is easily checked the only cases
where either situation arises occurs when q = 5, with d = 2, 3 leading to the two claimed cases.

Lemma 11. Let q ≥ 5 and suppose a ∈ Fq2 \Fq satisfies a2 = ca−d with c 6= 0. The following statements
hold.

(i) Sa ∩�q2 = ∅ if and only if q = 5 and (c, d) ∈ {(2,−1), (3,−1)}.

(ii) Sa ∩�q2 6= ∅.
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Proof. Since a2 = ca− d, we have

T a = {βa2 − αa : (α, β ∈ Fq) ∧ (βα ∈ �∗q)}
= {(βc− α)a− βd : (α, β ∈ Fq) ∧ (βα ∈ �∗q)}.

There are two cases, depending on whether or not a ∈ �q2 .

• First case: a ∈ �q2

Let a ∈ �q2 . If either Sa ∩ �q2 = ∅ or Sa ∩ �q2 = ∅, then T ∩ T a = ∅ follows from Lemma 8.
Thus βc− α = 0 or (βc− α)(βd) ∈ �q whenever βα ∈ �∗q . Fix α ∈ �q and consider the set

Bα = {βc− α : β ∈ �q} \ {0}.

Note that

|Bα| =

{
q−3
2 if c ∈ �∗q ,
q−1
2 if c ∈ �q.

Suppose first that d ∈ �∗q . We must have Bα ⊂ �∗q . Consequently, if c ∈ �∗q , α can be written in
q−3
2 ways as a non-square of Fq subtract a square of F∗q . Thus, if c ∈ �∗q , nsα = q−3

2 , and comparing

with Lemma 7, we find q = 3, the degenerate case. If c ∈ �q, α can be written in q−1
2 ways as a

difference of squares in Fq. Now Lemma 5 shows

q − 1

2
=

{
q−1
4 if q ≡ 1 mod 4,
q−3
4 if q ≡ 3 mod 4.

Both cases lead to a contradiction.

Now suppose d ∈ �q, so that Bα ⊂ �q. If c ∈ �q, then α can be written in q−1
2 ways as a square

of F∗q subtract a non-square of F∗q . Hence snα = q−1
2 . Lemma 7 now implies q = 3, which we can

ignore. If c ∈ �∗q , α can be written in q−3
2 ways as a difference of two non-squares of Fq. Again

we appeal to Lemma 5 and find q = 3 or q = 5. Ignoring the former case, for q = 5, we find
c ∈ {1, 4} and d = 2. Direct computation now shows precisely one of a+ 1 or a− 1 is a square and
so |Sa ∩�q2 | = |Sa ∩�q2 | = 1.

• Second case: a ∈ �q2

Now let a ∈ �q2 . Note that, by Lemma 8, we cannot have Sa ∩ �q2 = ∅, so we may assume

Sa ∩ �q2 = ∅. Hence |T ∪ T a| ≤ q2−1
2 , and an application of the Inclusion/Exclusion principle

shows |T ∩ T a| ≥ (q−1)(q−3)
2 . Thus (βc− α)(βd) ∈ �∗q for at least (q−1)(q−3)

2 choices of α, β ∈ F∗q
satisfying βα ∈ �∗q . For β ∈ F∗q , set

Aβ = {βa− α : (α ∈ Fq) ∧ (βα ∈ �∗q) ∧ ((βc− α)(βd) ∈ �∗q)}.

Clearly, |Aβ | ≤ q−1
2 . Since Aβ1 ∩Aβ2 = ∅ whenever β1 6= β2 and⋃

β∈F∗
q

Aβ = T ∩ T a,

it follows that the average order of Aβ is at least q−3
2 . In particular, there must exist a β0 for which

|Aβ0 | ≥
q−3
2 . In this case, β2

0cd = β0αd+ sα, sα ∈ �∗q , for at least (q− 3)/2 choices of α satisfying
β0α ∈ �∗q .

If d ∈ �∗q , then β2
0cd can be written as a sum of two squares in at least q−3

2 ways. Comparing with
Lemma 6, we see c ∈ �q and q = 5 must hold. In this case, cd ∈ �q and X2− cX + d is irreducible,
and combining with Lemma 9 we find (c, d) ∈ {(2,−1), (3,−1)} and Sa ∩�q2 = ∅ in each case.
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If d ∈ �q, then β2
0cd can be written as the sum of a square and a non-square of Fq in at least

q−3
2 ways. If q ≡ 3 mod 4, then this is the same as writing β2

0cd as the difference of two squares,
implying q = 3 by Lemma 5, the trivial case. If q ≡ 1 mod 4, then this is the same as writing β2

0cd
as the difference of a square and a non-square, so that q = 5 is forced by Lemma 7. One now easily
checks that every permissible case leads to precisely one of a + 1 or a − 1 being a square, so that
|Sa ∩�q2 | = |Sa ∩�q2 | = 1.

§ 4. Final remarks

There are several points we should mention. Our result is equivalent to showing that the number of solutions
N(a) of x2 + y2(q+1) = a satisfies N(a) > 0 if a ∈ �q2 and N(a) > 2 if a ∈ �q2 . General methods for
estimating the number of solutions of such equations do exist and some are outlined in [7]. However, these
methods only appear to yield N(a) ≥ 0 or N(a) ≥ 2. It is possible that more careful application of these
methods might yield results stronger than our Theorem 1 (indeed, we believe that the intersection of Sa
with both �∗q2 and �q2 should generally increase as one increases q). Additionally, the number of irreducible
polynomials with some coefficients fixed has been studied extensively. These results are, however, generally
most effective for polynomials of large degree. One can, of course, argue directly about irreducible quadratic
polynomials over fields of odd characteristic, and note that for any choice of a ∈ Fq, the number of b ∈ F∗q
for which X2−aX+ b is irreducible is (q−1)/2. This does not, however, say anything about the existence
of an irreducible quadratic where there is a specified, restricted relationship between the constant and linear
terms.

We thank the anonymous referee, whose comments significantly improved the exposition, particularly
the transparency of the proofs of Lemmas 8 and 10.
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