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1 Dembowski-Ostrom Polynomials and Linearised
Polynomials

Let p be a prime and ¢ = p°. Let F,; denote the finite field of order ¢ and
[ represent the set of non-zero elements of F,. The ring of polynomials in
the indeterminate X with coeflicients from F, will be represented by F,[X].
A polynomial f € F,[X] which permutes F, under evaluation is called a
permutation polynomial of IFy. Permutation polynomials have important ap-
plications in cryptography. This is because one of the basic requirements of a
mapping used to encrypt a message is that it be invertible so that the origi-
nal message can be recovered. In particular, Dembowski-Ostrom polynomials
have been used for a cryptographic application in the public key cryptosys-
tem HFE, see [7]. There the author states that “it seems difficult to choose
f (a DO polynomial) such that it is a permutation”. It is the purpose of this
article to provide some examples of Dembowski-Ostrom permutations. We
consider this problem in the purely theoretical spirit of problem P2 of [5].
We do not claim that any of the classes identified in this article could be used
to provide a “secure” cryptosystem when implemented in HFE. The class of
polynomials of primary interest in this article is now defined.

Definition 1. The polynomial f € F,[X] is called a Dembowski-Ostrom
polynomial (DO polynomial) if f has the shape

0= 3 .

i,j=0

This class of polynomials was described by Dembowski and Ostrom in [4].
In that article, the authors considered projective planes of order n which
admitted a collineation group of order n?. They introduced the notion of a
planar function as an aid for describing these planes. A polynomial g € F,[X]
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is called a planar polynomial if g(X + a) — g(X) is a permutation polynomial
for every a € Fj. It is a simple matter to show that a polynomial can not
be planar on [F, when ¢ is even. In contrast, a DO polynomial f can not be
a permutation polynomial of F, if ¢ is odd as, in such cases, f(z) = f(—=x)
for each x € FF}. For this reason, we can restrict to the case ¢ even when
searching for DO permutation polynomials.

A set of permutation polynomials is easily obtained from the following

class of polynomials.

Definition 2. A linearised polynomial (or additive polynomial), L € F,[X],
is a polynomial of the shape

L(X) = zn: a; X" .
1=0

It is easily seen from this definition that these polynomials are additive in
the sense that L(x +y) = L(z) + L(y) for all z,y € F,;. A permutation
condition for this class of polynomials can be directly determined from this
property: a linearised polynomial L(X) is a permutation polynomial of [ if
and only if = 0 is its only root in F,. Linearised polynomials have many
other interesting properties and applications, see Chapter 3 of [6].

It is interesting to note that if ¢ is even then it is possible for a DO poly-
nomial to be a linearised polynomial, for example, take f = L? (consequently
f permutes Fy if and only if L does). In fact, it is easy to show that a DO
polynomial f is a linearised polynomial if and only if ¢ is even and f = L2,
where L is a linearised polynomial.

The reduction of a linearised polynomial modulo X? — X is again a lin-
earised polynomial. We shall call a polynomial bilinear if it can be written as
the product of two reduced linearised polynomials. (Note that this is not the
same definition of bilinear as used in some other articles, for example [1].)
The stipulation that the linearised polynomials be reduced makes sense when
we consider the following trivial lemma.

Lemma 3. Let B € F,[X] satisfy B(X) = L1(X)Lo(X) where L1 and Lo
are linearised polynomials. Set Li(X) = L;(X) mod (X? — X) for i = 1,2
and define B' = L} L,. Then B(X) mod (X?— X) = B'(X) unless ¢ = 2°
and degree(L}) =degree(L}) = 2°7, in which case B(X)mod (X7 — X) =
B'(X)+ (X1 — X) where 3 is the coefficient of X9 in B'(X).

Hence, except for one particular case, a bilinear polynomial is still a bilinear
polynomial after reduction. This is also the case for DO polynomials with a
similar exception: the reduction of a DO polynomial is again a DO polynomial
unless there existed a term with degree divisible by ¢ before reduction. This
can only occur in characteristic 2 to a term of the shape X 2" where i mod e =
e—1.

Clearly every bilinear polynomial is a DO polynomial. However, for e > 1,
a DO polynomial is not necessarily a bilinear polynomial. This can be seen



from a simple counting argument. In F,[X], there are (¢°(*1/2 —1)/(g — 1)
reduced monic DO polynomials. There are (¢¢ — 1)/(¢ — 1) monic linearised
polynomials and therefore

<(qe - 1)2/(q_ 1)) + (qe _ 1)/((]_ 1)

monic bilinear polynomials. This is easily seen to be less than the number of
DO polynomials for e > 1 and any q.

2 Permutation Behaviour of Dembowski-Ostrom
Polynomials

Suppose that f(X) = L1(X)L2(X) is a permutation polynomial of F,. We
have f(z) =0 for x € F, if and only if x = 0. Therefore, L; and Ly must also
be permutation polynomials of Fy. As L1 (X) permutes F,, there exists a lin-
earised compositional inverse L !(X) such that Li(L; (X)) mod (X7—X) =
X. From this we have f(L;*(X)) mod (X7 — X) = XL(X) is also a DO
permutation polynomial where L(X) = Ly(L7 (X)) mod (X7 — X) is a lin-
earised permutation polynomial. Hence, for bilinear DO polynomials, we have
only to consider the permutation behaviour of DO polynomials with the
shape X L(X) where L(X) is a linearised permutation polynomial. All other
bilinear DO permutation polynomials can be obtained by composing with
linearised permutation polynomials. We now present several classes of per-
mutation polynomials obtained from bilinear DO polynomials. The examples
described by the following two theorems were first found using MAGMA [2].
They describe all bilinear DO permutation polynomials over F, with g = 2¢,
e < 6 known to the authors.

Theorem 4. Let g = 2° and g be any primitive element of Fy. Let k be any
integer and set d = (k,e). Suppose f € Fy[X] is a DO polynomial satisfying
f(X) = XL(X) for some linearised polynomial L. Then f permutes F, when
any of the following conditions are satisfied.

(i) L(X) = X2" where e/d is odd.
(i) L(X) = X2 +aX2"" where e/d is odd and a # gt@*~V for any integer
t

(i) L(X) = X2 4021 X2 40X where e = 3k and a # ¢ V) for any
integer t.

Proof. (i) Immediate since (2% 4+ 1,¢q — 1) = 1 if and only if e/d is odd, see
[3, Lemma 2.1].

(ii) Suppose a € F, satisfies a # gt(gdfl) for any integer t. Then X2 40X is
a permutation polynomial. If e/d is odd then by (i), X271 also permutes
F,. Composing, and reducing mod (X7 — X), we obtain X (X2" + aX2 "),
which must also permute F,,.



(iii) As a # gt(2k’1) for any integer t, the polynomials X" 4+ 2" X and
X2 +a?'x permute [F,. Now

S 40 X) = (142 (X 462 X) 0 X2H1) mod X7 — X
As X2 also permutes F, it follows that f(X) permutes F,.

We note that all of the DO permutation polynomials given above are con-
structed by composition from well known classes of permutation polynomi-
als (monomials and linearised binomials). For our next result we set T =
Trr . 7, : Fgn = Fy, the trace function from Fgn to Fy.

Theorem 5. Let g be even and n be odd. The polynomial
f(X) = X (T(X) + aX)
is a permutation polynomial over Fyn for all a € Fy\ {0,1}.

Proof. Note

T (f(x)) =

(2T () + az®)
()T (z) + aT'(x)
— (14 )T ()

T
T

for all x € Fyn. Suppose there exists elements z,y € Fgn such that f(z) =
f(y). Then z (T(z) 4+ ax) = y(T(y) + ay). Applying the trace function T
gives

(1+a) (T(a:)2 + T(y)z) =0,

so T(x) = T(y) = t, say. Thus tz + azx? = ty + ay? from which ¢t = a(z + y),
implying « 4+ y € F,. Therefore T(x +y) =n(r+y) =0. Soz =y.

Without reduction, it is clear that all of the permutation polynomials given
in Theorems 4 and 5 cannot have a linearised decompositional factor since
their degrees are never divisible by the characteristic. If we take into consider-
ation the possibility that any of this class could be the reduced form modulo
X9" — X of some other polynomial, then as with all classes of permutation
polynomials, it is quite possible that some examples of functionally equiv-
alent polynomials will have linearised decompositional factors. However, it
should be stressed that this will not, in general, be the case. To see this, let
f be any permutation polynomial over ;. Then all polynomials of the form
F(X) = f(X)+h(X)(X?—X), where h is any polynomial defined over F,, are
equivalent to f under evaluation and permutations also. However, for every
choice of A which provides an F’ which has a linearised decompositional factor,
there are many which will not. In a cryptographic sense, it may be prefer-
able that the permutations (as functions) can not easily be expressed as the
composition of monomials and linearised polynomials. In this context, there



is a striking difference between the permutations of Theorem 4 and 5. While
those permutations presented in Theorem 4 are easily shown to be equivalent
under reduction to a simple composition of monomial and linearised bino-
mial permutations (see the proof), the permutations presented in Theorem
5 have no such simple representation. Take the simplest case of Theorem 5:
that is n = 3. Let fo(X) = X4 4+ X2+ 4 0X? with a € Fo. \ {0,1}.
Then f, is a permutation over F, with ¢ = 8. Let Li(X) = aX? + bX,
Ly(X) = ¢X? +dX and s be an integer satisfying (s,q — 1) = 1. Supposing
fa 1s functionally equivalent to a composition of L1, Lo and X* (in any com-
bination) always leads to a contradiction. While this does not constitute a
rigorous proof, it seems safe to assert that, in general, the permutations given
in Theorem 5 cannot be expressed as simple compositions of monomials and
linearised binomials. Whether any of these permutations are of cryptographic
relevance is another matter.
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