
COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125

ROBERT S. COULTER AND PAMELA KOSICK

Abstract. This note summarises a recent search for commutative semifields
of order 243 and 3125. For each of these two orders, we use the correspondence
between commutative semifields of odd order and planar Dembowski-Ostrom
polynomials to classify those commutative semifields which can be represented
by a planar DO polynomial with coefficients in the base field. The classifica-
tion yields a new commutative semifield of each order. Furthermore, the new
commutative semifield of order 243 describes a skew Hadamard difference set
which is also new.

1. Introduction

Let q be an arbitrary power of an odd prime p. We denote the field of order
q by Fq and its nonzero elements by F

∗

q . A finite semifield R is a not necessarily
associative ring with no zero divisors and a multiplicative identity. If we do not
insist on the existence of a multiplicative identity, then we talk of a presemifield.
Existence is clear, as any finite field satisfies these requirements. We refer to a
semifield in which associativity fails as a proper semifield. It is straightforward to
show the additive group of a presemifield is elementary abelian, see Knuth [11].
Further, if the presemifield has order q, then it can be represented by field addi-
tion and a bivariate polynomial over Fq representing the multiplication with some
obvious restrictions. Consequently, throughout this paper we denote a semifield of
order q by R = (Fq , +, ⋆).

There are two important subfields of a commutative semifield R: the middle
nucleus Nm and the nucleus N , defined as follows:

Nm = {x ∈ R | a ⋆ (x ⋆ b) = (a ⋆ x) ⋆ b for all a, b ∈ R},

N = {x ∈ R | x ⋆ (a ⋆ b) = (x ⋆ a) ⋆ b for all a, b ∈ R}.

It is easy to show these sets are finite fields and that N is a subfield of Nm.
Additionally, every commutative semifield can be described as a vector space over
either field. Essentially, the two nuclei describe how much associativity fails in the
semifield R.

There is a one-to-one correspondence between presemifields and translation planes
of Lenz-Barlotti type V, see Dembowski [7] for details. Within this correspondence,
a result of Albert [2] shows isomorphic planes are equivalent to isotopic presemi-
fields. Here, by isotopy we mean to say two presemifields R1 = (Fq , +, ⋆) and
R2 = (Fq , +,×) are isotopic if there exists three non-singular linear transforma-
tions (N, L; M) such that

M(a × b) = N(a) ⋆ L(b)

for all a, b ∈ Fq . If N = L, we call this a strong isotopism. Any presemifield can be
converted to a semifield via a strong isotopy. Thus, when talking of isotopy classes
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2 ROBERT S. COULTER AND PAMELA KOSICK

of presemifields, we can restrict ourselves to discussing semifields only. Further,
when talking of isotopic commutative semifields, results of Coulter and Henderson
[5] guarantee the existence of very specific isotopes between them. In particular,
isotopic commutative semifields of odd order with [Nm : N ] odd must be strongly
isotopic by [5, Theorem 2.6].

In this note we present a partial classification of commutative semifields of order
243 and 3125. Our approach, which we describe below, exploits the connection
between commutative presemifields of odd order and planar Dembowski-Ostrom
polynomials. We detail the method implemented to perform this search, including
the description of an efficient test to determine if two semifields are isotopic. The
results of our searches are presented in Theorems 1 and 2; they include a new
commutative semifield of each order. Finally, a result of Giu et al, [10], shows that
any commutative semifield of order q ≡ 3 (mod 4) yields a special type of difference
set called a skew Hadamard difference set. Here we show the new commutative
semifield of order 243 defines a skew Hadamard difference set inequivalent to those
previously known.

2. Dembowski-Ostrom polynomials and commutative semifields

We denote the ring of polynomials in indeterminate X over Fq by Fq [X ]. Any
function on Fq can be uniquely represented by a polynomial of degree at most q−1
and this polynomial of smallest degree is referred to as reduced. Two polynomials
f, h ∈ Fq [X ] representing the same function must satisfy f(X) ≡ h(X) (mod Xq −
X).

A polynomial f ∈ Fq [X ] is called a permutation polynomial over Fq if it induces
a bijection of Fq under evaluation. A planar polynomial over Fq is any polynomial
f ∈ Fq [X ] for which every difference polynomial f(X + a) − f(X) − f(a) with
a ∈ F

∗

q is a permutation polynomial over Fq . It is straightforward to verify that
any quadratic polynomial is planar over any field of odd characteristic.

A linearised polynomial L ∈ Fq [X ] is any polynomial of the shape

L(X) =
∑

i

aiX
pi

.

The reduction of a linearised polynomial modulo Xq − X is linearised and any
linearised polynomial is additive: L(a + b) = L(a) + L(b) for all a, b ∈ Fq . The
set of all reduced linearised permutation polynomials represents the set of all non-
singular linear transformations over Fq . In particular, this set forms a group under
composition modulo Xq−X isomorphic to the general linear group GL(e, p) (where
q = pe), see Lidl and Niederreiter [12].

A Dembowski-Ostrom (DO) polynomial D ∈ Fq [X ] is any polynomial of the
shape

D(X) =
∑

i,j

aijX
pi

+pj

.

In odd characteristic, DO polynomials are closed under composition with linearised
polynomials, and the reduction of a DO polynomial modulo Xq −X is a DO poly-
nomial. There is a one-to-one correspondence between commutative presemifields
of odd order and planar DO polynomials. If f ∈ Fq [X ] is a planar DO polynomial,
then R = (Fq , +, ⋆) is a commutative presemifield with multiplication defined by

a ⋆ b = f(a + b) − f(a) − f(b).
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COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125 3

Conversely, given a commutative presemifield R = (Fq , +, ⋆), the polynomial given
by f(X) = 1

2
(X ⋆ X) is a planar DO polynomial.

For the remainder of this paper we restrict ourselves to discussing commutative
semifields with the following parameters:

• The order of the nucleus is |N | = s = pk with p an odd prime and k ∈ N.
• The order of the middle nucleus is |Nm| = r = sn with n odd.
• The order of the commutative semifield is |R| = q = rd.

By [5, Theorem 2.6], isotopic commutative semifields with these parameters are
necessarily strongly isotopic.

Let R be a commutative semifield with the above parameters. A combination of
recent work in [5, 6] shows that within the isotopy class of R there must exist a com-
mutative semifield Rf where the corresponding (reduced) planar DO polynomial
f ∈ Fq [X ] has the shape

f(X) = L(t2(X)) + D(t(X)) +
1

2
X2, (1)

where L, D ∈ Fq [X ] are a linearised and DO polynomial, respectively, and t(X) =

Xr − X . Moreover, D contains no term of the form X2pi

.
Now let h ∈ Fq [X ] be a planar DO polynomial with Rh a commutative semi-

field isotopic to Rf . A strong isotopism between Rf and Rh corresponds to the
existence of two linearised permutation polynomials M, N ∈ Fq [X ] (the same two
non-singular linear transformations from the strong isotopy) satisfying

M(f(X)) ≡ h(N(X)) (mod Xq − X).

We shall call two planar DO polynomials equivalent if their corresponding commu-
tative semifields are isotopic. By [6, Theorem 5.1], if f and h both have the shape
(1), then

N(X) =

(

d−1
∑

i=0

αiX
ri

)pj

for some integer 0 ≤ j < d and M(X) ≡ N(1) ⋆ N(X) (mod Xq − X) where ⋆ is
the multiplication of Rh. (We conjecture one can limit the shape of N further by
insisting pj = sl for some integer l.) Thus, if one has two planar DO polynomials
over Fq of the shape (1), to prove the corresponding semifields are not isotopic, it
is sufficient to exhaust the possibilities for N .

The above theory offers a two-step approach to finding commutative semifields
with the parameters outlined above. Firstly, find all planar DO polynomials over
Fq of the shape (1). Secondly, use the type of isotopes (M, N) above to determine
the distinct classes.

The smallest interesting case with parameters as described is where q = p5.
Even when p = 3, an exhaustive search over the polynomials with shape (1) seems
infeasible. The upside is that one can easily restrict coefficients to some subset of
Fq to do “selective” searches for commutative semifields. Secondly, with q = p5,
the above restriction on the shape of N is no restriction at all, so that one is
really looking at all reduced linearised permutation polynomials over Fq . Since the
number of linearised permutation polynomials over Fp5 is O(p25) (order of general
linear group), a direct approach to the exhaustive search for isotopes also appears
infeasible. It is possible, however, to rectify this with a little theory.
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4 ROBERT S. COULTER AND PAMELA KOSICK

Suppose we have two planar DO polynomials f, h of the shape (1) and we wish
to determine whether or not they are equivalent. We know from above that if they
are, then there exist linearised permutation polynomials M, N with N as described,
and M completely determined by N and one of f or h. As isotopes, we know

M(x × y) = N(x) ⋆ N(y)

for all x, y ∈ Fq , with × and ⋆ the multiplications of Rf and Rh, respectively.
Being a linear transformation, every linearised polynomial is determined by the

image of a basis over Fp . When k = n = 1 and d is odd, we select a very special

type of basis: {1, α1, α
−1
1 , . . . , αm, α−1

m } where m = (d − 1)/2. Here αi × α−1
i = 1;

i.e. we are taking inverses in the commutative semifield Rf . The existence of such
a basis for any commutative semifield of the form under consideration is an open
problem, but for those of order 35 and 55 there is always one. The exhaustive search
now proceeds as follows:

(1) Guess N(1). This, in turn, determines M(1) = N(1) ⋆ N(1) = z.
(2) Now guess N(α1), which must be linearly independent of N(1). By our

relation, we know

M(αi × α−1
i ) = M(1) = z = N(αi) ⋆ N(α−1

i ),

so that guessing N(αi) determines N(α−1
i ). If {N(1), N(α1), N(α−1

1 )} are
linearly dependent, then repeat Step 2.

(3) Repeat Step 2 for αi. If, at any stage, a linearly independent set of values
for N over the basis is generated, determine M and test if M(f(X)) ≡
h(N(X)) (mod Xq − X). Otherwise continue until all possibilities have
been exhausted.

Basically, by using this special type of basis we obtain roughly a square root reduc-
tion in the size of the search space. Since multiplying a solution by any constant
from F

∗

p also yields a solution, one can limit the search space by an additional fac-
tor of p − 1 at the time of guessing N(1). Consequently, the worst case for this
algorithm over Fp5 is

(p5 − 1)(p5 − p2)(p5 − p4)

p − 1
< p14

guesses, though in practice it is far less than this as many guesses for α1 result in
a linearly dependent value for α−1

1 .
The fact that the size of the isotopy problem can be significantly reduced means

a search for planar DO polynomials with restricted coefficients is a worthwhile
endeavour. Consequently, we decided to implement the algorithm to classify all
commutative semifields of order p5 with p ∈ {3, 5} described by planar DO poly-
nomials with coefficients in Fp . A slightly more detailed outline of our approach to
finding commutative semifields of order p5 is as follows:

(1) Find all planar polynomials of the shape (1) with coefficients in Fp . The
planarity of these polynomials can be tested in groups using their relation
with Fr -complete mappings, see [6, Theorem 3.2].

(2) Remove those planar polynomials describing commutative semifields iso-
topic to the finite field. To do so, for each planar DO polynomial f , select
any element g 6∈ Fp . If g ∈ Nm(Rf ), then the commutative semifield is
isotopic to the finite field.
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COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125 5

(3) Of those planar DO polynomials remaining, group them into isotopy classes
by calculating M(f(N)) (mod Xq−X) for all linearised permutation poly-
nomials M, N with coefficients in Fp . This is a short test, but will deter-
mine which of the planar DO polynomials are equivalent via an “isotopy”
involving only linearised polynomials from the coefficient field.

(4) Finally, taking one example from each of the isotopy classes just determined,
exhaustively check for isotopes over the general field. This last step is by
far the most computationally demanding.

We implemented the above approach using the Magma algebra package, [4]. The
algorithm mainly relies on the efficiency of implementations of testing for linear
independence and polynomial evaluation; we made no attempt to improve the effi-
ciency of these components of Magma for our specific situation.

It should be mentioned that it is particularly easy to construct, from any pla-
nar DO polynomial, a planar DO polynomial of the shape (1) which describes an
isotopic commutative semifield and without changing the coefficient field of the
polynomial. This is important as practically all of the known planar DO polynomi-
als are not of this shape, and the final step of this approach is specifically designed
to take advantage of it.

3. Commutative semifields of order 243 and 3125

For commutative semifields of order 243, 448 planar DO polynomials were found
with coefficients restricted to F3 . Of these, 64 were found to be equivalent to the
finite field. The remaining 384 split into 6 distinct isotopy classes, each of size 64.
Since the isotopy test is exhaustive, we thus have

Theorem 1. There are exactly seven non-isotopic commutative semifields of order
243 which can be described by a planar DO polynomial with coefficients in F3 :

(i) The finite field (known).
representative: X2.

(ii) Albert’s twisted field #1 (known).
representative: X4.

(iii) Albert’s twisted field #2 (known).
representative: X10.

(iv) TST+ (Ten-Six-Two +) (known).
representative: X10 + X6 − X2.

(v) TST− (Ten-Six-Two -) (known).
representative: X10 − X6 − X2.

(vi) The example of Weng (known, unpublished).
representative: X90 + X2.

(vii) (unknown).
representative: L(X) = −X3, D(X) = −X36 + X30 + X28 + X4.
representative: L(X) = −X, D(X) = −X36 + X28 + X12 + X4.

Albert’s twisted fields were introduced in [1]. Examples (iv) and (v) are dealt
with in full generality in [5]. The example of Guobiao Weng was previously known
to us via personal correspondence.

For commutative semifields of order 3125, 2000 planar DO polynomials were
found with coefficients restricted to F5 . Of these, 500 were found to be equivalent
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6 ROBERT S. COULTER AND PAMELA KOSICK

to the finite field. The remaining 1500 split into 3 distinct isotopy classes, each of
size 500. Again, since the isotopy test is exhaustive, we thus have

Theorem 2. There are exactly four non-isotopic commutative semifields of order
3125 which can be described by a planar DO polynomial with coefficients in F5 :

(i) The finite field (known).
representative: X2.

(ii) Albert’s twisted field #1 (known).
representative: X6.

(iii) Albert’s twisted field #2 (known).
representative: X26.

(iv) (unknown).
representative: L(X) = X125 + X25 + 2X5 + 3X, D(X) = 0.
representative: L(X) = 2X25 + X5, D(X) = 2X130 + 2X26.

The representatives given for the unknown class for each order are simply a
couple selected from the search list with a small number of terms for L and D;
there was no other reason for selecting these as a representative over any other
examples for the new classes.

4. Skew Hadamard difference sets in groups of order 243

Let G be a finite group of order v, written additively, and D a k-element subset
of G. If the multiset {∗ d1 − d2 : d1, d2 ∈ D, d1 6= d2 ∗} contains each non-
identity element of G exactly λ times, then D is called a (v, k, λ)-difference set.
Two difference sets D1 and D2 are equivalent if there is an automorphism of the
group, φ, and an element a ∈ G, such that φ(D1) + a = D2. When a difference
set D possesses the additional property that G is the disjoint union of D, −D and
{0} it is called a skew Hadamard difference set (SHDS). The classical example of a
SHDS is the Paley difference set; take q ≡ 3 (mod 4) and let Fq be the finite field

of q elements. Then P = {x2 : x ∈ Fq , x 6= 0} is a (q− 1, q−1

2
, q−3

4
)-difference set in

(Fq , +).
If f is a planar DO polynomial over Fq with q ≡ 3 (mod 4), then Df = f(F∗

q) is a
skew Hadamard difference set in (Fq , +), see [10, Theorem 2.2]. Moreover, isotopic
commutative semifields describe equivalent difference sets. The converse, however,
is not necessarily true. Each of the semifields in Theorem 1 give rise to a skew
Hadamard difference set. It is known that classes (i), (ii) and (iii) of Theorem 1 are
equivalent to the Paley difference set. Ding and Yuan [9] show classes (iv) and (v)
yield two additional distinct skew Hadamard difference sets. Classes (vi) and (vii)
of Theorem 1 have not previously been dealt with. We shall show the difference
set generated from class (vii) is new, while that generated by (vi) is equivalent to
Paley. That (vi) is equivalent to Paley is easily seen: construct F243 using a root g
of the irreducible polynomial X5−X +1. It is easily verified g−1X2 and X90 +X2

have the same image set. Hence class (vi) yields a difference set equivalent to Paley.
It remains to consider class (vii). To complete the description of known skew

Hadamard difference sets of order 243, we need to introduce two further examples.
Ding et al [8] showed the difference sets arising from the Rees-Tits slice symplectic
spread are also skew Hadamard difference sets inequivalent to Paley; we refer to
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COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125 7

these as RT (+) and RT (−). The description of these sets is as follows:

RT (+) ={x114 + x54 − x2 | x ∈ F
∗

35},

RT (−) ={x114 − x54 − x2 | x ∈ F
∗

35}.

Hence, the known distinct skew Hadamard difference sets in an elementary abelian
group of order 243 are class (i) (Paley skew Hadamard difference set), class (iv),
class(v), RT (+), and RT (−). To show class (vii) is inequivalent to all of the
examples listed, we need another invariant. For nonzero a, b ∈ F

∗

q with a 6= b,
define Ta,b = |D ∩ (D + a) ∩ (D + b)| to be the triple intersection numbers. The
multiset of triple intersection numbers is an invariant of a skew Hadamard difference
set, see Baumert [3]. Below we calculate the triple intersection numbers for the
known skew Hadamard difference sets of order 243. In the second column the triple
intersection numbers are listed as ym where y is the size of the intersection and m
is the multiplicity.

Class Triple intersection numbers

(i) 261815, 273630, 281815, 297260, 305566, 311815, 325445, 331815

(iv) 2475, 25435, 261155, 272385, 284155, 295460, 306001,

314650, 322700, 331470, 34555, 35120

(v) 2315, 2430, 25285, 261245, 272760, 283945, 295520,

305911, 314365, 322880, 331530, 34615, 3545, 3615

(vii) 2445, 25315, 26975, 272790, 284800, 295115, 305056,

315085, 322955, 331335, 34540, 35120, 3630

RT(+) 2475, 25330, 261155, 272535, 284530, 295235, 305461,

314665, 323165, 331410, 34495, 35105

RT(-) 2490, 25330, 261095, 272655, 284335, 295310, 305611,

314590, 323135, 331395, 34495, 351320

From this table it is clear class (vii) yields a difference set inequivalent to those
previously known.
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