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Abstract

We use modified near field operators and the generalized linear sam-
pling method to investigate an inverse scattering problem for anisotropic
media with data measured inside a cavity. The aim of this paper is to de-
termine information on possible changes in the material properties of the
surrounding medium under the assumption that the shape is known, and
this will be accomplished by the introduction of a new class of eigenvalue
problems for which the eigenvalues can be determined from the measured
scattering data.
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1. Introduction

In this paper we propose to use modified near field operators [2, 8, 9, 10, 11]
and the generalized linear sampling method [3, 6] to investigate an inverse scat-
tering problem for anisotropic media with data measured inside a cavity. In
this class of problems the objective is to determine the shape of a cavity and
the material properties of the surrounding medium from the use of sources and
measurements along a curve or surface inside the cavity. The problem of deter-
mining the shape of the cavity was considered in [7, 17] and hence in this paper
we will consider the problem of determining information on possible changes in
the material properties of the surrounding medium under the assumption that
the shape is known. Such a problem arises, for example, in the nondestructive
testing of the possibly anisotropic boundary of a container by placing receivers
and transmitters inside the container. Since uniqueness in general does not
hold for the inverse scattering problem for anisotropic media [13], the best that
can be hoped for in general is to detect changes in the material properties of
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the medium. We will do this through the introduction of a new class of eigen-
value problems for which the eigenvalues can be determined from the measured
scattering data.

The inverse scattering problem with measured data inside a cavity is of rel-
atively recent origin [7, 16, 17, 18, 19, 22]. Here, as in [7], we are concerned
with the case when the cavity is surrounded by inhomogeneous medium and it
is desired to determine information about this medium using linear sampling
methods. We are now assuming the shape is known and are concerned with
determining information on the changes in the material properties of a sur-
rounding anisotropic medium. In order to accomplish this we need to introduce
a modified near field operator as in [11] where we considered the standard scat-
tering problem with sources and receivers placed in the exterior of a bounded
scattering obstacle. In both [11] and here, this leads to the problem of consid-
ering a modified transmission problem depending on an eigenparameter (called
η in this paper) with the wave number k held fixed. Changes in the material
properties of the medium are then detected by changes in the eigenparameter
η. However, the modified interior transmission problem in [11] is now replaced
by a modified exterior transmission problem and, as opposed to the interior
problem, this exterior problem is no longer self-adjoint even when the index of
refraction is real-valued. This leads to problems in computing the eigenvalues of
the modified exterior transmission problem from the measured scattering data,
since in contrast to the far field operator considered in [11] (see also [2]), the
near field operator that arises in the current analysis does not have a symmetric
factorization. A major part of our paper is devoted to resolving the above is-
sues of the lack of self-adjointness of the modified exterior transmission problem
and the failure of the near field operator to have a symmetric factorization (c.f.
Sections 3 and 4).

The plan of our paper is as follows. In Section 2 we formulate the direct
scattering problem corresponding to the scattering of a field due to a point
source by the anisotropic penetrable boundary of a cavity. This leads us to the
consideration of the modified exterior transmission problem. In the next two
sections we then investigate this problem and its spectrum and show that the
eigenvalues of the modified exterior transmission problem can be determined
from the measured near field data (although the presence of eigenvalues can
be clearly seen in numerical experiments, we have been unable to prove their
existence mathematically). We conclude our paper with numerical examples
showing that changes in the material properties of the anisotropic medium sur-
rounding the cavity can be detected by corresponding shifts in the eigenvalues
of the modified exterior transmission problem.

2. Scattering by a penetrable cavity

Let D ⊆ Rd (d = 2, 3) be a bounded and simply connected Lipschitz domain
with boundary ∂D and outward unit normal ν which contains the origin (see
Figure 1). Let A be a symmetric d × d matrix with L∞(Rd) entries and n ∈
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Figure 1: The anisotropic medium with a cavity. The sources and receivers are
placed on the measurement manifold ∂C.

L∞(Rd) be such that

(i) A = I and n = 1 in D;

(ii) there exists a bounded Lipschitz domain D1 ⊂ Rd such that A = I and
n = 1 in Rd \D1 and D ⊂ D1;

(iii) ξ · Re(A)ξ ≥ α |ξ|2, α > 0, and ξ · Im(A)ξ ≤ 0 for all ξ ∈ Cd;

(iv) Re(n) ≥ n∗ > 0 and Im(n) ≥ 0 a.e. in D1 \D.

We consider the problem of scattering by this medium of an incident field
ui generated from a point source inside D (e.g. ui = Φ(·, y) for given y ∈ D),
which may be written in terms of the scattered field us in D and the total field
u in Rd \D as follows: find us ∈ H1(D) and u ∈ H1

loc(Rd \D) such that

∇ ·A∇u+ k2nu = 0 in Rd \D, (2.1a)

∆us + k2us = 0 in D, (2.1b)

u− us = ui on ∂D, (2.1c)

∂u

∂νA
− ∂us

∂ν
=
∂ui

∂ν
on ∂D, (2.1d)

lim
r→∞

r
d−1
2

(
∂u

∂r
− iku

)
= 0, (2.1e)

where the Sommerfeld radiation condition (2.1e) is assumed to hold uniformly
in all directions, ∂u

∂νA
:= (A∇u) · ν is the conormal derivative, and k > 0 is the

wave number.
Now we formulate an auxiliary problem which depends on an artificial pa-

rameter and will lead to our modification of the near field operator. We begin
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by considering simply connected Lipschitz domains B1 ⊇ D1 and B ⊆ D with
boundaries ∂B1 and ∂B, respectively, and outward unit normal ν such that
each contains the origin, and we let A0 be a d× d matrix with L∞(Rd) entries
which shares the properties of A given above (with B1 and B in the place of
D1 and D). Given a parameter η ∈ C, we define the auxiliary refractive index
n0 ∈ L∞(Rd) as

n0 :=

{
η in B1 \B,
1 elsewhere.

The auxiliary problem we consider is to find us0 ∈ H1(B) and u0 ∈ H1
loc(Rd \

B) such that

∇ ·A0∇u0 + k2n0u0 = 0 in Rd \B, (2.2a)

∆us0 + k2us0 = 0 in B, (2.2b)

u0 − us0 = ui on ∂B, (2.2c)

∂u0

∂νA0

− ∂us0
∂ν

=
∂ui

∂ν
on ∂B, (2.2d)

lim
r→∞

r
d−1
2

(
∂u0

∂r
− iku0

)
= 0. (2.2e)

We observe that (2.1a)–(2.1e) is well-posed given our assumptions on A and n,
and the auxiliary problem (2.2a)–(2.2e) is well-posed provided that Im(η) ≥ 0
[6]. However, as η serves as our eigenparameter, we would like to allow it
to attain values with negative imaginary part, and while the auxiliary prob-
lem (2.2a)–(2.2e) may not be well-posed for such choices of η, the following
theorem shows that this set is discrete using analytic Fredholm theory [12].
We must first write the equivalent problem on a bounded domain as follows.
We let BR be a ball of radius R centered at the origin which strictly con-
tains B1 in its interior, and we define the exterior Dirichlet-to-Neumann map

Tk : H1/2(∂BR)→ H−1/2(∂BR) by Tkg = ∂ψ
∂ν

∣∣∣
∂BR

, where ν is the outward unit

normal to ∂BR and ψ ∈ H1
loc(Rd \BR) is the radiating solution of the exterior

Dirichlet problem

∆ψ + k2ψ = 0 in Rd \BR,
ψ = g on ∂BR.
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Then (2.2a)–(2.2e) is equivalent to finding us0 ∈ H1(B) and u0 ∈ H1
loc(Rd \ B)

such that

∇ ·A0∇u0 + k2n0u0 = 0 in BR \B, (2.3a)

∆us0 + k2us0 = 0 in B, (2.3b)

u0 − us0 = ui on ∂B, (2.3c)

∂u0

∂νA0

− ∂us0
∂ν

=
∂ui

∂ν
on ∂B, (2.3d)

∂u0

∂ν
= Tku0 on ∂BR. (2.3e)

Theorem 2.1. The set of η for which the auxiliary problem (2.2a)–(2.2e) is
not well-posed is discrete.

Proof. Our strategy is to write an equivalent formulation of (2.2a)–(2.2e) as a
compact perturbation of an invertible operator and apply the analytic Fredholm
theorem [12, Theorem 8.26]. We first observe that in terms of the scattered field,
problem (2.3a)–(2.3e) may be written as the equivalent variational problem of
finding us0 ∈ H1(BR) satisfying

a(us0, ϕ) = `(ϕ) ∀ϕ ∈ H1(BR), (2.4)

where the sesquilinear form a(·, ·) is given by

a(ψ,ϕ) := (A0∇ψ,∇ϕ)BR − k2(n0ψ,ϕ)BR − 〈Tkψ,ϕ〉∂BR ∀ψ,ϕ ∈ H1(BR)

and the antilinear functional ` contains the information about the point source
ui. Here we have denoted by (·, ·)O the L2(O) inner product and by 〈·, ·〉∂O
the H−1/2(∂O)×H1/2(∂O) duality pairing for a given open set O. We remark
that there exists a mapping T0 : H1/2(∂BR)→ H−1/2(∂BR) for which T0 − Tk
is compact and −〈T0g, g〉∂BR ≥ 0 for all g ∈ H1/2(∂BR) [6, Remark 1.37], and

by means of the Riesz representation theorem we define the operators Â,Aη :
H1(BR)→ H1(BR) such that

(Âψ,ϕ)H1(BR) = (A0∇ψ,∇ϕ)BR + k2(ψ,ϕ)BR − 〈T0ψ,ϕ〉∂BR
(Aηψ,ϕ)H1(BR) = −k2((n0 + 1)ψ,ϕ)BR + 〈(T0 − Tk)ψ,ϕ〉∂BR

for all ψ,ϕ ∈ H1(BR). We see that

a(ψ,ϕ) = ((Â+Aη)ψ,ϕ)H1(BR) ∀ψ,ϕ ∈ H1(BR).

Since Re(A0) is positive-definite and −T0 is strictly coercive, it easily follows
that Â is strictly coercive and hence invertible. Moreover, the compact em-
bedding of H1(BR) into L2(BR) and compactness of the operator T0 − Tk :
H1/2(∂BR) → H−1/2(∂BR) imply that Aη is compact, and we conclude that

Â+Aη is a Fredholm operator of index zero. Thus, the auxiliary problem sat-
isfies the Fredholm property and existence follows from uniqueness of solutions.
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Uniqueness is a direct consequence of Rellich’s lemma and the unique con-
tinuation property whenever Im(η) ≥ 0 [6], but for Im(η) < 0 the best we
can hope for is that uniqueness fails only on a discrete set. However, for each
ψ ∈ H1(BR) the mapping η → Aηψ is clearly weakly analytic and hence the
mapping η → Aη is strongly analytic by Corollary 8.23 and Theorem 8.25 in

[12]. Therefore, the analytic Fredholm theorem implies that the operator Â+Aη
is either invertible for no values of η or it is invertible for all η except for a dis-
crete set. Since invertibility of this operator is equivalent to well-posedness of
the auxiliary problem (2.2a)–(2.2e), which is well-posed whenever Im(η) ≥ 0,
we obtain the desired result. �

Before we continue, we remark that we will require additional assumptions
on A and A0 in future sections; however, for purposes of generality we will
state these assumptions only once they become necessary. We now describe
how scattering data is measured for this problem. Let ∂C be a smooth (d− 1)-
manifold (called the measurement manifold) contained in B which encloses a
bounded region C and satisfies the following assumption.

Assumption 2.2. The measurement manifold ∂C is such that k2 is not a
Dirichlet eigenvalue for −∆ in the region C.

The importance of this assumption lies in the following lemma, which follows
from Assumption 2.2 and the unique continuation principle [15, Theorem 17.2.6].
We will observe that this lemma serves the same role as Rellich’s lemma [6] in
far field measurements: it allows us to obtain further information about a field
given its measurement data.

Lemma 2.3. If u1 and u2 are two solutions of the Helmholtz equation in B
such that u1 = u2 on ∂C, then u1 = u2 in B.

With a chosen measurement manifold ∂C satisfying Assumption 2.2, we
define the near field operator N : L2(∂C)→ L2(∂C) by

(Ng)(x) :=

∫
∂C

us(x, y)g(y)ds(y), x ∈ ∂C, (2.5)

and we define the single layer potential ug by

ug(x) :=

∫
∂C

Φ(x, y)g(y)ds(y), x ∈ Rd \ ∂C, (2.6)

for each g ∈ L2(∂C). By linearity we see that if us is the scattered field in
D arising from the incident field ui = Φ(·, y) (y ∈ D) in (2.1a)–(2.1e), then
Ng is the scattered field in D (evaluated on ∂C) arising from the incident field
ui = ug for some g ∈ L2(∂C). Similarly, we define the auxiliary near field
operator N0 : L2(∂C)→ L2(∂C) by

(N0g)(x) :=

∫
∂C

us0(x, y)g(y)ds(y), x ∈ ∂C, (2.7)
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and we observe the same relationship between N0 and solutions of (2.2a)–(2.2e).
We now define the modified near field operator N : L2(∂C) → L2(∂C) by
N := N −N0, i.e.

(N g)(x) :=

∫
∂C

[
us(x, y)− us0(x, y)

]
g(y)ds(y), x ∈ ∂C, (2.8)

and in the following theorem we relate this operator to the eigenvalue problem
that we will study for the remainder of the paper. The proof of this theorem
follows by combining the ideas of the proof of Theorem 2.1 in [10] to the proof
of Theorem 5.1 in [7].

Theorem 2.4. The modified near field operator N is injective with dense range
if and only if there does not exist a nontrivial solution w, v ∈ H1

loc(Rd \ B) of
the homogeneous modified exterior transmission problem

∇ ·A∇w + k2nw = 0 in Rd \B, (2.9a)

∇ ·A0∇v + k2n0v = 0 in Rd \B, (2.9b)

w − v = 0 on ∂B, (2.9c)

∂w

∂νA
− ∂v

∂νA0

= 0 on ∂B, (2.9d)

lim
r→∞

r
d−1
2

(
∂w

∂r
− ikw

)
= 0, (2.9e)

lim
r→∞

r
d−1
2

(
∂v

∂r
− ikv

)
= 0, (2.9f)

such that v is a generalized single layer potential, i.e. it is of the form

v =

∫
∂C

u0(·, y)g(y)ds(y) in Rd \B (2.10)

for some g ∈ L2(∂C), where (u0(·, y), us0(·, y)) satisfies (2.2a)–(2.2e) with ui =
Φ(·, y), y ∈ ∂C.

We call a value of η for which the modified exterior transmission problem
(2.9a)–(2.9f) has nontrivial solutions a modified exterior transmission eigen-
value. We further investigate this problem and its spectrum in the next section,
but we first address the question of whether these eigenvalues might coincide
with values of η for which the auxiliary problem (2.2a)–(2.2e) is not well-posed.
We previously showed that such values form a discrete set, and we further ob-
serve that whereas this set depends only on the choice of the domains B and B1

and the matrix A0, the modified exterior transmission eigenvalues also depend
on the physical medium. Thus, we would find it quite unlikely that they would
coincide.

3. The modified exterior transmission problem

In order to investigate the solvability of the modified exterior transmission prob-
lem, we introduce the following nonhomogeneous version. Given `1, `2 ∈ L2(B1\
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B) that are extended by zero outside B1, f ∈ H1/2(∂B), and h ∈ H−1/2(∂B),
we seek w, v ∈ H1

loc(Rd \B) satisfying

∇ ·A∇w + k2nw = `1 in Rd \B, (3.1a)

∇ ·A0∇v + k2n0v = `2 in Rd \B, (3.1b)

w − v = f on ∂B, (3.1c)

∂w

∂νA
− ∂v

∂νA0

= h on ∂B, (3.1d)

lim
r→∞

r
d−1
2

(
∂w

∂r
− ikw

)
= 0, (3.1e)

lim
r→∞

r
d−1
2

(
∂v

∂r
− ikv

)
= 0. (3.1f)

If we choose ϕ ∈ H1
loc(Rd \ B) to be the unique radiating solution of the non-

homogeneous exterior Dirichlet problem

∆ϕ+ k2ϕ = 0 in Rd \B,
ϕ = f on ∂B,

then we may write v0 = v+ϕ and obtain an equivalent problem to (3.1a)–(3.1f)
with f = 0 and all other right-hand sides modified accordingly. Thus, we may
assume that f = 0 in (3.1a)–(3.1f).

In order to write an equivalent problem posed on a bounded domain, we let
BR be a ball of radius R centered at the origin which strictly contains B1, and we
define the exterior Dirichlet-to-Neumann map Tk : H1/2(∂BR)→ H−1/2(∂BR)
as we did in the proof of Theorem 2.1. Then an equivalent problem to (3.1a)–
(3.1f) is to find w, v ∈ H1(BR \B) satisfying

∇ ·A∇w + k2nw = `1 in BR \B, (3.2a)

∇ ·A0∇v + k2n0v = `2 in BR \B, (3.2b)

w − v = 0 on ∂B, (3.2c)

∂w

∂νA
− ∂v

∂νA0

= h on ∂B, (3.2d)

∂w

∂ν
= Tkw on ∂BR, (3.2e)

∂v

∂ν
= Tkv on ∂BR, (3.2f)

where we have used that A = A0 = I near ∂BR [6]. We now develop an
equivalent variational formulation of this problem in the space

H := {(w, v) ∈ H1(BR \B)×H1(BR \B) | w − v = 0 on ∂B},

which is equipped with the inner product

((w, v), (w′, v′))H := (w,w′)H1(BR\B) + (v, v′)H1(BR\B)
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and the associated norm ‖·‖H. Given a test function pair (w′, v′) ∈ H, we
multiply w′ and v′ by (3.2a) and (3.2b), respectively, integrate by parts over
BR \B, and apply the boundary conditions on ∂BR to obtain

−(A∇w,∇w′)BR\B + k2(nw,w′)BR\B −
〈
∂w

∂νA
, w′
〉
∂B

+ 〈Tkw,w′〉∂BR = (`1, w
′)BR\B , (3.3)

−(A0∇v,∇v′)BR\B + k2(n0v, v
′)BR\B −

〈
∂v

∂νA0

, v′
〉
∂B

+ 〈Tkv, v′〉∂BR = (`2, v
′)BR\B . (3.4)

Subtracting (3.3) from (3.4) and enforcing the boundary conditions on ∂B yields
the equivalent variational equation of finding (w, v) ∈ H satisfying

aη((w, v), (w′, v′)) = `(w′, v′) ∀(w′, v′) ∈ H, (3.5)

where the bounded sesquilinear form aη is defined by

aη((w, v), (w′, v′)) := (A∇w,∇w′)BR\B − (A0∇v,∇v′)BR\B − k
2(nw,w′)BR\B

+ k2(n0v, v
′)BR\B − 〈Tkw,w

′〉∂BR + 〈Tkv, v′〉∂BR (3.6)

for all (w, v), (w′, v′) ∈ H, and the bounded antilinear functional ` is defined by

`(w′, v′) := −(`1, w
′)BR\B + (`2, v

′)BR\B − 〈h, v
′〉∂B (3.7)

for all (w′, v′) ∈ H. Conversely, if (w, v) is a solution of the variational problem
(3.5), then it follows from choosing w′ ∈ C∞0 (B1 \B) and v′ = 0 that w satisfies
(3.1a), and similar reasoning implies that v satisfies (3.1b). Choosing (w′, v′) ∈
H with w′ = v′ = 0 on ∂BR provides that (w, v) satisfies (3.1d). Finally,
choosing (w′, 0) ∈ H implies that w satisfies (3.1e), and similar reasoning implies
that v satisfies (3.1f). Therefore, the modified exterior transmission problem
(3.1a)–(3.1f) and the variational problem (3.5) are equivalent.

We now define the operator Aη : H → H by means of the Riesz representa-
tion theorem such that

(Aη(w, v), (w′, v′))H = aη((w, v), (w′, v′)) ∀(w, v), (w′, v′) ∈ H.

In order to establish the Fredholm property of (3.5) and hence of (3.1a)–(3.1f),
it suffices to write Aη as a compact perturbation of an invertible operator.

To this end, we define the operators Â,Bη : H → H by means of the Riesz
representation theorem such that

(Â(w, v), (w′, v′))H = (A∇w,∇w′)BR\B − (A0∇v,∇v′)BR\B + k2α(w,w′)BR\B

− k2β(v, v′)BR\B − 〈T0w,w
′〉∂BR + 〈T0v, v

′〉∂BR ,

(Bη(w, v), (w′, v′))H = −k2((n+ α)w,w′)BR\B + k2((n0 + β)v, v′)BR\B

+ 〈(T0 − Tk)w,w′〉∂BR − 〈(T0 − Tk)v, v′〉∂BR
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for all (w, v), (w′, v′) ∈ H, where T0 : H1/2(∂BR)→ H−1/2(∂BR) is a mapping
for which T0 − Tk is compact and −〈T0g, g〉 ≥ 0 for all g ∈ H1/2(∂BR) [6,
Remark 1.37]. The constants α, β > 0 will be determined later. We observe

that Aη = Â + Bη, and we will show that Â is invertible and Bη is compact.

Due to the different signs of the gradient terms in the definition of Â, we apply
the idea of T -coercivity [5, 6]. However, we first require an assumption on A
and A0 in order to proceed.

Assumption 3.1. Assume that there exists a neighborhood of ∂B in which
Im(A) = 0 and Im(A0) = 0, and denote by Ω its intersection with B1 \B.

For ξ ∈ Cd, denote

A∗ := inf
x∈Ω

inf
|ξ|=1

ξ ·A(x)ξ and A∗ := sup
x∈Ω

sup
|ξ|=1

ξ ·A(x)ξ.

We first remark that A0 may be chosen freely (subject to the aforementioned
requirements) to satisfy this assumption, and for simplicity we choose A0 = γI
in Ω for some γ > 0. In addition to Assumption 3.1, we will see that we must
choose either 0 < γ < A∗ or γ > A∗ in order to establish invertibility of Â, and
in the proof of the following lemma we only include the case 0 < γ < A∗. We
note that Assumption 3.1 is automatically satisfied for A by the neighborhood
Ω = D \ B if B is chosen such that B ( D. In this case we observe that
A∗ = A∗ = 1 and consequently we must choose γ 6= 1.

Lemma 3.2. If 0 < γ < A∗ or γ > A∗, then the operator Â : H → H is
invertible.

Proof. We consider the case 0 < γ < A∗. Choose a smooth cutoff function χ
which equals 1 in a neighborhood of ∂B with support in Ω (in particular χ = 0
near ∂BR), and define T : H → H by T (w, v) := (w,−v + 2χw), which is an
isomorphism since T 2 = I. We will show that the sesquilinear form âT (·, ·)
defined by

âT ((w, v), (w′, v′)) := (Â(w, v), T (w, v))H ∀(w, v), (w′, v′) ∈ H

is coercive and conclude invertibility of Â from this result. We see that

âT ((w, v), (w, v)) = (Â(w, v), (w,−v + 2χw))H

= (A∇w,∇w)BR\B + (A0∇v,∇v)BR\B − 2(A0∇v,∇(χw))BR\B

+ k2α(w,w)BR\B + k2β(v, v)BR\B − 2k2β(v, χw)BR\B

− 〈T0w,w〉∂BR − 〈T0v, v〉∂BR + 2 〈T0v, χw〉∂BR
for all (w, v) ∈ H. For all ε1, ε2, ε3 > 0 it follows from the product rule, the
triangle inequality, and Young’s inequality that

2
∣∣∣(∇v,∇(χw))BR\B

∣∣∣ ≤ (ε1 + ε2)(∇v,∇v)Ω + ε−1
1 (∇w,∇w)Ω

+ ε−1
2 (∇(χ)w,∇(χ)w)Ω,
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and

2
∣∣∣(v, χw)BR\B

∣∣∣ ≤ ε3(v, v)Ω + ε−1
3 (w,w)Ω.

By definition of the cutoff function χ it follows that 〈T0v, χw〉∂BR = 0. Noting
that A0 = γI in Ω, we obtain

Re âT ((w, v), (w, v)) ≥ Re(A∇w,∇w)(BR\B)\Ω + Re(A0∇v,∇v)(BR\B)\Ω

+ k2α(w,w)(BR\B)\Ω + k2β(v, v)(BR\B)\Ω

+ (A∗ − γε−1
1 )(∇w,∇w)Ω + γ(1− ε1 − ε2)(∇v,∇v)Ω

+

[
k2(α− βε−1

3 )− γε−1
2 sup

Ω
|∇χ|2

]
(w,w)Ω

+ k2β(1− ε3)(v, v)Ω.

We observe that choosing γA−1
∗ < ε1 < 1, 0 < ε2 < 1 − ε1, 0 < ε3 < 1, and α

sufficiently large yields coercivity of âT , and hence the Lax-Milgram lemma and
the fact that T is an isomorphism imply that Â : H → H is invertible. A similar
computation with T (w, v) := (w− 2χv,−v) and β taken to be sufficiently large
establishes the result for γ > A∗. �

In view of Lemma 3.2, we assume for the remainder of the discussion that
γ > 0 is chosen such that γ < A∗ or γ > A∗. We establish compactness of Bη
in the following lemma.

Lemma 3.3. The operator Bη : H → H is compact.

Proof. We see from the Cauchy-Schwarz inequality and the trace theorem that
there exists a constant c > 0 such that

‖Bη(w, v)‖H = sup
(w′,v′) 6=0

|(Bη(w, v), (w′, v′))H|
‖(w′, v′)‖H

≤ c
(
‖(w, v)‖L2(BR\B)×L2(BR\B) + ‖(T0 − Tk)w‖H−1/2(∂BR)

+ ‖(T0 − Tk)v‖H−1/2(∂BR)

)
for all (w, v) ∈ H. Thus, compactness of Bη follows from compactness of T0−Tk :
H1/2(∂BR)→ H−1/2(∂BR) and the compact embedding of H into L2(BR\B)×
L2(BR \B). �

Combining Lemmas 3.2 and 3.3 implies that Aη = Â + Bη is a Fredholm
operator of index zero, and we conclude that the variational problem (3.5) and
hence the nonhomogeneous modified exterior transmission problem (3.1a)–(3.1f)
satisfies the Fredholm property. In particular, the problem (3.1a)–(3.1f) is well-
posed provided that η is not a modified exterior transmission eigenvalue.
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We may use the above results to investigate the discreteness of modified
exterior transmission eigenvalues, which we show in the following theorem using
analytic Fredholm theory in a manner similar to the proof of Theorem 2.1.
Unlike that case, we are unable to find a value of η for which the modified
exterior problem is well-posed for a given fixed k, and as a result we instead
choose k for which such a value of η exists. By similar reasoning to Theorem
3.5 (see also Lemma 3.1) in [7], the problem (2.9a)–(2.9f) is well-posed for all
k except in a discrete set in the complex plane whenever either i) γ < A∗
and η < n∗, or ii) γ > A∗ and η > n∗, where n∗ and n∗ are the infimum
and supremum of n in Ω, respectively. Thus, the assumption in the following
theorem is valid. We remark that if B is chosen to be a ball strictly contained
in D, then the choice Ω = D \ B implies that this statement holds whenever
1− γ and 1− η have the same sign.

Theorem 3.4. Given η0 such that either i) γ < A∗ and η0 < n∗, or ii) γ >
A∗ and η0 > n∗, assume that k > 0 is chosen such that the problem (2.9a)–
(2.9f) with η = η0 is well-posed. Then the set of modified exterior transmission
eigenvalues is discrete.

Proof. We recall from Lemmas 3.2 and 3.3 that Â is invertible and Bη is compact,
and we observe from the definition of Bη and similar reasoning to the proof of
Theorem 2.1 that the mapping η 7→ Bη is analytic. It follows from the analytic

Fredholm theorem [12, Theorem 8.26] applied to the operator Aη = Â+Bη that
the set of modified exterior transmission eigenvalues is discrete provided that
some η exists for which Aη is invertible, which holds for η = η0 by assumption.

�

In the case of real-valued A,n this result implies Aη is invertible for some
real η, but we unfortunately cannot relate the modified exterior transmission
eigenvalues to the spectrum of a self-adjoint operator as in [11] for the case of
far field measurements due to the fact that the Dirichlet-to-Neumann map Tk
is not symmetric. Thus, existence of modified exterior transmission eigenval-
ues remains an open question, and there may exist eigenvalues with nonzero
imaginary part. Moreover, the variational formulation (3.5) does not exclude
the possibility of modified exterior transmission eigenvalues with negative imagi-
nary part, which differs considerably from the eigenvalue problems considered in
[8], [9] and [11]. Though existence results have been obtained for the eigenvalue
problems considered in [8] and [11] using Agmon’s theory of non-selfadjoint el-
liptic equations [1], we do not find it likely that such techniques may be applied
here due to the unusual structure of the modified exterior transmission problem
and the observation that the auxiliary index of refraction n0 is non-smooth in
Rd \B.
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4. Determination of modified exterior transmission eigenvalues from

internal measurements

In this section, we will establish that it is indeed possible to compute modi-
fied exterior transmission eigenvalues, if they exist, from internal measurements
using the recently developed generalized linear sampling method [3, 6]. We
first develop a factorization of the modified near field operator N . Define
H : L2(∂C) → H1

loc(Rd \ B) by Hg := vg, where (vg, v
s
g) is the solution of

the auxiliary problem (2.2a)–(2.2e) with ui = ug, and define G : R(H) ⊂
H1
loc(Rd \B)→ L2(∂C) by Gψ := w∗|∂C , where w∗ ∈ H1

loc(Rd) is the radiating
solution of

∇ ·A∇w∗ + k2nw∗ = ∇ · (A0 −A)∇ψ + k2(n0 − n)ψ in Rd. (4.1)

We observe that N = GH, and we now establish a result on the range of H.

Lemma 4.1. If B is chosen to be a ball and we define

V0(B) :=

{
v ∈ H1

loc(Rd \B)

∣∣∣∣∇ ·A0∇v + k2n0v = 0 in Rd \B,

lim
r→∞

r
d−1
2

(
∂v

∂r
− ikv

)
= 0

}
,

then the closure of the range of H : L2(∂C)→ H1
loc(Rd \B) is given by

R(H) = V0(B).

Proof. We follow similar reasoning as for the standard single layer potential
given in Lemma 5.1 of [7], but we must split the proof into two steps. First,
we will show that the result holds with B replaced by a Lipschitz domain B′

satisfying C ⊂ B′ ⊆ B′ ⊂ B which contains the origin and H replaced by
the operator H̃ : L2(∂C)→ H1

loc(Rd \B′) defined by H̃g := ṽg, where ṽg is the
extension of vg as ṽg = vsg+ug in B\B′. We will then provide a simple extension
to obtain the result for B. Indeed, consider B′ with the properties listed above.
We remark that if the exterior Dirichlet problem of finding ṽ ∈ H1

loc(Rd \ B′)
satisfying

∇ ·A0∇ṽ + k2n0∇ṽ = 0 in Rd \B′ (4.2)

ṽ = h on ∂B′, (4.3)

lim
r→∞

r
d−1
2

(
∂ṽ

∂r
− ikṽ

)
= 0, (4.4)

is well-posed for any given h ∈ H1/2(∂B′), then it follows that for each compact
subset K ⊂ Rd with K ⊃ B′ there exists a constant c > 0 for which

‖ṽ‖H1(K\B′) ≤ c ‖h‖H1/2(∂B′)
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and consequently we need only show that the set {ṽg|∂B′ | g ∈ L2(∂C)} of
Dirichlet data is dense in H1/2(∂B′). The problem (4.2)–(4.4) is well-posed for
Im(η) ≥ 0, and we may apply the same technique as in the proof of Theorem
2.1 to conclude that the set of η for which it is not well-posed is discrete and
hence may be easily avoided. As stated previously, when B, B1, and C are
chosen to be balls centered at the origin, these values of η may be computed
by separation of variables, and we assume for the remainder of the proof that η
is such that (4.2)–(4.4) is well-posed and hence it suffices to prove the reduced
density result proposed above. To this end, let f ∈ H−1/2(∂B′) satisfy∫

∂B′
f(x)ṽg(x)ds(x) = 0 (4.5)

for all g ∈ L2(∂C). Using the fact that

ṽg(x) =

∫
∂C

u0(x, y)g(y)ds(y), x ∈ Rd \ ∂C,

by linearity (where we have also extended u0 = us0 + Φ in B \ ∂C), we may
substitute ṽg into (4.5) and interchange the order of integration to obtain∫

∂C

(∫
∂B′

u0(x, y)f(x)ds(x)

)
g(y)ds(y) = 0

for all g ∈ L2(∂C). It follows that

wf (y) :=

∫
∂B′

u0(x, y)f(x)ds(x) = 0 ∀y ∈ ∂C.

The proof of Theorem 5.1 in [7] further implies that us0(x, y) = us0(y, x) for
x, y ∈ B, and hence u0(x, y) = u0(y, x) for all x, y ∈ B, x 6= y, by symmetry of
Φ. We remark that this symmetry property is the reason for first establishing
the result for B′ rather than B; our formulation of the problem does not even
allow us to write u0(y, x) for x ∈ ∂B. Since ∂B′ ⊂ B, we may apply this
symmetry in order to write

wf (y) =

∫
∂B′

u0(y, x)f(x)ds(x), y ∈ Rd \ ∂B′,

and we observe that wf satisfies the Helmholtz equation in B′. Since wf = 0
on ∂C, Lemma 2.3 implies that wf = 0 in B′, and we obtain

w−f = 0
∂w−f
∂ν = 0

}
on ∂B′, (4.6)

where we let + and − refer to the trace and normal derivative from outside
and inside the domain, respectively. Since us0(·, x) is an H1(B)-solution of the
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Helmholtz equation for each x ∈ ∂B′, we see that wf possesses the same jump
conditions as the standard single layer potential on ∂B′, namely

w−f = w+
f

∂w−f
∂ν =

∂w+
f

∂ν + f

}
on ∂B′. (4.7)

Combining the first lines of (4.6) and (4.7) implies that w+
f = 0 on ∂B′, and

hence well-posedness of the exterior Dirichlet problem (4.2)–(4.4) implies that

wf = 0 in Rd \ B′. In particular, we obtain
∂w+

f

∂ν = 0 on ∂B′, and combining
the second lines of (4.6) and (4.7) yields f = 0. Observing that the set V0(B′)
is closed in H1

loc(Rd \B′), the result is established for B′ in place of B.
Now we let v ∈ V0(B), and we consider the extension ṽ of v as a solution

of the Helmholtz equation in B \ B′. This extension is possible since B is a
ball and B′ contains the origin, which may be seen by representing v in terms
of spherical wave functions. By our first result, there exists a sequence {gj} in
L2(∂C) such that ṽgj → ṽ in H1

loc(Rd \B′) as j →∞. Since Rd \B ⊆ Rd \B′,
we clearly obtain that vgj → v in H1

loc(R\B), and the final result is established.
�

The proof of the above lemma clearly holds for any such domain B for which
the utilized extension property holds. For simplicity, we will assume that B is
a ball contained within D for the remainder of the paper. We now provide two
theorems which relate modified exterior transmission eigenvalues to the range of
G, and we first remark that G : R(H)→ L2(∂C) is compact by the compactness
of the trace operator into L2(∂C).

Theorem 4.2. If η is not a modified exterior transmission eigenvalue, then
Φ(·, z) ∈ R(G) whenever z ∈ B1 \B.

Proof. Since η is not a modified exterior transmission eigenvalue, the Fredholm
property of the modified exterior transmission problem implies the existence of
a unique pair (wz, vz) such that wz and vz satisfy the radiation condition and

∇ ·A∇wz + k2nwz = 0 in Rd \B, (4.8a)

∇ ·A0∇vz + k2n0vz = 0 in Rd \B, (4.8b)

wz − vz = Φ(·, z) on ∂B, (4.8c)

∂wz
∂νA

− ∂vz
∂νA0

=
∂Φ(·, z)
∂ν

on ∂B. (4.8d)

We extend w∗z := wz − vz by Φ(·, z) in B. We see from Lemma 4.1 that
vz ∈ R(H), and it follows that w∗z ∈ H1

loc(Rd) satisfies (4.1) with ψ = vz. By
construction we observe that Gvz = w∗z |∂C = Φ(·, z)|∂C , and we conclude that
Φ(·, z) ∈ R(G). �
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Theorem 4.3. If η is a modified exterior transmission eigenvalue, then the set
of points z ∈ B1 \B such that Φ(·, z) ∈ R(G) is nowhere dense in B1 \B.

Proof. Suppose that η is a modified exterior transmission eigenvalue, and sup-
pose to the contrary that Φ(·, z) ∈ R(G) for z in a dense subset of a ball
Bρ ⊆ B1 \ B. It follows that for each such z there exists vz ∈ R(H) such that
Gvz = Φ(·, z), and if w∗z ∈ H1

loc(Rd) is the solution of (4.1) with ψ = vz, then
by definition of G we have that w∗z |∂C = Gvz = Φ(·, z)|∂C . Since both w∗z and
Φ(·, z) satisfy the Helmholtz equation in B, it follows from Lemma 2.3 that
w∗z = Φ(·, z) in B. Thus, we see from Lemma 4.1 that (wz, vz) := (w∗z + vz, vz)
satisfies the modified interior transmission problem (4.8a)–(4.8d). Now we
choose an eigenfunction pair (wη, vη) of the modified exterior transmission prob-
lem corresponding to η. We see from an application of Green’s second identity
over BR \B that∫

∂B

(
wz
∂wη
∂νA

− wη
∂wz
∂νA

)
ds =

∫
BR\B

(
wz∇ ·A∇wη − wη∇ ·A∇wz

)
dx

+

∫
∂BR

(
wz
∂wη
∂νA

− wη
∂wz
∂νA

)
ds.

Since wz and wη are both radiating solutions to the Helmholtz equation in
Rd \ BR, we see that the integral over ∂BR vanishes. Moreover, as wz and wη
satisfy the same equation in BR \ B, we observe that the integral over BR \ B
vanishes as well. These results along with similar computations for vz and vη
yield ∫

∂B

(
wz
∂wη
∂νA

− wη
∂wz
∂νA

)
ds = 0, (4.9a)

γ

∫
∂B

(
vz
∂vη
∂ν
− vη

∂vz
∂ν

)
ds = 0. (4.9b)

By subtracting (4.9a) and (4.9b) and enforcing the boundary conditions, we see
that

viη(z) :=

∫
∂B

[
γΦ(·, z)∂vη

∂ν
− vη

∂Φ(·, z)
∂ν

]
ds, z ∈ Rd \B,

vanishes in a dense subset of Bρ, and by analyticity it follows that viη is identi-

cally zero in Rd \B. We further define

vsη(y) := −
∫
∂B

[
γΦ(·, y)

∂vη
∂ν
− vη

∂Φ(·, y)

∂ν

]
ds, y ∈ B,

and we observe that (vη, v
s
η) satisfies (2.2a)–(2.2e) with ui = viη = 0. Since

this problem is well-posed, we conclude that vη = 0 in Rd \ B. A similar
argument shows that wη = 0 as well, which contradicts the choice of (wη, vη) as
an eigenpair associated with η. �
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4.1. Factorization of the auxiliary near field operator

We now provide a characterization of the range of G in terms of an indicator
function which, when combined with the above two theorems, provides a method
to compute eigenvalues from measured scattering data. In particular, we con-
struct a suitable indicator function using the recently developed generalized
linear sampling method (GLSM). However, unlike previous results which allow
for the computation of eigenvalues for the case of far field measurements [2],
we will see that the auxiliary near field operator N0 does not have a symmetric
factorization. It is possible to define the near field operator using non-physical
incident fields (i.e. ui = Φ(·, y) for y ∈ ∂C) as in [17] in order to obtain a
symmetric factorization of the near field operator, but the formulation of the
resulting exterior transmission problem is not entirely clear and resists stan-
dard techniques of study. Thus, we embrace the nonsymmetric factorization
described below and introduce a new cost functional similar to that developed
in [4] in the context of shape reconstruction.

We first derive a certain factorization of the near field operator which is
essential to the application of GLSM, and for convenience we define the product
space L := L2(B1 \ B) × L2(B1 \ B) with the usual inner product (·, ·)L and
induced norm ‖·‖L. We begin by defining the single layer potential operator
S : L2(∂C) → L by Sg := (∇ug, ug), where ug is the single layer potential

given by (2.6). We also define the solution operator G0 : R(S) → L2(∂C) by
G0(ϕ,ψ) := v∗|∂C , where v∗ ∈ H1

loc(Rd) is the radiating solution of

∇ ·A0∇v∗ + k2n0v
∗ = ∇ · (I −A0)∇ϕ+ k2(1− n0)ψ in Rd, (4.10)

and we observe that we have the factorization N0 = G0S. We see from the
definition of S that its adjoint is given by

(S∗(ϕ,ψ))(x) =

∫
B1\B

[
∇yΦ(y, x) · ϕ(y) + Φ(y, x)ψ(y)

]
dy, x ∈ ∂C, (4.11)

for all (ϕ,ψ) ∈ L. Applying Green’s formula to the solution v∗ of (4.10) yields
the representation

v∗(x) =

∫
B1\B

[
∇yΦ(y, x) · (I −A0)(∇v∗(y) + ϕ(y))

+ Φ(y, x) · k2(n0 − 1)(v∗(y) + ψ(y))

]
dy, x ∈ ∂C. (4.12)

Due to the presence of the complex conjugates in (4.11), we see that we will
not be able to obtain a symmetric factorization of N0. However, if we define
the operator S : L2(∂C) → L as for S but with Φ(x, y) replaced with Φ(x, y)
in the definition of the single layer potential, then we obtain the factorization
N0 = S

∗
TS, where the middle operator T : L → L is defined by

T (ϕ,ψ) := ((I −A0)(∇v∗ + ϕ), k2(n0 − 1)(v∗ + ψ)) (4.13)
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with v∗ the solution of (4.10). We first establish a necessary coercivity property
of T in the following lemma, the proof of which requires the following assump-
tion. The reason for including the space P1(R(S)) will become clear in Remark
4.6.

Assumption 4.4. Define the operator P1 : R(S) → H1(B1 \ B) such that
P1(∇u, u) = u, and assume that k,A0, and n0 are such that the nonstandard
interior transmission problem of finding (w, u, v) ∈ H1(B1 \ B) × P1(R(S)) ×
H1(B) which satisfy

∇ ·A0∇w + k2n0w = 0 in B1 \B, (4.14a)

∆u+ k2u = 0 in B1 \B, (4.14b)

∆v + k2v = 0 in B, (4.14c)

w − u = 0 on ∂B1, (4.14d)

∂w

∂νA0

− ∂u

∂ν
= 0 on ∂B1, (4.14e)

w − u = v on ∂B, (4.14f)

∂w

∂νA0

− ∂u

∂ν
=
∂v

∂ν
on ∂B, (4.14g)

has only the trivial solution.

Lemma 4.5. If γ 6= 1 and Assumption 4.4 is satisfied, then the operator T :
L → L defined in (4.13) is coercive on R(S).

Proof. The first part of the proof follows in a manner similar to Theorem 2.42
in [6]. We first remark from [7, Lemma 5.1] that the closure of the range of S
in L is given by

R(S) =

{
(∇u, u)

∣∣∣∣u ∈ H1(B1 \B), ∆u+ k2u = 0 in B1 \B
}
. (4.15)

For (∇u, u) ∈ R(S) and v∗ ∈ H1
loc(Rd) the solution of (4.10) with (ϕ,ψ) =

(∇u, u), we have

(T (∇u, u), (∇u, u))B1\B =

∫
B1\B

[
(I−A0)∇(v∗+u)·∇u+k2(n0−1)(v∗+u)u

]
dx

by definition of T . From (4.10) we see that

∇v∗ + k2v∗ = ∇ · (I −A0)∇(v∗ + u) + k2(1− n0)(v∗ + u) in Rd,

and after multiplying both sides by v∗ and integrating by parts over a ball
BR ⊃ B1 we obtain∫

B1\B

[
(I −A0)∇(v∗ + u) · ∇v∗ + k2(n0 − 1)(v∗ + u)v∗

]
dx

=

∫
BR

[
|∇v∗|2 − k2 |v∗|2

]
dx−

∫
∂BR

∂v∗

∂r
v∗ds.
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Taking the imaginary part of this expression and letting R→∞ gives

Im

∫
B1\B

[
(I−A0)∇(v∗+u) ·∇v∗+k2(n0−1)(v∗+u)v∗

]
dx = −k

∫
Sd−1

|v∗∞|
2
ds,

where v∗∞ is the far field pattern of the radiating field v∗. The identities

(v∗ + u)u = |v∗ + u|2 − (v∗ + u)v∗

(I −A0)∇(v∗ + u) · ∇u = (I −A0)∇(v∗ + u) · ∇(v∗ + u)

− (I −A0)∇(v∗ + u) · ∇v∗

then provide the result

Im(T (∇u, u), (∇u, u))B1\B = −
∫
B1\B

Im(A0)∇(v∗ + u) · ∇(v∗ + u)ds

+ k2

∫
B1\B

Im(n0) |v∗ + u|2 dx

+ k

∫
Sd−1

|v∗∞|
2
ds. (4.16)

We are now ready to show the desired coercivity property of T . Suppose
to the contrary that there exists a sequence {(∇uj , uj)} in R(S) such that
‖uj‖H1(B1\B) = 1 for all j ∈ N and

(T (∇uj , uj), (∇uj , uj))B1\B → 0 as j →∞. (4.17)

For each j ∈ N, let v∗j ∈ H1
loc(Rd) be the solution of (4.10) with (ϕ,ψ) =

(∇uj , uj), from which elliptic regularity implies that the sequence {v∗j } is bounded

in H2(K \B1) for any bounded domain K ⊃ B1, and consequently, up to chang-
ing the initial sequence, we may assume that {uj} converges weakly to some u
in H1(B1\B) and {v∗j } converges weakly to some v∗ in H1

loc(Rd)∩H2
loc(Rd\B1).

We immediately observe that v∗ satisfies (4.10) with (ϕ,ψ) = (∇u, u) and that
u satisfies the Helmholtz equation in B1 \ B. In view of the representation
(4.16), assumption (4.17) implies that v∗j,∞ → 0 in L2(Sd−1) as j → ∞ and

consequently v∗∞ = 0. It follows from Rellich’s lemma that v∗ = 0 in Rd \ B1.
Upon labeling w = v∗ + u in B1 \ B and v = v∗ in B for convenience, we see
that (w, u, v) ∈ H1(B1 \B)×P1(R(S))×H1(B) satisfies (4.14a)–(4.14g), from
which Assumption 4.4 implies that w = u = 0 and consequently v∗ = 0 as well.
Finally, assuming that γ 6= 1 we may follow the rest of the proof of Theorem
2.42 in [6] exactly to obtain uj → 0 in H1(B1 \B), a contradiction. Therefore,

the operator T is coercive on R(S). �

Remark 4.6. A requirement such as Assumption 4.4 is common in order to
establish coercivity of this type of middle operator T (c.f. Theorem 2.42 in
[6]), and it may indeed be possible to apply analytic Fredholm theory to the
nonstandard interior transmission problem (4.14a)–(4.14g) in order to show that
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the problem is well-posed for all k except in a discrete set as has been done for
other such problems. Unfortunately, we have not been able to obtain this result
due to the unusual structure of this problem, which resists standard techniques
utilizing T -coercivity (such as that used in the proof of Lemma 3.2). However,
we now show that the required coercivity property holds for any k > 0 provided
A0 is chosen such that Im(A0) is negative definite in some connected relative
neighborhood Γ of ∂B1 in B1 and η 6= 0. Indeed, following the proof of Lemma
4.5 with this choice of A0, the assumption (4.17) and the representation (4.16)
imply that ∇(v∗j +uj)→ 0 in L2(Γ) as j →∞ since Im(A0) is negative definite
by assumption. Thus, it follows that ∇(v∗ + u) = 0 in Γ, or equivalently that
∇w = 0 in Γ. Since Γ is connected, we see that w = c in Γ for some constant c,
and (4.14a) implies that c = 0 since n0 6= 0 in Γ. From the unique continuation
principle we obtain w = 0 in B1 \ B, and in particular we see that the Cauchy
data of w vanishes on both ∂B1 and ∂B. The boundary conditions (4.14f)–
(4.14g) on ∂B imply that −u = v and −∂u∂ν = ∂v

∂ν on ∂B, and consequently

w0 :=

{
−u in B1 \B,
v in B,

is an H1(B1)-solution of the Helmholtz equation in B1. From the boundary
conditions (4.14d)–(4.14e) on ∂B1 we see that the Cauchy data of w0 on ∂B1

vanishes, and an application of Green’s formula implies that w0 = 0 in B1. In
particular we obtain u = 0 and v∗ = 0, and the remainder of the proof follows
as above.

4.2. The nonsymmetric generalized linear sampling method

We now show that a nonsymmetric version of GLSM similar to that studied in
[4] may be applied in order to compute eigenvalues from measured scattering
data. For some ξ ∈ (0, 1) and φ ∈ L2(∂C), consider the cost functional Jα(φ; ·) :
L2(∂C)× L2(∂C)→ R defined as

Jα(φ; g) := α |(N0g2, g1)∂C |+ α1−ξ ∥∥Sg2 − Sg1

∥∥2

L + ‖N g2 − φ‖2∂C , (4.18)

where g = (g1, g2). Compared to the cost functional found in [2] used for far
field measurements (and hence a symmetric factorization), we have added the

extra term
∥∥Sg2 − Sg1

∥∥2

L in order to formally ensure that Sg2 ≈ Sg1, which
then results in a penalty term of the form

|(N0g2, g1)∂C | =
∣∣(TSg2, Sg1)L

∣∣ ≈ |(TSg2, Sg2)L|

as in the symmetric case. Though this cost functional may not have a unique
minimizer, due to nonnegativity we may define

jα(φ) := inf
g∈L2(∂C)

Jα(φ; g). (4.19)

The following theorem will be necessary for the proof of the main theorem
of GLSM, and its proof follows in a similar manner to Lemma 3.4 of [4].
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Lemma 4.7. If N has dense range, then jα(φ) → 0 as α → 0 for each φ ∈
L2(∂C).

With the notation g = (g1, g2) and

B(g) := |(N0g2, g1)∂C |+ α−ξ
∥∥Sg2 − Sg1

∥∥2

L ,

we establish the following lemma. We first remark that R(S) = R(S).

Lemma 4.8. If T is coercive on R(S), then the following relationship between
B and H holds.

(a) If {B(gα)} is bounded as α→ 0, then {Hgα2 } is bounded as α→ 0, where
gα = (gα1 , g

α
2 ).

(b) If {Hgα2 } is bounded as α→ 0, then there exists a sequence {gα1 } for which
{B(gα)} is bounded as α→ 0, where gα = (gα1 , g

α
2 ).

Proof. For part (a), suppose that {B(gα)} is bounded by a constant M > 0
independent of α as α → 0. From the coercivity property of T (say with
coercivity constant µ) and the definition of B(g) we see that

µ ‖Sgα2 ‖
2
L ≤ |(TSg

α
2 , Sg

α
2 )L|

≤
∣∣(TSgα2 , Sgα1 )L

∣∣+
∣∣(TSgα2 , Sgα2 − Sgα1 )L

∣∣
≤ |(N0g

α
2 , g

α
1 )∂C |+ ‖T‖ ‖Sgα2 ‖L

∥∥Sgα2 − Sgα1 ∥∥L
≤M +

√
Mαξ/2 ‖T‖ ‖Sgα2 ‖L ,

which implies that {Sgα2 } is bounded in L as α→ 0. By the definition of S we
see that the sequence {ugα2 } of single layer potentials is bounded in H1(B1 \B)
as α → 0, and well-posedness of (2.2a)–(2.2e) implies that {Hgα2 } is bounded
in L as α→ 0.

For part (b), suppose that {Hgα2 } = {vgα2 } is bounded as α → 0. Since
each single layer potential ugα2 is a radiating solution of the Helmholtz equation

in Rd \ B, we may apply Green’s formula along with the boundary conditions
(2.2c)–(2.2d) to obtain

ugα2 (x) =

∫
∂B

[
vgα2 (y)

∂Φ(x, y)

∂ν(y)
−
∂vgα2 (y)

∂νA0

Φ(x, y)

]
ds(y)

−
∫
∂B

[
vsgα2 (y)

∂Φ(x, y)

∂ν(y)
−
∂vsgα2 (y)

∂ν
Φ(x, y)

]
ds(y)

for x ∈ B1\B. Moreover, each vsgα2 satisfies the Helmholtz equation in B, and an
application of Green’s second identity implies that the second integral vanishes.
Thus, it follows from our assumption that {ugα2 } is bounded in H1(B1 \ B) as

α→ 0, and equivalently {Sgα2 } is bounded in L as α→ 0. Since R(S) = R(S),
we may choose gα1 ∈ L2(∂C) such that∥∥Sgα2 − Sgα1 ∥∥2

L < αξ. (4.20)
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Then we see that for gα = (gα1 , g
α
2 ) we have

αB(gα) = α |(N0g
α
2 , g

α
1 )∂C |+ α1−ξ ∥∥Sgα2 − Sgα1 ∥∥2

L

≤ α |(N0g
α
2 , g

α
1 )∂C |+ α.

Finally, we use the fact that T is bounded to obtain

|(N0g
α
2 , g

α
1 )∂C | =

∣∣(TSgα2 , Sgα1 )L
∣∣

≤ |(TSgα2 , Sgα2 )L|+
∣∣(TSgα2 , Sgα1 − Sgα2 )L

∣∣
≤ ‖T‖ ‖Sgα2 ‖

2
L + ‖T‖ ‖Sgα2 ‖L

∥∥Sgα2 − Sgα1 ∥∥L
< ‖T‖ ‖Sgα2 ‖L

(
‖Sgα2 ‖L + αξ/2

)
,

which is bounded above by some constant independent of α as α → 0. Thus,
we conclude that the sequence {B(gα)} is bounded as α→ 0. �

This lemma may be combined with a simple modification of the proof of
Theorem 1 in the appendix of [2] to prove the main theorem of this section,
which relates the range of G to the GLSM functional Jα(φ; ·).

Theorem 4.9. In addition to the assumptions of Lemma 4.8, assume that N
has dense range. Given some function p such that p(α)

α = O(1), consider a
minimizing sequence {gα} satisfying

Jα(φ; gα) ≤ jα(φ) + p(α)

for each α > 0. Then φ ∈ R(G) if and only if the sequence {B(gα)} is bounded
as α→ 0.

We may combine this theorem (for φ = Φ(·, z)) with Theorems 4.2 and 4.3
in order to compute modified exterior transmission eigenvalues from measured
scattering data with the generalized linear sampling method. We simply sample
a region in the complex plane and compute the indicator function B(gα) for some
small value of α > 0 for each choice of η. The eigenvalues correspond to locations
in the complex plane for which B(gα) is large. We will see in the next section
that in practice we minimize a regularized version of the GLSM cost functional
Jα(φ; ·), and we remark that the above results may be appropriately modified
to this case following along the lines of [4].

5. Numerical examples

In this section we perform detailed numerical testing of computing modified
exterior transmission eigenvalues from measured scattering data, and we inves-
tigate their potential use as a target signature in nondestructive testing. In
order to generate simulated scattering data to test our methods, we use the
finite element software FreeFem++ [14]. The scattering problem (2.1a)–(2.1e)
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and the auxiliary scattering problem (2.2a)–(2.2e) are solved by truncating the
unbounded domain and imposing the exact boundary conditions in terms of a
Dirichlet-to-Neumann operator on a circular artificial boundary (see [6, p. 25]
for details). For simplicity we restrict our attention to R2, but the same process
may be carried out in R3.

In order to construct the approximation to the near field operator, we use
Ninc point sources yj , j = 1, . . . , Ninc, distributed uniformly on the measure-
ment manifold ∂C, which we assume to be a circle for simplicity, and we compute
an Ninc×Ninc matrix U with U`,m ≈ us(y`, ym). By the same process we may
approximate the auxiliary near field operator N0 as an Ninc ×Ninc matrix U0

with (U0)`,m ≈ us0(y`, ym), but in the case when B, B1, and C are chosen to
be balls centered at the origin we compute U0 analytically using separation of
variables. In order to add noise to the data, we choose δ > 0 and set

Uδ
`,m = U`,m

(
1 + δ

ζ`,m + iµ`,m√
2

)
, `,m = 1, . . . , Ninc,

where ζ`,m and µ`,m are uniformly distributed random numbers in [−1, 1] com-
puted using the rand command in MATLAB. Once the simulated data has been
computed with suitable noise added, we compute the data vector φz with `th
entry given by (φz)` = Φ∞(y`, z), ` = 1, . . . , Ninc, for some z ∈ B1 \B. We now
describe our implementation of the generalized linear sampling method to com-
pute modified exterior transmission eigenvalues given the noisy near field matrix
Uδ. We begin by using the trapezoidal rule on ∂C in order to approximate the
single layer potential and the conjugate single layer potential as matrices S2

and S1, respectively, with each subscript matching the component of g to which
the operator is applied in the GLSM cost functional (4.18). We then choose a
region in the complex plane in which to sample values of the eigenparameter η
in a Cartesian grid, and for each sampled value of η we compute the matrix U0

and construct the approximation of the noisy modified near field operator N δ

as Uδ = Uδ −U0.
The GLSM cost functional J given by (4.18) does not have a minimizer in

general, and as a result we instead use the regularized cost functional

Jδα(φ; g) := α |(N0g2, g1)∂C |+ αδ ‖g1‖2∂C + αδ ‖g2‖2∂C
+ α1

∥∥Sg2 − Sg1

∥∥2

B1\B
+
∥∥N δg2 − φ

∥∥2

∂C
, (5.1)

where the parameter δ > 0 is an estimate of the noise in the data, i.e. if Nδ is
the noisy near field operator then δ satisfies

∥∥Nδ −N
∥∥ ≤ δ. Note that we have

replaced the term α1−ξ with α1 for simplicity. In order to construct the discrete
regularized cost functional Jδα(·), we define the matrices

N0 :=

(
0 U0

0 0

)
, N δ :=

(
0 Uδ

0 0

)
, S :=

(
S1 −S2

)
,

and the vectors

g :=

(
g1

g2

)
, and bz :=

(
φz
0

)
,
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where each of g1 and g2 is an Ninc × 1 vector representing the discrete ver-
sion of the arguments g1 and g2, respectively. We may now write the discrete
regularized cost functional as

Jδα(g) := α |g∗(N0g)|+ δαg∗g +α1(Sg)∗(Sg) + (N δg−bz)∗(N δg−bz), (5.2)

where ∗ refers to the Hermitian transpose. This cost functional is difficult to
minimize in X := C2Ninc as it is neither differentiable nor convex [3], and
we follow similar procedures to those found in [4]. We first choose the two
components g0,1,g0,2 ∈ X̃ := CNinc of the starting point g0 as

g0,2 = arg min
g∈X̃

(
β2 ‖g‖2 +

∥∥∥N δg − bz

∥∥∥2)
,

g0,1 = arg min
g∈X̃

(
β1 ‖g‖2 + ‖S1g − S2g0,2‖2

)
,

where we choose β2 and β1 such that δ ‖g0,2‖ =
∥∥∥N δg0,2 − bz

∥∥∥ and ‖g0,1‖ =

‖g0,2‖, respectively. The computation of g0,2 is accomplished using the well-
known Morozov discrepancy principle and corresponds to the standard linear
sampling method; indeed, the linear sampling method would have us plot ‖g0,2‖
for various values of η in order to detect eigenvalues. The choice of β1 is not
entirely necessary, but it is designed to avoid choosing g0,1 with large norm
relative to the other terms. Once the initial point g0 is chosen along with
regularization parameters β1 and β2, we must choose the value of α and α1 in
addition to a suitable optimization algorithm in order to minimize Jδα(·). We
adopt a heuristic from [4] in which we set α3 = 1 and α = max(β1, β2)/ ‖N0‖,
and we use limited memory BFGS from the Complex Optimization Toolbox
[21] described in [20] (with the conjugate cogradient approximated by a finite
difference scheme) in order to compute the minimizer gglsm

η . We then evaluate
the indicator function

I(g) := |g∗(N0g)|+ δg∗g +
α1

α
(Sg)∗(Sg) (5.3)

at g = gglsm
η . For each sampled value of η, we repeat this process for 5 random

choices of z in B1 \B. By plotting the values of the indicator function evaluated
at each minimizer gglsm

η (averaged over the randomly chosen z) against η in the
sampled region of the complex plane, we obtain a contour map whose peaks
should correspond to the modified exterior transmission eigenvalues. Exact
eigenvalues may be computed for the case when C,B,B1, D, and D1 are all
balls centered at the origin using separation of variables and a suitable root-
finding scheme, and we use this procedure in order to test our implementation
of the generalized sampling method.

We remark that although the theory indicates that we should evaluate the
GLSM indicator function I at the minimizer gglsm

η , it has been noted that when
applying generalized linear sampling to shape reconstruction it often suffices to
evaluate I(g0) and hence avoid minimizing the GLSM cost functional [6]. Our
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Order Smallest eigenvalue Second-smallest eigenvalue
0 0.65591+1.9970i 16.710+3.5597i
1 1.9004+2.0343i 17.890+4.7005i
2 5.3742+0.66951i 26.525+5.7074i
3 8.5088-0.21271i 87.874-0.20658i
4 34.043-0.061097i 14.329-0.042867i
5 41.878-0.0044474i 22.270-0.0035143i
6 52.205-0.00016804i 109.59-0.00026141i
7 65.243-0.0000039840i 121.07-0.0000075302i

Table 1: The two smallest eigenvalues (in magnitude) corresponding to the first
few orders of Bessel functions for the annulus D1 \ D with A = I and n = 4,
computed using separation of variables.

findings support this approach when computing eigenvalues as well (c.f. Figure
3), and as for shape reconstruction some optimization can improve the results
(c.f. Figure 4). However, we have observed that demanding a high degree of
accuracy in the optimization scheme can harm the results, and as a consequence
we severely limit the number of iterations performed in the optimization scheme.

We begin by investigating the sensitivity of modified exterior transmission
eigenvalues to changes in the material properties of an inhomogeneous medium.
In order to allow us to compute exact eigenvalues using separation of variables
(in which each eigenvalue is the root of a transcendental function involving
Bessel functions of nonnegative integer order), we consider an isotropic medium
of constant index of refraction such that D and D1 are disks of radius 1 and
2, respectively, and we choose B = D and B1 = D1. We also choose the mea-
surement manifold C to be a disk of radius rc = 0.5 centered at the origin. We
consider A = I and n = 4, and we choose γ = 2. The choice of γ greatly affects
the distribution and sensitivity of the eigenvalues, and although the precise ef-
fect of γ on these properties is not known, we have observed that γ = 2 appears
to be a good choice for this particular scatterer. In Table 1 we first show a few
of the smallest eigenvalues computed using separation of variables.

In Figure 2 we show the shift in a few of the smallest eigenvalues (in mag-
nitude) due to both an overall change in the refractive index n and a change
in the radius r0 of the circular cavity. Here we have only shown eigenvalues
corresponding to the two lowest orders of Bessel functions when computed by
separation of variables (from the first two rows of Table 1), as experience has
shown that these are the only eigenvalues likely to be detected in the presence of
noise. For a more complicated medium, this association does not exist, and the
eigenvalues which are robust to noise must be determined by experimentation.
We see that at least one of the eigenvalues exhibits a noticeable shift in each
case, and the shift appears to be monotonic for the eigenvalues considered. We
note that in Figure 2b we have kept B fixed as the unit disk despite the radius
of D increasing. If we were to consider the radius of D decreasing instead, we
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(a) Overall change in n (b) Change in the radius r0 of D

Figure 2: Plots of the shifts in the eigenvalues due to overall changes in n (left)
and changes in the radius r0 of the cavity D (right). We observe that at least
one of the eigenvalues exhibits a noticeable shift in each case, and the shift
appears to be monotonic for the eigenvalues considered.

would be required to choose the radius of B sufficiently small to remain in D.
In order to test our method for detecting modified transmission eigenvalues

using generalized linear sampling, we focus on the two eigenvalues in Figure
2 that display the greatest change in magnitude in the presence of a flaw. In
Figure 3 we show the plot of the indicators I(g0) and I(gglsm

η ) for comparison,
where we have added 1.6% percent noise to the data. Here we use a uniform
21× 21 grid. We observe that the eigenvalue η = 16.7096 + 3.55969i is detected
using either of the indicators, and the full GLSM indicator I(gglsm

η ) shows some
influence from an additional eigenvalue. In some cases this eigenvalue is roughly
detected by the full GLSM indicator, but this detection does not occur often
enough to be reliable. We see that the peak in Figure 3a is of greater magnitude,
but experience shows that it is not always as localized as the peak in Figure 3b.

We now investigate the effect of a localized flaw on the eigenvalues by con-
sidering the same scatterer as in the previous two examples except that the
refractive index n is now given by

n(x) =

{
4, x ∈ (D1 \D) \Df ,
1, otherwise,

where Df is a disk of radius rf > 0 centered at (xf , yf ) ∈ D1 \ D. For this
example we choose rf = 0.2 and (xf , yf ) = (1.5 cos(π/3), 1.5 sin(π/3)), and we
use a 21×21 grid on a smaller search region that only contains the eigenvalue of
interest. In Figure 4a we see that the location of the shifted eigenvalue is difficult
to discern from the plot of the indicator I(g0). The occurrence of this “double
peak” has been observed in other similar eigenvalue problems (see Figures 5 and
6 in [8] for example). However, in Figure 4b we clearly see the detection of the
eigenvalue corresponding to the flawed medium, and it is shifted relative to the
unflawed medium (the eigenvalues of which are represented as white stars in each
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(a) I(g0) (b) I(gglsm
η )

Figure 3: Plots of the indicators I(g0) (left) and I(gglsm
η ) (right). The exact

eigenvalues are represented by the white star symbol. We observe that only one
eigenvalue is detected in each case.

figure). This example shows that using the full GLSM indicator I(gglsm
η ) has

the potential to correct for shortcomings in the initial guess for the optimization
scheme and as a result improve the detection of eigenvalues.

As a final test, we investigate the detection of eigenvalues for an anisotropic,
absorbing medium in which the cavity is not circular. In particular, we let

A =

(
3.5 −0.25
−0.5 3.5

)
and n = 4+4i, and we let D be the square centered at the origin with side length√

2. We maintain the same choice of D1 as the disk of radius 2, and we let B
and B1 be the disks of radius 0.7 and 2, respectively. The eigenvalues of A are
approximately 3.1464 and 3.8536, and as a result we may still choose γ = 2. We
add approximately 1.6% noise to the data. Since we do not know a priori where
the eigenvalues are located for this medium, we searched different rectangular
regions near the origin until one was found, and Figure 5 shows the detection
of this eigenvalue using a 21 × 21 grid on the region shown for both GLSM
indicators. We see that the indicator I(gglsm

η ) displays a more localized peak.
In Figure 6 we search over the same grid for an eigenvalue when a circular flaw
of radius rf = 0.2 centered at (xf , yf ) = (1.5 cos(π/3), 1.5 sin(π/3)) has been
introduced as we did in the previous example. In both cases we have marked
the peak in the contour plot, and we see that there is a shift in the eigenvalue
for both indicators. We remark that we used the same noise in both examples
in order to avoid its effect on the eigenvalue. In practice one would use an
extremely fine grid to determine the eigenvalue for the unflawed medium to a
high degree of accuracy despite the noise, allowing for more reliable information
from an observed shift in an eigenvalue. However, even our crude example
provides some information for this complicated medium.
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(a) I(g0) (b) I(gglsm
η )

Figure 4: Plots of the indicators I(g0) (left) and I(gglsm
η ) (right). The exact

eigenvalues for the unflawed medium (i.e. Df = ∅) are shown by the white
star symbol. The detection of the shifted eigenvalue is not entirely clear using
the indicator I(g0), whereas we clearly see the shifted eigenvalue using the full
GLSM indicator I(gglsm

η ).

(a) I(g0) (b) I(gglsm
η )

Figure 5: Plots of the indicators I(g0) (left) and I(gglsm
η ) (right) for the unflawed

anisotropic, absorbing media.
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(a) I(g0) (b) I(gglsm
η )

Figure 6: Plots of the indicators I(g0) (left) and I(gglsm
η ) (right) for the flawed

anisotropic, absorbing media.

6. Conclusion

We have demonstrated that the introduction of a modified near field operator
allows for the detection of changes in the material properties of an anisotropic
medium through the study of an eigenvalue problem associated with the oper-
ator. Our study of this modified exterior transmission problem exhibits some
peculiarities when compared to similar methods arising from far field operators.
In particular, the problem is not self-adjoint (even for nonabsorbing media), and
the auxiliary near field operator has a nonsymmetric factorization. The first is-
sue implies that eigenvalues may be complex, which are detectable due to our
use of an artificial eigenparameter η appearing only in the auxiliary problem,
and the second issue presents difficulties in applying the current formulation
of the generalized linear sampling method for computing eigenvalues, which re-
quired us to modify a recently developed nonsymmetric version of generalized
linear sampling for this purpose.

While the most important unanswered question concerns the existence of
modified exterior transmission eigenvalues, some quantification of the shift in
an eigenvalue due to a change in the material properties of the medium (as de-
rived for similar problems in [8] and [11]) would be of immense value, in addition
to results on the distribution of the eigenvalues in the complex plane. The latter
result would be particularly important for this problem since the eigenvalues are
not confined to the upper half-plane as is the case for problems involving mod-
ified far field operators. A central question for practical purposes is the effect
of the choice of γ on both the sensitivity and distribution of the eigenvalues,
beyond our numerical investigations which indicate that some values are better
than others. Despite (or perhaps because of) these open questions, this class of
eigenvalues is certainly deserving of further study from both a theoretical and
practical perspective.
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