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Abstract

In this paper, we consider the inverse medium problem of determining the
spherically stratified index of refraction n(r) from given spectral data. We
begin by introducing a modified transmission eigenvalue problem depend-
ing on a parameter η and an associated modified far field operator. We
prove that this operator is injective with dense range provided that k is
not a modified transmission eigenvalue, and we show that n(r) is uniquely
determined by the modified transmission eigenvalues corresponding to η
whenever 0 < n(r) < η2 for 0 ≤ r ≤ 1.

1. Introduction

In this paper, we revisit the inverse spectral problem for transmission eigenval-
ues that was previously considered in [1], [2], [8], and [17]. The transmission
eigenvalue problem originally arose in inverse scattering theory and has been
the subject matter of numerous investigations in recent years. For a survey of
recent developments in this area, we refer the reader to the monograph [5]. The
transmission eigenvalue problem is a non-selfadjoint boundary value problem
for a pair of fields w and v in a bounded, simply connected domain D in R3
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with sufficiently smooth boundary ∂D such that

∆w + k2n(x)w = 0 in D

∆v + k2v = 0 in D

v = w,
∂v

∂ν
=
∂w

∂ν
on ∂D

(1.1)

where k > 0 is the wave number, ν is the unit outward normal to ∂D, and
n(x), x ∈ R3, is the index of refraction which is continuous in the closure D of
D, satisfies n(x) > 0 for x ∈ D, and is such that n(x)−1 has compact support D.

The transmission eigenvalue problem (1.1) arises in a study of the scattering
problem

∆u+ k2n(x)u = 0 in R3

u = eikx·d + us (1.2)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0

for u ∈ H1
loc(R3), where r = |x|, d is a unit vector, and us denotes the scattered

field. From (1.2) it is easy to deduce that, for fixed k, us has the asymptotic
behavior

us(x) =
eikr

r

{
u∞(x̂, d) +O

(
1

r

)}
(1.3)

as r → ∞ where x̂ = x
|x| [6]. The function u∞(x̂, d) is called the far field

pattern corresponding to us. From (1.3) we can now define the far field operator
F : L2(S2)→ L2(S2), where S2 is the unit sphere in R3, by

(Fg)(x̂) :=

∫
S2
u∞(x̂, d)g(d)ds(d). (1.4)

It is then possible to show [6] that F is injective with dense range provided k
is not a transmission eigenvalue, i.e. a value of k such that there exists a non-
trivial solution to (1.1). Since the far field operator plays a central role in much
of the recent developments in inverse scattering theory, the spectral theory of
the transmission eigenvalue problem has become a problem of particular interest.

Due to the fact that the transmission eigenvalue problem is non-selfadjoint, a
natural question to ask (if we drop the condition that k > 0) is do there exist
complex eigenvalues? This question is also of importance in attempts to de-
velop the linear sampling method for solving the inverse scattering problem in
the time domain [13]. Although the answer to this question remains open in
general, for the case when the medium is spherically stratified and the eigen-
functions are also spherically stratified there exists a considerable amount of
results establishing conditions under which there exist complex eigenvalues (cf.
[7], [8], [9], [16], and Chapter 5 of [5]). Such results are possible since in the
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case of spherically stratified media with spherically stratified eigenfunctions the
transmission eigenvalue problem (1.1) can be reduced to a problem in ordinary
differential equations. In particular, if n(x) = n(r) is a function only of r = |x|
and v and w are spherically symmetric, we can set

w(x) = a0
y(r)

r

v(x) = b0
sin kr

kr

where a0, b0 are constants and from (1.1) we have that

y′′ + k2n(r)y = 0

y(0) = 0, y′(0) = 1
(1.5)

where the second initial condition is a normalization condition. Assuming that
D is a ball of radius 1, we can now conclude that k is a transmission eigenvalue
if and only if

d(k) := det

(
y(1) sin k

k
y′(1) cos k

)
= 0

and it can be shown ([7], [8], [9], [16]) that in general d(k) has complex zeros, i.e.
there exist complex transmission eigenvalues in the case of spherically stratified
media (we will always restrict our attention to the case when the eigenfunctions
are also spherically stratified). In particular, if we know all of the transmission
eigenvalues in this case, both real and complex including their multiplicities,
does this information uniquely determine n(r)? The first results for this problem
were obtained by McLaughlin and Polyakov more than twenty years ago [17],
where it was shown that uniqueness is obtained for the inverse spectral problem
provided 0 < n(r) < 1

9 under the assumption that n(1) = 1 and n′(1) = 0.
This bound on n(r) was improved to 0 < n(r) < 1 by Aktosun, Gintides, and
Papanicolaou in [2] again under the assumption that n(1) = 1 and n′(1) = 0.
Different proofs of this result were given in [1] and [8] (see Chapter 5 of [5] where
the condition in [8] that n(0) is known a priori is removed). The purpose of this
paper is to establish uniqueness for the inverse spectral problem not only for
0 < n(r) < 1 but for all n(r) > 0 and without assuming that n(1) and n′(1)
are known. This will be accomplished by introducing a new set of spectral data
that is arrived at by considering a modified far field operator instead of (1.4)
(see also [12]). In particular, we will consider the modified far field operator
F : L2(S2)→ L2(S2) defined by

(Fg)(x̂) :=

∫
S2

[u∞(x̂, d)− h∞(x̂, d)]g(d)ds(d)

where h∞ is the far field pattern of the solution to (1.2) with n(x) replaced by
η2, where η > 0 is a constant, and we will show that F is injective with dense

3



range provided k is not an eigenvalue of the modified transmission problem

∆w + k2n(x)w = 0 in D

∆v + k2η2v = 0 in D

v = w,
∂v

∂ν
=
∂w

∂ν
on ∂D.

(1.6)

Returning now to the special case of a spherically stratified media, it can easily
be seen that k is a modified transmission eigenvalue if and only if

d̃(k) := det

(
y(1) sin kη

kη

y′(1) cos kη

)
= 0 (1.7)

where y(r) is as previously defined in (1.5). Note that η = 1 corresponds to
the standard transmission eigenvalue problem whereas η 6= 1 yields a new set
of spectral data. It is amusing to note that if we set η = α

k where α > 0 then
from (1.7) we have that y(r) satisfies

y′′ + k2n(r)y = 0

y(0) = 0, y(1)− tanα

α
y′(1) = 0

i.e. in this case we have an inverse Sturm-Liouville problem! Hence, by choosing
two different values of α, we can uniquely determine n(r) (cf. [15, Chapter 4]).
However, in this paper we choose η to be independent of k and show that in
this case the eigenvalues corresponding to the modified transmission problem
uniquely determine n(r) provided that η2 > n(r).
The plan of our paper is as follows. In the next section of this paper we will
introduce the modified far field operator described above and establish con-
ditions for when it is injective with dense range. We will then consider the
inverse spectral problem for a spherically stratified medium with spherically
stratified eigenfunctions and establish our desired uniqueness theorem for the
inverse spectral problem.

2. The modified far field operator

In this section we introduce the modified far field operator and the modified
interior transmission problem. We note that this operator was previously intro-
duced in [12] where it was used for different purposes than for what is considered
here. For k > 0 and a unit vector d recall the scattering problem

∆u+ k2n(x)u = 0 in R3 (2.1a)

u = eikx·d + us (2.1b)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0 (2.1c)
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where the refractive index n(x) has the properties given previously and recall
that D = {x ∈ R3|n(x) 6= 1}. Throughout this section we assume that D is
simply connected with a connected C2 boundary ∂D and that D contains the
origin.
We now consider the transmission problem

∆h1 + k2h1 = 0 in R3 \D (2.2a)

∆h2 + k2η2h2 = 0 in D (2.2b)

h1 = h2,
∂h1
∂ν

=
∂h2
∂ν

on ∂D (2.2c)

h1 = eikx·d + hs1 (2.2d)

lim
r→∞

r

(
∂hs1
∂r
− ikhs1

)
= 0 (2.2e)

where η > 0 is a constant. The Sommerfeld radiation conditions (2.1c) and
(2.2e) are assumed to hold uniformly in all directions. Note that there exists a
unique solution to both (2.1) and (2.2) [6, Theorem 8.7].

Definition 2.1. We define the modified far field operator F : L2(S2)→ L2(S2)
by

(Fg)(x̂) :=

∫
S2

[u∞(x̂, d)− h∞(x̂, d)]g(d)ds(d), x̂ ∈ S2,

where u∞ is the far field pattern corresponding to the scattering problem (2.1)
and h∞ is the far field pattern corresponding to the transmission problem (2.2).

Definition 2.2. Given a solution h1, h2 to (2.2), the function defined by

H2(x) :=

∫
S2
h2(x, d)g(d)ds(d)

for some g ∈ L2(S2) is called a generalized Herglotz wave function.

In the case η = 1, we have that the unique solution of (2.2) is h1 = h2 = eikx·d,
hs1 = 0, so H2 is the standard Herglotz wave function. Furthermore, hs1 = 0
implies that h∞ = 0 so F is the standard far field operator. The following
theorem is an analogue of Theorem 8.9 in [6].

Theorem 2.3. The modified far field operator F is injective with dense range
if and only if there does not exist a nontrivial solution w,H2 to the modified
interior transmission problem

∆w + k2n(x)w = 0 (2.3a)

∆H2 + k2η2H2 = 0 in D (2.3b)

w = H2,
∂w

∂ν
=
∂H2

∂ν
on ∂D (2.3c)

where H2 is a generalized Herglotz wave function.
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Proof. Let g be in the nullspace of F , i.e.∫
S2

[u∞(x̂, d)− h∞(x̂, d)]g(d)ds(d) = 0

for all x̂ ∈ S2. Define

hg(x) :=

∫
S2
eikx·dg(d)ds(d) for x ∈ R3.

Then

w∞(x̂) :=

∫
S2
u∞(x̂, d)g(d)ds(d)

is the far field pattern corresponding to the scattering problem

∆w + k2n(x)w = 0 in R3

w = hg + ws

lim
r→∞

r

(
∂ws

∂r
− ikws

)
= 0

and

(H1)∞(x̂) :=

∫
S2
h∞(x̂, d)g(d)ds(d)

is the far field pattern corresponding to the transmission problem

∆H1 + k2H1 = 0 in R3 \D

∆H2 + k2η2H2 = 0 in D

H1 = H2,
∂H1

∂ν
=
∂H2

∂ν
on ∂D

H1 = hg +Hs
1

lim
r→∞

r

(
∂Hs

1

∂r
− ikHs

1

)
= 0

where

H2(x) :=

∫
S2
h2(x, d)g(d)ds(d)

is a generalized Herglotz wave function. Since

w∞(x̂)− (H1)∞(x̂) =

∫
S2

[u∞(x̂, d)− h∞(x̂, d)]g(d)ds(d) = 0

for all x̂ ∈ S2 we have that w∞ = (H1)∞ and hence ws = Hs
1 in R3 \ D by

Rellich’s lemma. In particular, since w and H1 arise from the same incident
field, w = H1 in R3 \D so the Cauchy data for w and H1 coincide. Therefore,
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the Cauchy data for w and H2 coincide so w and H2 satisfy the modified interior
transmission problem

∆w + k2n(x)w = 0 in D

∆H2 + k2η2H2 = 0 in D

w = H2,
∂w

∂ν
=
∂H2

∂ν
on ∂D.

If g is nonzero then the solution w,H2 is nontrivial so we have shown that
if F is not injective then there exists a nontrivial solution w,H2 to the modi-
fied interior transmission problem with H2 a generalized Herglotz wave function.

Conversely, suppose that w,H2 satisfies (2.3a)–(2.3c) where

H2(x) =

∫
S2
h2(x, d)g(d)ds(d)

is a generalized Herglotz wave function for some nonzero g ∈ L2(S2). Define

hg(x) :=

∫
S2
eikx·dg(d)ds(d), usg(x) :=

∫
S2
us(x, d)g(d)ds(d) for x ∈ R3 \D,

and let w := hg + usg in R3 \D. We first show that this extension of w provides
a solution of ∆w + k2n(x)w = 0 such that w is in the Sobolev space H2

loc(R3).
Choose a ball B ⊂ R3 such that D ⊆ B. Since w satisfies the Helmholtz
equation in R3 \D, we may apply Green’s formula to w in the region B \D to
obtain

w(x) =

∫
∂(B\D)

[
w(y)

∂Φ(x, y)

∂ν(y)
− ∂w

∂ν
(y)Φ(x, y)

]
ds(y)

=

∫
∂B

[
w(y)

∂Φ(x, y)

∂ν(y)
− ∂w

∂ν
(y)Φ(x, y)

]
ds(y)

−
∫
∂D

[
w(y)

∂Φ(x, y)

∂ν(y)
− ∂w

∂ν
(y)Φ(x, y)

]
ds(y) (2.4)

for all x ∈ B \ D. Applying Green’s second identity to the second integral of
(2.4) we have that∫

∂D

[
w(y)

∂Φ(x, y)

∂ν(y)
−∂w
∂ν

(y)Φ(x, y)

]
ds(y)

=

∫
D

[
w(y)∆yΦ(x, y)− Φ(x, y)∆w(y)

]
dy

=

∫
D

[
− k2w(y)Φ(x, y) + k2n(y)w(y)Φ(x, y)

]
dy

= −
∫
D

k2m(y)w(y)Φ(x, y)dy,
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where m := 1− n. Thus

w(x) =

∫
D

k2m(y)w(y)Φ(x, y)dy

+

∫
∂B

[
w(y)

∂Φ(x, y)

∂ν(y)
− ∂w

∂ν
(y)Φ(x, y)

]
ds(y) (2.5)

for all x ∈ B \ D. Since the first term in (2.5) is a volume potential and
mw ∈ L2(D) it is in H2

loc(R3) [6, Theorem 8.2]. For the second term in (2.5),
x ∈ B and y ∈ ∂B so this term is infinitely differentiable and hence w is in
H2(B). Since B is a ball of arbitrarily large radius, w ∈ H2

loc(R3) as desired.
Now, defining

H1(x) :=

∫
S2
h1(x, d)g(d)ds(d), Hs

1(x) :=

∫
S2
hs1(x, d)g(d)ds(d) for x ∈ R3\D,

we observe from (2.2) that H1 satisfies the transmission problem

∆H1 + k2H1 = 0 in R3 \D

∆H2 + k2η2H2 = 0 in D

H1 = H2,
∂H1

∂ν
=
∂H2

∂ν
on ∂D

H1 = hg +Hs
1

lim
r→∞

r

(
∂Hs

1

∂r
− ikHs

1

)
= 0.

Thus the Cauchy data of w and H1 coincide. Since w and H1 arise from the
same incident field hg, the Cauchy data of their scattered fields usg and Hs

1

coincide. Applying Green’s formula yields usg = Hs
1 in R3 \ D. Therefore, the

far field patterns of Hs
1 and usg coincide so∫

S2
[u∞(x̂, d)− h∞(x̂, d)]g(d)ds(d) = (ug)∞(x̂)− (H1)∞(x̂) = 0

for all x̂ ∈ S2 and F is not injective since g was assumed to be nonzero.
The fact that F has dense range follows from the fact that F is injective exactly
as in the proof of Corollary 1.16 in [5] since both u∞(x̂, d) and h∞(x̂, d) satisfy
the reciprocity principle.

Definition 2.4. We say that k is a modified transmission eigenvalue (corre-
sponding to η) if there exists a nontrivial solution w,H2 to the modified interior
transmission problem (2.3a)–(2.3c).
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With this definition we may restate Theorem 2.3 to say that the modified far
field operator F is injective with dense range if and only if k is not a modified
transmission eigenvalue corresponding to η with H2 a generalized Herglotz wave
function. (In this regard, see also Theorem 3.1 of [12].) In the case η = 1 the
modified transmission eigenvalue problem reduces to the standard transmission
eigenvalue problem so the modified transmission eigenvalues are precisely the
transmission eigenvalues.

3. The inverse spectral problem

In this section, we establish an inverse spectral theorem generalizing that of
Aktosun and Papanicolaou in [1] and Colton and Leung in [8]. Throughout
this section we always assume that n(x) = n(r) is spherically symmetric with
n ∈ C3[0, 1].

In [1] and [8] the authors considered the (normalized) transmission eigenvalue
problem for an isotropic spherically stratified medium in R3 of finding nontrivial
w, v satisfying

∆w + k2n(r)w = 0 in B (3.1a)

∆v + k2v = 0 in B (3.1b)

w = v,
∂w

∂ν
=
∂v

∂ν
on ∂B (3.1c)

where B is the open unit ball in R3. They looked for spherically symmetric
eigenfunctions

w(x) = a0
y(r)

r
, v(x) = b0

sin kr

kr
,

where a0, b0 are constants, in which case y(r) satisfies

y′′ + k2n(r)y = 0, y(0) = 0, y′(0) = 1, (3.2)

and k is a transmission eigenvalue if and only if the determinant

d(k) := det

(
y(1) sin k

k
y′(1) cos k

)
(3.3)

is zero where now k is allowed to be complex. The following theorem was then
established.

Theorem 3.1. Assume that n ∈ C3[0, 1], n(1) = 1, and n′(1) = 0. Then, if
0 < n(r) < 1 for 0 ≤ r < 1, the transmission eigenvalues (including multiplicity)
uniquely determine n(r).

Our goal is to prove an inverse spectral theorem that is valid for all n(r) > 0
and does not require the assumptions that n(1) = 1 and n′(1) = 0. From this
point forward we make no assumption about the value of n(1) or n′(1). We
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will show that for η sufficiently large the modified transmission eigenvalues are
sufficient to determine n(1), n′(1), and n(r).
For a given constant η > 0 we consider the (normalized) modified transmission
eigenvalue problem for an isotropic spherically stratified medium in R3 of finding
nontrivial w̃, ṽ satisfying

∆w̃ + k2n(r)w̃ = 0 in B (3.4a)

∆ṽ + k2η2ṽ = 0 in B (3.4b)

w̃ = ṽ,
∂w̃

∂ν
=
∂ṽ

∂ν
on ∂B (3.4c)

where B is the open unit ball in R3. We look for spherically symmetric eigen-
functions

w̃(x) = ã0
y(r)

r
, ṽ(x) = b̃0

sin kηr

kηr
,

where ã0, b̃0 are constants, noting that since (3.1a) and (3.4a) are identical, y(r)
is the solution to (3.2) as before. Then k is a modified transmission eigenvalue
if and only if the determinant

d̃(k) := det

(
y(1) sin kη

kη

y′(1) cos kη

)
(3.5)

is zero. We assume that n(r) < η2 for 0 ≤ r ≤ 1.

By an asymptotic analysis similar to that in [10] we have that

d̃(k) =
1

k[n(0)n(1)]1/4

[
sin kδ cos kη −

√
n(1)

η
cos kδ sin kη +O

(
1

k

)]
(3.6)

as k →∞ along the real line, where

δ :=

∫ 1

0

√
n(ρ)dρ. (3.7)

Note that the leading term of the expression in brackets is almost-periodic as
defined in [14] and takes both positive and negative values, so if δ 6= η then
there exist infinitely many positive zeros of d̃(k) and hence infinitely many
positive modified transmission eigenvalues corresponding to η. From (3.6) we
can determine δ from the modified transmission eigenvalues {k̃j} in the following

way. Let D̃(k) = [n(0)n(1)]1/4kd̃(k) and rewrite (3.6) as

D̃(k) = A sin k(δ + η) +B sin k(δ − η) +O

(
1

k

)
(3.8)

where

A =
1

2

(
1−

√
n(1)

η

)
, B =

1

2

(
1 +

√
n(1)

η

)
. (3.9)
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From the representation (3.8) the zeros {k̃j} of d̃(k) have density (δ + η)/π
if n(1) 6= η2 and δ 6= η (cf. Theorem 2.5 and its corollaries in [9]) so δ is
determined by the modified transmission eigenvalues if n(r) < η2 for 0 ≤ r ≤ 1.
We now wish to apply Hadamard’s factorization theorem to the determinant
d̃(k). In order to take advantage of known results for the standard determinant
d(k), we will use the function

f(k) := d̃

(
k

η

)
= det

(
ỹ(1) sin k

k
ỹ′(1) cos k

)
,

where ỹ satisfies

ỹ′′ + k2ñ(r)ỹ = 0, ỹ(0) = 0, ỹ′(0) = 1,

with ñ(r) = n(r)
η2 . Note that f(k) is the determinant for the standard interior

transmission problem with index of refraction ñ(r).
We observe that f(k) is an even entire function of order one and if 0 < ñ(r) < 1
then f(k) has a zero of order two at the origin [4]. From these observations, we
have the following lemma.

Lemma 3.2. The function d̃(k) has the following properties:

1. The determinant d̃(k) is an even entire function of order one.

2. If n(r) < η2, then d̃(k) has a zero of order two at the origin.

Proof. Since d̃(k) = f(kη) and f(k) is even and entire, d̃(k) must also be
even and entire. Furthermore, scaling the argument of an entire function with
a positive real number does not affect the order, so d̃(k) is of order one.
Now if n(r) < η2 for 0 ≤ r < 1, then 0 < ñ(r) < 1 for 0 ≤ r < 1, so f(k) has a
zero of order two at the origin [4]. Thus, by Hadamard’s factorization theorem,
there exists an entire function g such that f(k) = k2g(k) and g(0) 6= 0. For
g̃(k) := η2g(kη) we have that

d̃(k) = f(kη) = (kη)2g(kη) = k2g̃(k).

Since g̃(0) = ηg(0) 6= 0, d̃(k) has a zero of order two at the origin.

Under the assumptions of Lemma 3.2, d̃(
√
k) is an entire function of order

1/2. Thus if the zeros {k̃j} of d̃(k) are known (including multiplicity) then by
Hadamard’s factorization theorem

d̃(k) = c̃k2
∞∏
j=1

(
1− k2

k̃2j

)
(3.10)

for some nonzero constant c̃.

11



We now use (3.8) and (3.10) to show that n(1) is uniquely determined by the
modified transmission eigenvalues corresponding to η when n(r) < η2 for 0 ≤
r ≤ 1. To this end we first recall the following result concerning almost-periodic
functions, which we call the Bohr integral lemma (cf. Lemma 1 of [11] or p. 16
of [3] for a proof).

Lemma 3.3. If ϕ(k) is an entire function which is almost-periodic and bounded
on the real line then each of the limits

lim
T→∞

1

T

∫ T

a

ϕ(k) sin(αk)dk (3.11a)

lim
T→∞

1

T

∫ T

a

ϕ(k) cos(αk)dk (3.11b)

exists for any real α and a fixed constant a.

Lemma 3.4. If n(r) < η2 for 0 ≤ r ≤ 1 then the modified transmission eigen-
values corresponding to η uniquely determine n(1).

Proof. First note that n(1) 6= η2 so from the preceding discussion δ is known.
Define

ψ(k) := k3
∞∏
j=1

(
1− k2

k̃2j

)
. (3.12)

With

C :=
1

c̃[n(0)n(1)]1/4
,

we have ψ(k) = CD̃(k) from (3.10) and the definition of D̃(k). From (3.8) we
have that

ψ(k) = C

[
A sin k(δ + η) +B sin k(δ − η)

]
+O

(
1

k

)
. (3.13)

Applying Bohr’s integral lemma with a > 0 sufficiently large, we see that the
limits

M1 := lim
T→∞

1

T

∫ T

a

ψ(k) sin k(δ + η)dk,

M2 := lim
T→∞

1

T

∫ T

a

ψ(k) sin k(δ − η)dk,

exist and are known. Computing these limits by (3.13), we have

M1 =
CA

2
, M2 =

CB

2
, (3.14)

so by definition of A and B in (3.9), we have that

M1

M2
=

1−
√
n(1)/η

1 +
√
n(1)/η

,

12



and hence n(1) is known.

Under the assumptions of Lemma 3.4, we have that n(1) is determined and hence
the constant c̃[n(0)]1/4 is determined by either of the equations in (3.14). We
conclude that [n(0)]1/4d̃(k) is uniquely determined by the modified transmission
eigenvalues {k̃j} corresponding to η. In order to prove the desired uniqueness
theorem, we will need representations for y(1) and y′(1). From Chapter 5 of [5],
we have

y(1) =
1

[n(0)n(1)]1/4

[
sin kδ

k
+

∫ δ

0

K(δ, t)
sin kt

k
dt

]
(3.15a)

y′(1) =

[
n(1)

n(0)

]1/4 [
cos kδ +

sin kδ

2k

∫ δ

0

p(s)ds+

∫ δ

0

Kξ(δ, t)
sin kt

k
dt

]

− n′(1)

4[n(0)]1/4[n(1)]5/4

[
sin kδ

k
+

∫ δ

0

K(δ, t)
sin kt

k
dt

]
, (3.15b)

where K(ξ, t) is the solution to the Goursat problem

Kξξ −Ktt − p(ξ)K = 0, 0 < t < ξ < δ (3.16a)

K(ξ, 0) = 0, 0 ≤ ξ ≤ δ (3.16b)

K(ξ, ξ) =
1

2

∫ ξ

0

p(s)ds (3.16c)

and ξ, p(ξ) are given by

ξ :=

∫ r

0

√
n(ρ)dρ (3.17)

p(ξ) :=
n′′(r)

4[n(r)]2
− 5

16

[n′(r)]2

[n(r)]3
. (3.18)

For future use, we recall the following result by Rundell and Sacks [18] (see also
p. 162 of [15]).

Theorem 3.5. Let K(ξ, t) satisfy (3.16a)–(3.16c). Then p ∈ C1[0, δ] is uniquely
determined by the Cauchy data K(δ, t), Kξ(δ, t).

Now that we have determined δ and n(1), we may use Lemma 3.3 and Theorem
3.5 to prove the following theorem. As part of the proof, we show that n′(1) is
uniquely determined under the assumptions of the theorem.

Theorem 3.6. Assume that n ∈ C3[0, 1]. If η > 0 and 0 < n(r) < η2 for 0 ≤
r ≤ 1, then the modified transmission eigenvalues corresponding to η (including
multiplicity) uniquely determine n(r).

13



Proof. We consider the modified interior transmission problem corresponding
to η and define d̃(k) by (3.5). By the previous discussion δ is determined by
the modified transmission eigenvalues corresponding to η. By Lemma 3.4, n(1)
is uniquely determined by the modified transmission eigenvalues corresponding
to η, so [n(0)]1/4d̃(k) is uniquely determined. Substituting the representations
of y(1) and y′(1) given by (3.15a)–(3.15b) into the determinant d̃(k), we have

d̃(k) =
1

[n(0)n(1)]1/4

[
sin kδ

k
+

∫ δ

0

K(δ, t)
sin kt

k
dt

]
cos kη

−
[
n(1)

n(0)

]1/4 [
cos kδ +

sin kδ

2k

∫ δ

0

p(s)ds+

∫ δ

0

Kξ(δ, t)
sin kt

k
dt

]
sin kη

kη

− n′(1)

4[n(0)]1/4[n(1)]5/4

[
sin kδ

k
+

∫ δ

0

K(δ, t)
sin kt

k
dt

]
sin kη

kη
. (3.19)

From (3.19) we have that

`π

η
[n(0)]1/4d̃

(
`π

η

)
=

(−1)`

[n(1)]1/4

[
sin

(
`πδ

η

)
+

∫ δ

0

K(δ, t) sin

(
`πt

η

)
dt

]
(3.20)

for ` ∈ N. Using the change of variables s = t
η in the integral in (3.20) we have∫ δ

0

K(δ, t) sin

(
`πt

η

)
dt = η

∫ δ/η

0

K(δ, ηs) sin(`πs)ds.

Note that {sin(`πs)}`∈N is complete in L2[0, 1], so it is complete in L2[0, δη ] if
δ
η < 1 [19]. From the assumption that n(r) < η2 we have that δ < η so K(δ, t)

is known from (3.20). We now proceed to determine Kξ(δ, t). We first use the
knowledge of K(δ, t) to determine n′(1).
Applying integration by parts in (3.15b) we see that y′(1) has the asymptotic
behavior

y′(1) =

[
n(1)

n(0)

]1/4 [
cos kδ +

sin kδ

2k

∫ δ

0

p(s)ds

]

− n′(1)

4k[n(0)]1/4[n(1)]5/4
sin kδ +O

(
1

k2

)
. (3.21)

Substituting (3.21) into the determinant d̃(k) we see that

[n(0)]1/4d̃(k) = [n(0)]1/4y(1) cos kη

− [n(1)]1/4

[
cos kδ +

sin kδ

2k

∫ δ

0

p(s)ds

]
sin kη

kη

+
n′(1)

4k2η[n(1)]5/4
sin kδ sin kη +O

(
1

k3

)
. (3.22)

14



Define

H(k) := 4k2η[n(1)]5/4

(
[n(0)]1/4d̃(k)− [n(0)]1/4y(1) cos kη

+ [n(1)]1/4

[
cos kδ +

sin kδ

2k

∫ δ

0

p(s)ds

]
sin kη

kη

)
,

so from (3.22) we have

H(k) = n′(1) sin kδ sin kη +O

(
1

k

)
. (3.23)

Since K(δ, t) is known for 0 ≤ t ≤ δ, we have that [n(0)]1/4y(1) is known from
(3.15a). Furthermore,

K(δ, δ) =
1

2

∫ δ

0

p(s)ds

by (3.16c), so H(k) is known. From (3.23) we may rewrite H(k) as

H(k) =
n′(1)

2

[
cos k(δ − η)− cos k(δ + η)

]
+O

(
1

k

)
. (3.24)

Since the leading term of H(k) is almost-periodic, we may choose a > 0 large
enough in (3.11b) and apply Bohr’s integral lemma with α = δ − η to H(k) in
order to conclude that the limit

M := lim
T→∞

1

T

∫ T

a

H(k) cos k(δ − η)dk (3.25)

exists and is known. Computing this limit by (3.24), we have that

M =
n′(1)

4
, (3.26)

so n′(1) is uniquely determined. From (3.19) we now have that

`π

δ
[n(0)]1/4d̃

(
`π

δ

)
= [n(0)]1/4y(1)

`π

δ
cos

(
`πη

δ

)
− 1

η
sin

(
`πη

δ

)
[n(1)]1/4

[
(−1)` +

δ

`π

∫ δ

0

Kξ(δ, t) sin

(
`πt

δ

)
dt

]

− n′(1)

4η[n(1)]5/4
sin

(
`πη

δ

)∫ δ

0

K(δ, t) sin

(
`πt

δ

)
dt (3.27)

for ` ∈ N. Since n′(1) is known we see that the first and third terms in the right-
hand side of (3.27) are also known. Hence by completeness of

{
sin
(
`πt
δ

)}
`∈N

15



in L2[0, δ], Kξ(δ, t) is known from (3.27). By Theorem 3.5, p(ξ) is uniquely
determined by our knowledge of K(δ, t) and Kξ(δ, t), but this implies that n(r)
is known (cf. Chapter 5 of [5]).
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