
Modified Transmission Eigenvalues in Inverse

Scattering Theory

S. Cogar∗, D. Colton†, S. Meng‡, and P. Monk†

Abstract

We consider the scattering of an acoustic plane wave by an inhomoge-
neous medium of compact support. Our aim is to introduce a new class of
target signatures that can be used to detect changes in the material prop-
erties of the scattering object from a knowledge of the far field pattern of
the scattered field. To this end we introduce a modified far field opera-
tor depending on a parameter η and show that this operator is injective
with dense range provided η is not an eigenvalue of a new problem called
the modified transmission eigenvalue problem. It is explained why this
class of target signatures is preferable in some ways to previously studied
target signatures that are based on scattering resonances, transmission
eigenvalues, or Stekloff eigenvalues.

Key words. inverse scattering, nondestructive testing, modified transmission

eigenvalues, Herglotz wave functions, non-selfadjoint eigenvalue problems

AMS subject classifications. 35J25, 35P05, 35P25, 35R30

1. Introduction

The spectral properties of the far field operator play a central role in mathe-
matical scattering theory. In particular, the theory of scattering resonances is a
rich and beautiful part of scattering theory and for a comprehensive survey of
this area we refer the reader to [11]. More recently, attention has been given to
the development of the theory of transmission eigenvalues and for a discussion
of this topic in scattering theory see [5]. These two areas of research are in a
certain sense complementary, as the following example illustrates. Consider the
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scattering of an incident field ui by a homogeneous ball in R3 of radius one with
index of refraction two, i.e. if us is the scattered field and u = ui + us is the
total field then

∆u+ 4k2u = 0, |x| < 1 (1.1a)

∆u+ k2u = 0, |x| > 1 (1.1b)

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0 (1.1c)

where r = |x|, k is the wave number and u is continuously differentiable across
|x| = 1. Then there is a scattering resonance k, Im(k) < 0, such that there

exists a solution of (1.1a)–(1.1c) where ui = 0 and us = h
(1)
0 (kr) for r > 1

where h
(1)
0 denotes a spherical Hankel function. On the other hand, there is

a transmission eigenvalue k, Im(k) = 0, such that there exists a solution of
(1.1a)–(1.1c) where us = 0 and ui = j0(kr) for r > 1 where j0 denotes a
spherical Bessel function. Due to the fact that, in principle, both scattering
resonances and transmission eigenvalues can be determined from the measured
scattering data, efforts have been made over the years to use these eigenvalues
as a “target signature” in various areas of application, most notably in the use
of scattering resonances in the “singularity expansion method” [3] and the use
of transmission eigenvalues in nondestructive testing [14]. However, the success
of these efforts has been limited by a number of problems. In particular, for the
case of scattering resonances, these eigenvalues all lie in the lower half-plane and
hence determining them from measured scattering data is problematic. On the
other hand, real transmission eigenvalues exist only if the index of refraction is
real and hence this excludes their use in the case when absorption is present.
Furthermore, in both cases, the eigenvalues are determined by the material
properties of the scatterer, i.e. it is not possible to choose the interrogation
frequency a priori.

In an effort to overcome the above drawbacks in the use of scattering res-
onances and transmission eigenvalues as target signatures, a new approach to
this problem has recently been proposed [6], [7]. In this approach, a modified
far field operator is introduced which allows the wave number to be fixed and
real while introducing a new parameter which now serves the role of a target
signature. In particular, for the modification used in [6] and [7], this new pa-
rameter turned out to be the well-known Stekloff eigenvalue and examples were
given showing how such eigenvalues are effective in detecting changes in the in-
dex of refraction due to either flaws or changes in the material properties of the
medium. Such an approach is particularly promising in their potential use for
the nondestructive testing of anisotropic materials since in this case traditional
imaging techniques are problematic due to the fact that the solution of the in-
verse scattering problem for anisotropic media is no longer uniquely determined
[12].

A problem with using Stekloff eigenvalues as a target signature is that diffi-
culties arise in the detection of voids which lie along a nodal line of the Stekloff
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eigenfunction. More generally, the use of Stekloff eigenvalues as a target sig-
nature does not provide any mechanism to improve the sensitivity in detecting
eigenvalue changes due to changes in the index of refraction. The purpose of
this paper is to introduce a new modified far field operator and corresponding
eigenvalue problem which depends on a second parameter in addition to the
eigenvalue parameter. This second parameter can then be adjusted to remove
the above problem associated with the sensitivity of the eigenvalues to changes
in the index of refraction as well as to avoid nodal lines of the eigenfunctions.

The plan of our paper is as follows. In the next section of our paper we
introduce the modified far field operator discussed in the above paragraph. We
then discuss the modified transmission eigenvalue problem associated with the
operator and show that the injectivity of this modified far field operator can be
characterized in terms of the eigenvalues of the modified transmission eigenvalue
problem. This result then allows us to determine the eigenvalues from the mea-
sured far field data. A special section is devoted to the case of a complex index
of refraction, basing our analysis on Agmon’s theory of non-selfadjoint elliptic
equations [1]. Our paper is concluded by a detailed numerical investigation of
the applicability of our new class of eigenvalue problems to their potential use
in nondestructive testing.

2. A modified far field operator

Fix k > 0 and let d = 2, 3. For each unit vector d̂ ∈ Sd−1 (the unit sphere in

Rd), let u∞(·, d̂) be the far-field pattern corresponding to the scattering problem

∆u+ k2n(x)u = 0 in Rd, (2.1a)

u(x) = eikx·d̂ + us(x), (2.1b)

lim
r→∞

r
d−1
2

(
∂us

∂r
− ikus

)
= 0, (2.1c)

where r = |x|. We define D ⊂ Rd to be a bounded set with connected comple-
ment containing the support of 1 − n. We assume that D contains the origin
and has Lipschitz boundary ∂D, and we assume that n ∈ L∞(D) has positive
real part and nonnegative imaginary part. Let B be either a ball centered at
the origin containing D in its interior or B = D, and let h∞(·, d̂) be the far-field

3



pattern corresponding to the transmission problem

∆h1 + k2h1 = 0 in Rd \B, (2.2a)

1

γ
∆h2 + k2ηh2 = 0 in B, (2.2b)

h1(x) = eikx·d̂ + hs1(x), (2.2c)

lim
r→∞

r
d−1
2

(
∂hs1
∂r
− ikhs1

)
= 0, (2.2d)

h1 = h2 on ∂B, (2.2e)

∂h1

∂ν
=

1

γ

∂h2

∂ν
on ∂B, (2.2f)

where γ > 0 is a fixed constant not equal to one and η is a (possibly complex)
constant. The Sommerfeld radiation conditions (2.1c) and (2.2d) are assumed
to hold uniformly in all directions. Note that there exists a unique solution to
both (2.1a)–(2.1c) and (2.2a)–(2.2f) [5, Chapter 1].

We define the modified far field operator F : L2(Sd−1)→ L2(Sd−1) by

(Fg)(x̂) :=

∫
Sd−1

[
u∞(x̂, d̂)− h∞(x̂, d̂)

]
g(d̂)ds(d̂), x̂ ∈ Sd−1. (2.3)

A slight modification of the proof of Theorem 2.1 in [8] yields the following
result.

Theorem 2.1. The modified far field operator F is injective with dense range if
and only if there does not exist a nontrivial solution w, v to the modified interior
transmission problem

∆w + k2n(x)w = 0 in B, (2.4a)

1

γ
∆v + k2ηv = 0 in B, (2.4b)

w = v on ∂B, (2.4c)

∂w

∂ν
=

1

γ

∂v

∂ν
on ∂B, (2.4d)

where v is a generalized Herglotz wave function, i.e. of the form

v(x) =

∫
Sd−1

h2(x, d̂)g(d̂)ds(d̂), x ∈ B,

for some g ∈ L2(Sd−1), where h1, h2 satisfy (2.2a)–(2.2f).

We call (2.4a)–(2.4d) the modified transmission eigenvalue problem. This
problem with γ = 1 was studied in [8] in the context of an inverse spectral
problem, where the eigenparameter considered was the wave number k. In this
paper, we consider η as the eigenparameter and fix k > 0. Whenever (2.4a)–
(2.4d) has a nontrivial solution (w, v) ∈ H1(B) ×H1(B), we call η a modified
transmission eigenvalue.
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3. Solvability of the modified interior transmission problem

In this section, we show that the modified interior transmission problem

∆w + k2n(x)w = f in B, (3.1a)

1

γ
∆v + k2ηv = g in B, (3.1b)

w − v = `1 on ∂B, (3.1c)

∂w

∂ν
− 1

γ

∂v

∂ν
= `2 on ∂B, (3.1d)

satisfies the Fredholm alternative, where f, g ∈ L2(B), `1 ∈ H1/2(∂B), and
`2 ∈ H−1/2(∂B). We note that setting the right-hand sides of (3.1a)–(3.1d)
to zero yields the modified transmission eigenvalue problem (2.4a)–(2.4d). We
introduce a variational formulation of this problem using the space

H(B) := {(u, v) ∈ H1(B)×H1(B) | u− v ∈ H1
0 (B)}.

Defining a lifting function ϕ ∈ H1(B) such that ϕ|∂B = `1 and writing u = w−ϕ,
we have that (u, v) ∈ H1(B)×H1(B) satisfies

∆u+ k2nu = f −∆ϕ− k2nϕ in B, (3.2a)

1

γ
∆v + k2ηv = g in B, (3.2b)

u− v = 0 on ∂B, (3.2c)

∂u

∂ν
− 1

γ

∂v

∂ν
= `2 −

∂ϕ

∂ν
on ∂B, (3.2d)

which is equivalent to the variational problem of finding (u, v) ∈ H(B) satisfying

aη((u, v), (u′, v′)) = `(u′, v′) ∀(u′, v′) ∈ H(B) (3.3)

where the sesquilinear form aη(·, ·) is given by

aη((u, v), (u′, v′)) := (∇u,∇u′)− 1

γ
(∇v,∇v′)− k2(nu, u′) + k2η(v, v′)

and the antilinear functional ` is given by

`(u′, v′) := −(f, u′) + (g, v′) + 〈`2, v′〉 − (∇ϕ,∇u′) + k2(nϕ, u′).

In writing this formulation, we have used the definitions

(f, g) :=

∫
B

fg dA and 〈f, g〉 :=

∫
∂B

fg ds,

where the latter integral must be understood in the sense of the duality pairing
H−1/2(∂B) × H1/2(∂B). In order to show that the variational problem (3.3)
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satisfies the Fredholm property, we begin by defining the sesquilinear forms
â(·, ·) and bη(·, ·) as

â((u, v), (u′, v′)) := (∇u,∇u′)− 1

γ
(∇v,∇v′) + k2(u, u′)− k2α(v, v′)

bη((u, v), (u′, v′)) := ((n+ 1)u, u′)− (η + α)(v, v′)

for a constant α > 0 such that 1−α has the same sign as 1− 1
γ , from which we

see that

aη((u, v), (u′, v′)) = â((u, v), (u′, v′))−k2bη((u, v), (u′, v′)) ∀(u, v), (u′, v′) ∈ H(B).

By means of the Riesz representation theorem, we define the bounded linear
operators Aη, Â, Bη : H(B)→ H(B) by

(Aη(u, v), (u′, v′))H(B) = aη((u, v), (u′, v′)),

(Â(u, v), (u′, v′))H(B) = â((u, v), (u′, v′)),

(Bη(u, v), (u′, v′))H(B) = bη((u, v), (u′, v′))

for all (u, v), (u′, v′) ∈ H(B), and we see that Aη = Â − k2Bη. Thus, in order
to show that Aη is a Fredholm operator of index zero, we need only show that

Â is invertible and that Bη is compact. Compactness of Bη follows from the
compact embedding of H(B) into L2(B) × L2(B). Since â(·, ·) is not coercive
due to the opposite signs in the gradient terms, we will appeal to T -coercivity [4]
in order to show invertibility of Â. For a given isomorphism T : H(B)→ H(B),
we define the sesquilinear form

âT ((u, v), (u′, v′)) := â((u, v), T (u′, v′))

for (u, v), (u′, v′) ∈ H(B). Choosing T (u, v) = (u,−v + 2u) when γ > 1 and
T (u, v) = (u−2v,−v) when γ < 1 yields that âT (·, ·) is coercive and hence that
â(·, ·) is T -coercive.

For the convenience of the reader, we show T -coercivity of â(·, ·) when γ > 1.
In this case we choose α < 1 and we have that

âT ((u, v), (u′, v′)) = â((u, v), (u′,−v′ + 2u′))

= (∇u,∇u′) +
1

γ
(∇v,∇v′)− 2

γ
(∇v,∇u′) + k2(u, u′)

+ k2α(v, v′)− 2k2α(v, u′).

By the reverse triangle inequality, we obtain∣∣âT ((u, v), (u, v))
∣∣ ≥ (∇u,∇u) +

1

γ
(∇v,∇v) + k2(u, u) + k2α(v, v)

− 2

γ
|(∇v,∇u)| − 2k2α |(v, u)| .
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By Young’s inequality, for all ε1, ε2 > 0 we have that

2 |(∇v,∇u)| ≤ ε1(∇v,∇v) + ε−1
1 (∇u,∇u)

and
2 |(v, u)| ≤ ε2(v, v) + ε−1

2 (u, u).

Thus, we arrive at the inequality

∣∣âT ((u, v), (u, v))
∣∣ ≥(1− 1

γ
ε−1
1

)
(∇u,∇u) +

1

γ
(1− ε1)(∇v,∇v)

+ k2(1− αε−1
2 )(u, u) + k2α(1− ε2)(v, v),

and hence choosing 1
γ < ε1 < 1 and α < ε2 < 1 yields coercivity of âT (·, ·).

Similar arguments establish the result when 0 < γ < 1.
Applying the Lax-Milgram lemma and the fact that T is an isomorphism

(note that T 2 = I), we have that Â is invertible. Therefore, we conclude that
Aη is a Fredholm operator of index zero, implying that the modified interior
transmission problem satisfies the Fredholm alternative. In particular, if η is
not a modified transmission eigenvalue, then the modified interior transmission
problem (3.1a)–(3.1d) is well-posed. We will use this result extensively in later
sections.

4. Properties of the eigenvalues

In this section, we return to the modified transmission eigenvalue problem
(2.4a)–(2.4d) and study the properties of the modified transmission eigenval-
ues. Recall from the previous section that Aη = Â−k2Bη, where Â is invertible
and Bη is compact for each η ∈ C. We observe that the mapping η 7→ Bη is
analytic, and from the analytic Fredholm theory [9, Theorem 8.26] we conclude
that the existence of at least one η for which Aη is invertible implies that Aη
is invertible for all but a discrete set of η. In other words, the set of modified
transmission eigenvalues is discrete provided that (2.4a)–(2.4d) is well-posed
for some η. Indeed, if n is real-valued, then we may choose η = iτ for some
τ > 0. We observe that if Aη(u, v) = 0 for some (u, v) ∈ H(B), then taking the
imaginary part of the equation

aη((u, v), (u, v)) = 0

implies that τ ‖v‖2 = 0, from which it follows that v = 0 and w = 0. Thus, we
obtain injectivity and hence invertibility of Aiτ by the Fredholm property.

Now, in order to show that (2.4a)–(2.4d) is self-adjoint whenever n is real-
valued, we appeal to a different technique, and we require some real η0 which is
not a modified transmission eigenvalue, the existence of which is guaranteed by
the discreteness result we derived above from analytic Fredholm theory. More-
over, in order to emphasize the connection between the modified transmission
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eigenvalue problem and the standard transmission eigenvalue problem, we as-
sume that η = 1 is not a modified transmission eigenvalue. Note that η = 1 is a
modified transmission eigenvalue if and only if k > 0 is a transmission eigenvalue
in the sense that the problem

∆w + k2n(x)w = 0 in B, (4.1a)

1

γ
∆v + k2v = 0 in B, (4.1b)

w = v on ∂B, (4.1c)

∂w

∂ν
=

1

γ

∂v

∂ν
on ∂B, (4.1d)

admits a nontrivial solution (w, v) ∈ H1(B)×H1(B). We see that (4.1a)–(4.1d)
differs from the usual transmission eigenvalue problem for anisotropic media, as
the term 1

γ occurs in the principal part of the second equation. However, as γ
is constant, the transformation

w̃ =
1

γ
w, ṽ =

1

γ
v, k̃ =

√
γk

recovers the standard transmission eigenvalue problem. We remark that under
certain restrictions on the index of refraction n, the transmission eigenvalues are
discrete without finite accumulation points [5]. Moreover, if Im(n) > 0 a.e. in
an open subset of B, k > 0 cannot be a transmission eigenvalue [9], and hence
η = 1 cannot be a modified transmission eigenvalue. In fact, in this case no real
modified transmission eigenvalues exist, as we will show in Section 6.

Theorem 4.1. If η = 1 is not a modified transmission eigenvalue, then the
set of modified transmission eigenvalues is discrete without finite accumulation
points. In addition, if n is real-valued, then eigenvalues exist and are real.

Proof. Given g ∈ L2(B), we consider the auxiliary source problem of finding
(wg, vg) ∈ H1(B)×H1(B) satisfying

∆wg + k2nwg = 0 in B, (4.2a)

1

γ
∆vg + k2vg = k2g in B, (4.2b)

wg = vg on ∂B, (4.2c)

∂wg
∂ν

=
1

γ

∂vg
∂ν

on ∂B. (4.2d)

From the discussion in Section 3, we have that (4.2a)–(4.2d) satisfies the Fred-
holm property. Under the assumption that η = 1 is not a modified transmission
eigenvalue, the Fredholm alternative implies that (4.2a)–(4.2d) has a unique
solution (wg, vg) ∈ H1(B)×H1(B) that satisfies the estimate

‖wg‖H1(B) + ‖vg‖H1(B) ≤ c ‖g‖L2(B) . (4.3)
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Thus, we may define the linear operator T1 : L2(B)→ L2(B) by T1g := vg.
We see from (4.3) that T1 is bounded from L2(B) into H1(B), and hence the
compact embedding of H1(B) into L2(B) implies that T1 : L2(B) → L2(B)
is compact. From (2.4a)–(2.4d) and (4.2a)–(4.2d) we see that η is a modified
transmission eigenvalue if and only if

(1− η)T1g = g (4.4)

for some nonzero g ∈ L2(B), and hence compactness of T1 implies that the set
of eigenvalues is discrete without finite accumulation points. We now consider
the case when n is real-valued, and we introduce a variational formulation of
(4.2a)–(4.2d), which is to find (wg, vg) ∈ H(B) satisfying

(∇wg,∇w′)−
1

γ
(∇vg,∇v′)− k2(nwg, w

′) + k2(vg, v
′) = k2(g, v′) (4.5)

for all (w′, v′) ∈ H(B). For g, h ∈ L2(B), we have that

k2(T1g, h) = k2(vg, h)

= k2(h, vg)

= (∇wh,∇wg)−
1

γ
(∇vh,∇vg)− k2(nwh, wg) + k2(vh, vg)

= (∇wg,∇wh)− 1

γ
(∇vg,∇vh)− k2(nwg, wh) + k2(vg, vh)

= k2(g, vh)

= k2(g, T1h),

implying that T1 is self-adjoint. Therefore, if n is real-valued, then the relation
(4.4) implies that modified transmission eigenvalues exist and are real in addition
to the set of eigenvalues being discrete and having no finite accumulation points.
�

Remark 4.2. The choice of γ 6= 1 is necessary in the following sense. If n is
taken to be a constant with B = D and we choose γ = 1, then the modified
transmission eigenvalue problem (2.4a)–(2.4d) becomes

∆w + k2nw = 0 in B, (4.6a)

∆v + k2ηv = 0 in B, (4.6b)

w = v on ∂B, (4.6c)

∂w

∂ν
=
∂v

∂ν
on ∂B. (4.6d)

We note that for any solution u ∈ H1(B) to ∆u+k2nu = 0 in B, it follows that
(u, u) ∈ H1(B)×H1(B) solves (4.6a)–(4.6d) when η = n. Thus, the eigenspace
corresponding to η = n has infinite dimension, and hence the spectrum cannot
be represented by a compact operator as in the proof of Theorem 4.1.
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5. Determination of eigenvalues from far field data

In this section, we show that modified transmission eigenvalues may be deter-
mined from far field data. We begin by defining

A0(x) :=

{ 1
γ I, x ∈ B
I, x 6∈ B and n0(x) :=

{
η, x ∈ B
1, x 6∈ B

for x ∈ Rd, and we recall that for g ∈ L2(Sd−1) the function

vg(x) :=

∫
Sd−1

eikx·d̂g(d̂)ds(d̂), x ∈ Rd

is called the Herglotz wave function with kernel g [9]. We denote by Φ∞(·, ·) the
far field pattern of the radiating fundamental solution Φ(·, ·) of the Helmholtz
equation in Rd given by

Φ(x, z) :=

{
eik|x−z|

4π|x−z| in R3,
i
4H

(1)
0 (k |x− z|) in R2,

where H
(1)
0 is the zeroth order Hankel function of the first kind. If z ∈ D and

gz solves the modified far field equation

Fgz = Φ∞(·, z), (5.1)

then we have that
w∞ − v∞ = Φ∞(·, z),

where w∞ is the far field pattern corresponding to the scattering problem

∆wz + k2nwz = 0 in Rd,
wz = vgz + wsz,

lim
r→∞

r
d−1
2

(
∂wsz
∂r
− ikwsz

)
= 0

and v∞ is the far field pattern corresponding to the transmission problem

∇ ·A0∇vz + k2n0vz = 0 in Rd,
vz = vgz + vsz,

lim
r→∞

r
d−1
2

(
∂vsz
∂r
− ikvsz

)
= 0.

By Rellich’s lemma [9], we have that

wsz − vsz = Φ(·, z) in Rd \B,

and since wsz and vsz arise from the same incident field vgz , we obtain

wz − vz = Φ(·, z) in Rd \B.
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Thus, we see that (wz, vz) ∈ H1(B)×H1(B) satisfies

∆wz + k2nwz = 0 in B, (5.2a)

1

γ
∆vz + k2ηvz = 0 in B, (5.2b)

wz − vz = Φ(·, z) on ∂B, (5.2c)

∂wz
∂ν
− 1

γ

∂vz
∂ν

=
∂Φ(·, z)
∂ν

on ∂B, (5.2d)

with wz and vz having the decompositions

wz = vgz + wsz, vz = vgz + vsz. (5.3)

In general, the solution to (5.2a)–(5.2d) (which exists and is unique provided
η is not a modified transmission eigenvalue) will not have the decomposition
(5.3). However, the fields wz, vz may each be decomposed as the sum of an
incident field and a radiating field by Green’s formula, and by the following
lemma we see that the two incident fields coincide.

Lemma 5.1. Assume that η is not a modified transmission eigenvalue. Then
the problem (5.2a)–(5.2d) has a unique solution (wz, vz) ∈ H1(B)×H1(B), and
the fields wz, vz may be decomposed as wz = viz + wsz and vz = viz + vsz, where
viz ∈ H1(B) satisfies the Helmholtz equation in B and wsz, v

s
z ∈ H1

loc(Rd) each
satisfies the Sommerfeld radiation condition.

Proof. Assuming that η is not a modified transmission eigenvalue, the Fredholm
alternative implies the existence of a unique solution (wz, vz) ∈ H1(B)×H1(B)
to (2.4a)–(2.4d). From Green’s formula , we have the representations

wz(x) =

∫
∂B

[
Φ(x, y)

∂wz(y)

∂ν
− wz(y)

∂Φ(x, y)

∂ν(y)

]
ds(y)

− k2

∫
B

[1− n(y)]Φ(x, y)w(y)dy, x ∈ B, (5.4)

and

vz(x) =

∫
∂B

[
Φ(x, y)

∂vz(y)

∂ν
− vz(y)

∂Φ(x, y)

∂ν(y)

]
ds(y)

−
∫
B

[(
1− 1

γ

)
∆vz + k2(1− η)vz

]
Φ(x, y)dy, x ∈ B. (5.5)

In order to obtain the correct decomposition of vz, we may rewrite (5.5) as

vz(x) =

∫
∂B

[
Φ(x, y)

1

γ

∂vz(y)

∂ν
− vz(y)

∂Φ(x, y)

∂ν(y)

]
ds(y)

+

(
1− 1

γ

)∫
∂B

Φ(x, y)
∂vz(y)

∂ν
ds(y)

−
∫
B

[(
1− 1

γ

)
∆vz + k2(1− η)vz

]
Φ(x, y)dy, x ∈ B. (5.6)
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With the decompositions (5.4) and (5.6), we define

wiz(x) :=

∫
∂B

[
Φ(x, y)

∂wz(y)

∂ν
− wz(y)

∂Φ(x, y)

∂ν(y)

]
ds(y), x ∈ B,

and

viz(x) :=

∫
∂B

[
Φ(x, y)

1

γ

∂vz(y)

∂ν
− vz(y)

∂Φ(x, y)

∂ν(y)

]
ds(y), x ∈ B,

and we note that both wiz and viz satisfy the Helmholtz equation in B. Moreover,
we define wsz := wz − wiz and vsz := vz − viz, and we observe that each satisfies
the Sommerfeld radiation condition when extended to Rd \B.

Then for all x ∈ B the boundary conditions (5.2c)–(5.2d) imply that

(wiz − viz)(x) =

∫
∂B

[
Φ(x, y)

∂Φ(y, z)

∂ν(y)
− Φ(y, z)

∂Φ(x, y)

∂ν(y)

]
ds(y).

Let Br := {y ∈ Rd \ B : |y| < r} and Sr := {y ∈ Rd \ B : |y| = r} with
r > 0 large enough that B is contained in the ball of radius r, and observe that
∂Br = Sr ∪ ∂B. With the normal vector ν to ∂Br directed into the exterior of
Br, we may apply Green’s second identity to obtain

(wiz − viz)(x) =

∫
Sr

[
Φ(x, y)

∂Φ(y, z)

∂ν
− Φ(y, z)

∂Φ(x, y)

∂ν

]
ds(y)

−
∫
Br

[
Φ(x, y)∆yΦ(y, z)− Φ(y, z)∆yΦ(x, y)

]
dy.

Since x, z ∈ B, we have that Φ(x, ·) and Φ(·, z) each satisfies the Helmholtz
equation in Br, and hence the integral over Br vanishes identically. Since Φ(x, ·)
and Φ(·, z) each satisfies the Sommerfeld radiation condition, we have that the
integral over Sr vanishes in the limit r → ∞. Thus, it follows that wiz = viz in
B, and we arrive at the desired decomposition of wz and vz. �

We construct a factorization of F in the following way. Define the space of
generalized incident fields

Hinc(B) := {vi ∈ H1(B) | ∆vi + k2vi = 0 in B}.

Define P1 : Hinc(B)→ L2(B) as

P1v
i = k2(1− n)vi.

Define G1 : L2(B)→ L2(Sd−1) as G1f = w∞, where w∞ is the far field pattern
corresponding to the radiating solution ws of

∆ws + k2nws = f in Rd.

Define P2 : Hinc(B)→ L2(B) as

P2v
i = ∇ · (I −A0)∇vi + k2(1− n0)vi.

12



Define G2 : L2(B)→ L2(Sd−1) as G2f = v∞, where v∞ is the far field pattern
corresponding to the radiating solution vs of

∇ ·A0∇vs + k2n0v
s = f in Rd.

For a plane wave vi(x) = eikx·d̂, we note that G1P1v
i and G2P2v

i are the far
field patterns corresponding to the scattering problems (2.1a)–(2.1c) and (2.2a)–
(2.2f), respectively. Finally, defining B : Hinc(B) → L2(Sd−1) as B := G1P1 −
G2P2, we have the factorization F = BH, where H : L2(Sd−1) → Hinc(B) is
the Herglotz operator defined as Hg = vg, and we note that B is compact by
compactness of G1 and G2 and boundedness of P1 and P2. For use in the proof
of the next theorem, we note that the operator H has dense range [5, Lemma
2.1]. The following two theorems constitute the main results of this section.

Theorem 5.2. Assume that η is not a modified transmission eigenvalue and
let z ∈ D. Then for every ε > 0 there exists gεz ∈ L2(Sd−1) that satisfies

lim
ε→0
‖Fgεz − Φ∞(·, z)‖L2(Sd−1) = 0 (5.7)

such that {vgεz} converges and hence
∥∥vgεz∥∥H1(B)

is bounded as ε→ 0.

Proof. From our assumption that η is not a modified transmission eigenvalue,
the Fredholm alternative implies that there exists a unique solution (wz, vz) ∈
H1(B)×H1(B) to (5.2a)–(5.2d), and from Lemma 5.1 it follows that the fields
wz, vz may be decomposed as wz = viz+wsz and vz = viz+vsz, where viz ∈ Hinc(B)
and wsz, v

s
z each satisfies the Sommerfeld radiation condition. By construction

of the operator B, we see that

Bviz = Φ∞(·, z).

By density of the range of the Herglotz operator H in Hinc(B), for each ε > 0
there exists gεz ∈ L2(Sd−1) such that∥∥vgεz − viz∥∥H1(B)

<
ε

M
,

where we choose M > ‖B‖. From boundedness of B we obtain

‖Fgεz − Φ∞(·, z)‖L2(Sd−1) =
∥∥Bvgεz − Bviz∥∥L2(Sd−1)

≤ ‖B‖
∥∥vgεz − viz∥∥H1(B)

< ε

for all ε > 0, implying that (5.7) is satisfied. Moreover, we see that {vgεz}ε>0

converges to viz in H1(B), and hence
∥∥vgεz∥∥H1(B)

is bounded as ε→ 0. �

Theorem 5.3. Assume that η is a modified transmission eigenvalue and gεz ∈
L2(Sd−1) satisfies (5.7). Then

∥∥vgεz∥∥H1(B)
cannot be bounded as ε → 0 for

almost every z ∈ Bρ, where Bρ is an arbitrary ball of radius ρ in D.
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Proof. Suppose to the contrary that for z in a small ball Bρ ⊂ D the sequence
{vgεz}ε>0 is bounded in H1(B) as ε → 0. Then up to a subsequence {vgεz}ε>0

converges weakly to some viz ∈ Hinc(B). By compactness of B, we conclude
that Bvgεz → Bv

i
z in L2(Sd−1) as ε→ 0, from which we observe that

lim
ε→0

∥∥Fgεz − Bviz∥∥L2(Sd−1)
= 0.

Thus, we see that Bviz = Φ∞(·, z), and as before we have that (wz, vz) ∈ H1(B)×
H1(B) satisfies (5.2a)–(5.2d) with wz and vz arising from the incident field viz.

We consider the equivalent problem (3.2a)–(3.2d) introduced in Section 3 of
finding (uz, vz) ∈ H1(B)×H1(B) satisfying

∆uz + k2nuz = −∆ϕz − k2nϕz in B, (5.8a)

1

γ
∆vz + k2ηvz = 0 in B, (5.8b)

uz − vz = 0 on ∂B, (5.8c)

∂uz
∂ν
− 1

γ

∂vz
∂ν

=
∂Φ(·, z)
∂ν

− ∂ϕz
∂ν

on ∂B, (5.8d)

where we have chosen the lifting function ϕz ∈ H1(B) such that ϕz|∂B = Φ(·, z)
and we have written uz = wz −ϕz. As given in the same section, an equivalent
variational formulation of this problem is to find (uz, vz) ∈ H1(B) × H1(B)
satisfying

aη((uz, vz), (u
′, v′)) = `(u′, v′) ∀(u′, v′) ∈ H(B) (5.9)

where the sesquilinear form aη(·, ·) is given by

aη((u, v), (u′, v′)) := (∇u,∇u′)− 1

γ
(∇v,∇v′)− k2(nu, u′) + k2η(v, v′)

and the antilinear function ` is given by

`(u′, v′) :=

〈
∂Φ(·, z)
∂ν

, v′
〉
− (∇ϕz,∇u′) + k2(nϕz, u

′).

As the variational problem (5.9) satisfies the Fredholm property, we have that
solvability is equivalent to `(uη, vη) = 0 for all solutions (uη, vη) ∈ H(B) of the
homogeneous adjoint problem

(∇uη,∇u′)−
1

γ
(∇vη,∇v′)− k2(nuη, u

′) + k2η(vη, v
′) = 0 ∀(u′, v′) ∈ H(B),

i.e. for all solutions (uη, vη) ∈ H1(B)×H1(B) to

∆uη + k2nuη = 0 in B,

1

γ
∆vη + k2ηvη = 0 in B,

uη − vη = 0 on ∂B,

∂uη
∂ν
− 1

γ

∂vη
∂ν

= 0 on ∂B.

14



We see that

`(uη, vη) =

〈
∂Φ(·, z)
∂ν

, vη

〉
− (∇ϕz,∇uη) + k2(nϕz, uη). (5.10)

After integrating by parts in the second term and using the fact that ϕz|∂B =
Φ(·, z) and that ∆uη + k2nuη = 0 in B, we may write (5.10) as

`(uη, vη) =

∫
∂B

[
uη(y)

∂Φ(y, z)

∂ν
− Φ(y, z)

∂uη
∂ν

(y)

]
ds(y).

Thus, the solvability condition for each z ∈ Bρ becomes∫
∂B

[
uη(y)

∂Φ(y, z)

∂ν
− Φ(y, z)

∂uη
∂ν

(y)

]
ds(y) = 0.

Green’s representation theorem implies that uη(z) = 0 for all z in Bρ, from
which the unique continuation principle [9] implies that uη = 0 in B and hence
that vη = 0 in B. However, this result contradicts the fact that since η is an
eigenvalue, some nonzero pair (uη, vη) must exist. Therefore, we conclude that
the sequence {vgεz}ε>0 cannot be bounded in H1(B) as ε→ 0. �

We observe that (5.7) is satisfied whenever F has dense range, which by
Theorem 2.1 holds whenever η is not an eigenvalue with viz a Herglotz wave
function. These two results imply that we may in principle detect modified
transmission eigenvalues by using regularization methods to solve the modified
far field equation (5.1) for gz ∈ L2(Sd−1) (with z ∈ D given) and then computing
the norm of vgz in H1(B). The modified transmission eigenvalues are precisely
those η for which this norm is large. For a justification of this approach see
[2]. In practice, we use the norm of the regularized solution gz as a proxy for
‖vgz‖H1(B) in order to reduce computational expense. We plot the norm of gz
against the sampled values of η and look for the eigenvalues as sharp peaks in
the graph. Of course, this approach must be carried out in a discrete setting,
which we will describe and numerically investigate in Section 7.

With the ability to detect modified transmission eigenvalues from far field
data established by Theorems 5.2 and 5.3, we now investigate the effect of a
flaw in the scatterer on the eigenvalues. In particular, we suppose that the real-
valued refractive index n is perturbed by δn which results in perturbations of
the eigenfunction pair (w, v) ∈ H1(B)×H1(B) by (δw, δv) and the eigenvalue
η by δη. From the variational formulation (3.3) of the modified transmission
eigenvalue problem, we see that the perturbed eigenfunctions satisfy

1

γ
(∇(v + δv),∇v′)− (∇(w + δw),∇w′) + k2((n+ δn)(w + δw), w′)

− k2(η + δη)(v + δv, v′) = 0 ∀(w′, v′) ∈ H(B).
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Since (w, v) ∈ H(B) is an eigenfunction pair corresponding to η, the above
expression becomes[

1

γ
(∇δv,∇v′)− (∇δw,∇w′) + k2(nδw,w′)− k2η(δv, v′)

]
+ k2(δn(w + δw), w′)− k2δη(v + δv, v′) = 0 ∀(w′, v′) ∈ H(B).

Choosing (w′, v′) = (w, v) and recalling that n was assumed to be real-valued,
we observe that the expression in brackets vanishes and we have that

k2(δn(w + δw), w)− k2δη(v + δv, v) = 0.

Finally, by assuming only small changes (neglecting quadratic terms) and sim-
plifying, we arrive at the perturbation estimate

δη =
(δnw,w)

(v, v)
. (5.11)

It is not clear what conclusion to draw from this estimate if η is of multiplicity
greater than one, as the choice of (w, v) is not unique. We will return to eigen-
values with multiplicity in our numerical investigations in Section 7.2. However,
if η has multiplicity one and w is negligible in a neighborhood of the flaw, then
the numerator in (5.11) will be negligible as well, and we would not expect a
noticeable shift in the eigenvalue. In contrast to Stekloff eigenvalues [6], this
perturbation estimate does not depend explicitly on the wave number k. In
addition, we note that the estimate (5.11) depends on γ only through the eigen-
function pair (w, v). Though the effect of γ on η and (w, v) is not clear at this
point, the following remark lends some insight into their relationship.

Remark 5.4. As our only restriction on γ is that it is positive and distinct
from unity, the question naturally arises of whether an optimal value of γ exists
and how one may best choose it. While further investigation is required in
order to understand the relationship between γ and the modified transmission
eigenvalues, the following example of spherically stratified media lends some
insight. Consider the unit ball B in R3 with constant index of refraction. If we
seek radially symmetric eigenfunctions to the modified transmission eigenvalue
problem (2.4a)–(2.4d), then we find that η is a modified transmission eigenvalue
if and only if it is a zero of the determinant

d(η) :=

√
η

γ
j0
(
k
√
n
)
j′0 (k
√
γη)−

√
nj′0

(
k
√
n
)
j0 (k
√
γη) ,

where j0 is the zeroth order spherical Bessel function of the first kind. We ob-
serve that as γ increases, the spherical Bessel functions become more oscillatory,
which results in an increase in the density of the zeros. A similar determinant
function appears for higher orders of Bessel function, and the same result holds.
Thus, we might expect that γ affects the density of the eigenvalues. In the
case of noisy data, it may be advantageous to choose γ small in order to re-
duce the density of the eigenvalues and hence better identify the sharp peaks
corresponding to modified transmission eigenvalues.

16



6. Modified transmission eigenvalues for complex n

In this section, we investigate further the case when the refractive index n is

complex-valued. In particular, we assume that n(x) = n1(x) + in2(x)
k with

n1(x) > 0 and n2(x) ≥ 0 for x ∈ B. In the case of absorbing media, i.e. when-
ever n2 is not identically zero, the modified transmission eigenvalue problem
is non-selfadjoint, and hence the existence of modified transmission eigenvalues
is not clear at this point. However, from the discussion at the beginning of
Section 4 (see also the proof of Theorem 4.1), we have discreteness of the set
of eigenvalues provided that some η exists which is not a modified transmission
eigenvalue. To this end, let (w, v) ∈ H1(B)×H1(B) be a nontrivial solution to
(2.4a)–(2.4d) for some η. Then setting (w′, v′) = (w, v) and all right-hand sides
to be zero in the variational formulation (3.3) yields∫

B

(
1

γ
|∇v|2 − |∇w|2 + k2n |w|2 − k2η |v|2

)
dx = 0. (6.1)

Taking the imaginary part of (6.1) and simplifying the resulting expression, we
observe that η must satisfy

Im(η)

∫
B

|v|2 dx =

∫
B

Im(n) |w|2 dx. (6.2)

Under the assumption that Im(n) is nonzero on an open subset of B, we observe
that each integral in (6.2) must be positive, and we conclude that Im(η) > 0,
which implies that no real modified transmission eigenvalues exist in this case.
Thus, we see that (2.4a)–(2.4d) is well-posed for any real η, and we obtain
discreteness of modified transmission eigenvalues.

We now consider the existence of modified transmission eigenvalues for gen-
eral refractive index of the form given above. Assume that the following problem
has only a trivial solution ψ ∈ H1(B) where

∆ψ + k2nψ = 0 in B, (6.3a)

ψ = 0 on ∂B. (6.3b)

If n2(x) is not zero, then this assumption is satisfied. If n2(x) is zero, this means
that we choose the wave number k such that k2 is not a (generalized) Dirichlet
eigenvalue. We assume in this section that n ∈ C∞(B) and B is a bounded
domain in Rd (d = 2, 3) with smooth boundary.

To facilitate the analysis, we first introduce the following source problem.
For any given η ∈ C and g ∈ L2(B), find a nontrivial solution (w, v) ∈ H1(B)×
H1(B) such that

∆w + k2nw = 0 in B, (6.4a)

1

γ
∆v + k2ηv = k2g in B, (6.4b)

w = v on ∂B, (6.4c)

∂w

∂ν
=

1

γ

∂v

∂ν
on ∂B. (6.4d)

17



From the discussion in Section 3, the problem (6.4a)–(6.4d) satisfies the
Fredholm property. Then the existence of a solution to (6.4a)–(6.4d) is equiva-
lent to the uniqueness of the solutions. We study the uniqueness of solutions to
(6.4a)–(6.4d) for η such that |η| is sufficiently large, arg η is fixed and η 6∈ [0,∞).
The uniqueness is based on the following a priori estimate. We postpone the
proof to Section 6.1.

Theorem 6.1. Assume that (w, v) ∈ H1(B) × H1(B) and g ∈ L2(B) satisfy
equations (6.4a)–(6.4d). Let η be such that |η| is sufficiently large, arg η is fixed
and η 6∈ [0,∞). Then v ∈ H2(B) and

‖v‖L2(B) ≤ c
1

|η|
‖g‖L2(B), (6.5)

where c is a constant independent of g.

Let z ∈ C be fixed such that |z| is sufficiently large, arg z is fixed and
z 6∈ [0,∞). We consider the problem (6.4a)–(6.4d) with η = z. Note that the
assumptions in Theorem 6.1 are satisfied, and from Theorem 6.1 we have that
the problem (6.4a)–(6.4d) has at most one solution. As the problem (6.4a)–
(6.4d) satisfies the Fredholm property, there exists a unique solution (w, v) to
(6.4a)–(6.4d). We define the operator Tz : L2(B)→ L2(B) by

Tzg = v, (6.6)

where (w, v) is the unique solution to (6.4a)–(6.4d) with η = z. One observes
that if η is an eigenvalue of (6.4a)–(6.4d) (where g = 0), then (z − η)−1 is an
eigenvalue of Tz since if 1

γ∆v + k2ηv = 0 then 1
γ∆v + k2zv = k2(z − η)v. The

analysis of the eigenvalues η to (6.4a)–(6.4d) (where g = 0) then reduces to the
analysis of the operator Tz.

Our approach to the existence of eigenvalues is based on the spectral theory
of Hilbert-Schmidt operators. The following lemma follows from Theorem 16.4
in [1] or Corollary 31 (page 1115) in [10] Volume II.

Lemma 6.2. Let H be a Hilbert space and S be a bounded linear operator from
H to H. If λ−1 is in the resolvent of S, define

(S)λ = S(I − λS)−1.

Assume S : H → H is a Hilbert-Schmidt operator. For the operator S, assume
there exist N rays with bounded growth where the angle between any two adjacent
rays is less than π

2 : more precisely assume there exist 0 ≤ θ1 < θ2 < · · · < θN <
2π such that θk − θk−1 <

π
2 for k = 2, · · · , N and 2π − θN + θ1 <

π
2 satisfying

the condition that there exists r0 > 0, c > 0 such that ‖(S)reiθk ‖ = O( 1
r ) for

k = 1, · · · , N and r ≥ r0. Then the space spanned by the nonzero generalized
eigenfunctions of S is dense in the closure of the range of S.

We shall apply Lemma 6.2 with respect to the operator Tz. To begin with
we shall prove that Tz : L2(B) → L2(B) is a Hilbert-Schmidt operator. Note
that as B belongs to either R2 or R3, the following lemma is a particular case
of Theorem 13.5 in [1].
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Lemma 6.3. Assume a bounded operator Tz : L2(B) → L2(B) satisfies that
Tz : L2(B) → H2(B) is bounded. Then Tz : L2(B) → L2(B) is a Hilbert-
Schmidt operator.

To apply Lemma 6.2, we study the the resolvent of Tz and the range of Tz,
respectively.

Lemma 6.4. Assume that λ satisfies z − λ 6∈ R, arg λ is fixed and |λ| is suf-
ficiently large. Then (Tz)λ = Tz(1 − λTz)−1 is bounded from L2(B) to L2(B)
and

‖(Tz)λ‖ ≤ c
1

|λ|
.

Proof. (a) First we show that Tz(1− λTz)−1 is bounded from L2(B) to L2(B).
Note that Tz : L2(B) → L2(B) is Hilbert-Schmidt and hereon compact. In
order to show that I − λTz has a bounded inverse, from Fredholm theory it is
sufficient to show that (

I − λTz
)
v = 0

has only a trivial solution. Indeed assume that
(
I −λTz

)
v = 0, i.e. Tz(λv) = v.

From the definition of Tz, there exists w ∈ H1(B) such that

∆w + k2nw = 0 in B,

1

γ
∆v + k2zv = k2λv in B,

w = v on ∂B,

∂w

∂ν
=

1

γ

∂v

∂ν
on ∂B.

Then (w, v) satisfies equations (6.4a)–(6.4d) with η = z−λ and g = 0. From the
assumptions, z − λ 6∈ R and |λ| is sufficiently large, and hence the assumptions
in Theorem 6.1 are satisfied for η = z − λ. Consequently we have that v = 0.
This proves that I − λTz has a bounded inverse.

(b) Second we show that

‖Tz(1− λTz)−1‖ ≤ c 1

|λ|
.

Assume that Tz(1−λTz)−1g = v where g and v belong to L2(B). It is sufficient
to show that

‖v‖L2(B) ≤ c
1

|λ|
‖g‖L2(B)

for any g ∈ L2(B). Let u = (1− λTz)−1g. Then we obtain

λv = λTz(1− λTz)−1g = (1− λTz)−1g − (I − λTz)(1− λTz)−1g = u− g.
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This yields that

‖v‖L2(B) ≤
1

|λ|
(
‖u‖L2(B) + ‖g‖L2(B)

)
. (6.7)

Now we estimate ‖u− g‖L2(B). As u = (1 − λTz)
−1g, we have that g =

(1− λTz)u, i.e. Tz(λu) = u− g. From the definition of Tz, u− g ∈ H2(B) and
there exists w ∈ H1(B) such that

∆w + k2nw = 0 in B,

1

γ
∆(u− g) + k2z(u− g) = k2λu in B,

w = u− g on ∂B,

∂w

∂ν
=

1

γ

∂(u− g)

∂ν
on ∂B.

The above equations can be written as

∆w + k2nw = 0 in B, (6.8a)

1

γ
∆(u− g) + k2(z − λ)(u− g) = k2λg in B, (6.8b)

w = u− g on ∂B, (6.8c)

∂w

∂ν
=

1

γ

∂(u− g)

∂ν
on ∂B. (6.8d)

As z is fixed and |λ| is sufficiently large, from (6.8a)–(6.8d) and Theorem 6.1
we have

‖u− g‖L2(B) ≤ c
1

|λ|
‖λg‖L2(B) ≤ c‖g‖L2(B).

Then from estimate (6.7) we conclude that

‖v‖L2(B) ≤ c
1

|λ|
‖g‖L2(B).

This proves the lemma. �

Lemma 6.5. Tz has dense range in L2(B).

Proof. Let f ∈ L2(B) be such that

(Tzg, f) = 0 for any g ∈ L2(B), (6.9)

where (·, ·) denotes the inner product in L2(B). To prove the lemma, it is
sufficient to show that f = 0. Indeed let fn ∈ C∞0 (B) be such that fn converges
to f in L2(B)-norm. Now let us define

gn =
1

k2

(
1

γ
∆fn + k2zfn

)
.
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Then w = 0, v = fn, g = gn and η = z satisfy equations (6.4a)–(6.4d). By the
definition of Tz, one immediately derives Tzgn = fn. Then equation (6.9) yields

(fn, f) = 0 for any n.

Note that as fn converges to f in L2(B)-norm, we conclude that f = 0 in L2(B).
This proves the lemma. �

Theorem 6.6. Assume that n(x) = n1(x) + in2(x)
k and n2(x) ≥ 0. Assume

that k is such that equations (6.3a)–(6.3b) have only a trivial solution. Then
there exist infinitely many eigenvalues η, the eigenvalues form a discrete set,
and the space spanned by the nonzero generalized eigenfunctions of Tz is dense
in L2(B). Moreover, there are only a finite number of eigenvalues outside {η :
0 ≤ arg η < ε} for any positive ε.

Proof. We shall apply Lemma 6.2 with respect to the operator Tz. From Lemma
6.3, Tz is a Hilbert-Schmidt operator. Let us choose 0 ≤ θ1 < θ2 < · · · <
θN < 2π such that θk − θk−1 <

π
2 for k = 2, · · · , N , 2π − θN + θ1 <

π
2 and

z−reiθk 6∈ R. From Lemma 6.4, there exists r0 > 0 such that ‖(S)reiθk ‖ = O( 1
r )

for k = 1, · · · , N and r ≥ r0. Then all of the assumptions in Lemma 6.2
are satisfied. This yields that the space spanned by the nonzero generalized
eigenfunctions of Tz is dense in the closure of the range of Tz. From Lemma 6.5,
Tz has dense range in L2(B), and hence there exist infinitely many eigenvalues
of Tz and the space spanned by the nonzero generalized eigenfunctions of Tz is
dense in L2(B). The discreteness of the eigenvalues follows from compactness of
Tz : L2(B)→ L2(B). Furthermore, since any η outside the set {η : 0 < arg η <
ε or 2π − ε < arg η < 2π} with sufficiently large |η| satisfies the assumptions
in Theorem 6.1, we have that (w, v) is zero if (w, v) satisfies equation (6.4a)–
(6.4d) with g = 0. This shows that such η is not an eigenvalue. Since the set of
eigenvalues is discrete and the imaginary part of every eigenvalue is nonnegative
from the discussion at the beginning of this section, this proves that there are
only a finite number of eigenvalues outside {η : 0 ≤ arg η < ε} for any positive
ε, and we have proven the theorem. �

6.1. Proof of Theorem 6.1

In this section, we shall prove the a priori estimate in Theorem 6.1. The analysis
relies on the analysis of PDEs with a small (or large) parameter. In particular,
equations (6.4a)–(6.4b) give rise to two Dirichlet-to-Neumann maps with a small
(or large) parameter, and equations (6.4c)–(6.4d) relate the two Dirichlet-to-
Neumann maps. In particular as shall be shown later, the choice of γ 6= 1 yields
the ellipticity of the problem. Here we adapt the semiclassical analysis (small
parameter) approach. We refer to [18] for more details.

To begin with, we introduce the following notations. Let h be a small pa-
rameter. We define Dxj = 1

i
∂
∂xj

and Dh
xj = h

i
∂
∂xj

where the superscript h
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represents a scaling by the small parameter h. For an open bounded mani-
fold B in Rd we introduce the semiclassical Sobolev spaces Hs

sc(B) equipped
with the norm ‖ · ‖Hssc(B), where ‖u‖Hssc(B) := inf{‖ũ‖Hssc(Rd), ũ|B = u} and

‖u‖2Hssc(Rd) :=
∫
Rd(1 + h2|ξ|2)s|û(ξ)|2dξ.

Definition 6.7. Let a(x, ξ) be in C∞(R2(d−1)). We say a is a symbol of order
m, denoted as a ∈ Sm, if

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cαβ〈ξ〉m−|β|

for all α and β where 〈ξ〉 := (1 + |ξ|2)
1
2 . For a ∈ Sm we define the semiclassical

pseudo-differential operator oph(a) by

oph(a)u =
1

(2π)d

∫
eixξa(x, hξ)û(ξ)dξ.

We denote op(a) as the usual pseudo-differential operator where one simply
takes h = 1 in the above definitions.

We introduce a set of local coordinates near Γ = ∂B. Let x = (x′, xd)
and ξ = (ξ′, ξd) where (x, ξ) is the local coordinate in the cotangent bundle
T ∗(Γ× (0, ε)) and (x′, ξ′) is the local coordinate in the cotangent bundle T ∗Γ.

Let µ(x) ∈ C∞(B). Assume that −h2∆−µ is elliptic and |ξ|2−µ 6= 0 for any
ξ and x ∈ B. We have that in the tubular neighborhood of Γ the semiclassical
symbol of −h2∆− µ is

ξ2
d + hαξd +R(x, ξ′)− µ

where α(x) is a smooth function depending on x. The symbol of R(x, ξ′) is
gk`ξ′kξ

′
` (here we use the Einstein summation), where (gk`) is the Riemannian

metric on Γ and (gk`) is the inverse of (gk`). Moreover

ξ2
n +R(x, ξ′)− µ = (ξd − ρ1(x, ξ′))(ξd − ρ2(x, ξ′))

where ρ2 = −i
√
R(x, ξ′)− µ and ρ1 = −ρ2 are symbols of order 1 with Im(ρ2) <

0 and Im(ρ1) > 0.
Now let us recall the following lemma. For a detailed proof one can refer to

[17, p. 10–11].

Lemma 6.8. Assume that µ(x) ∈ C∞(B) satisfies |ξ|2 − µ 6= 0 for any ξ and
x ∈ B. Assume that v ∈ H1(B) and g ∈ L2(B) satisfy

h2∆v + µv = h2k2γg in B,

where h is sufficiently small. Let γ1 = v|xd=0 and γ0 = Dh
xd
v|xd=0. Then

γ0 = −oph(ρ2)γ1 + g1, (6.10)

where g1 satisfies the estimate

‖g1‖
H

1
2
sc(Γ)

≤ c
(
h

1
2 ‖v‖H1

sc(B) + h
3
2 ‖g‖L2(B) + h‖γ1‖

H
1
2
sc(Γ)

)
. (6.11)
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Moreover, if γ1 ∈ H
3
2 (Γ), then

‖v‖H2
sc(B) ≤ c

(
h2‖g‖L2(B) + h

1
2 ‖γ1‖

H
3
2 (Γ)

)
, (6.12)

where c is a constant independent of g.

Let us also recall the following lemma. For a detailed proof one can refer to
[16, p. 1102–1104].

Lemma 6.9. Assume that k is such that equations (6.3a)–(6.3b) have only a
trivial solution. Let w ∈ H1(B) satisfy

∆w + k2nw = 0 in B.

Then in the local coordinates x = (x′, xd) and ξ = (ξ′, ξd) we have that

Dx3
w =

(
op(a1) + op(a0)

)
w on Γ (6.13)

where a1(x′, ξ′) = i
√
gk`ξ′kξ

′
` and a0 is a symbol of order zero.

Now we are ready to prove Theorem 6.1.

Proof of Theorem 6.1: Recall that |η| is sufficiently large, and let h be
a small parameter defined by h = |k2γη|−1/2. Now multiplying equation (6.4b)
by γh2 yields

h2∆v + µv = h2k2γg in B,

where µ = h2k2γη. Since η 6∈ [0,∞), we have that |ξ|2 − µ 6= 0 for any ξ and
x ∈ B. Then from Lemma 6.8

γ0 = −oph(ρ2)γ1 + g1, (6.14)

where g1 satisfies the estimate (6.11). Since k is such that equations (6.3a)–
(6.3b) have only a trivial solution, we may apply Lemma 6.9. In particular
multiplying equation (6.13) by h yields

Dh
x3
w|x3=0 = h

(
op(a1) + op(a0)

)
w|x3 , (6.15)

where a1(x′, ξ′) = i
√

gk`ξ′kξ
′
` and a0 is a symbol of order zero. From equations

(6.4c)–(6.4d),

w|xd=0 = w|xd=0 = γ1 and Dh
xd
w|xd=0 =

1

γ
Dh
xd
v|xd=0 =

1

γ
γ0.

Then we can write equation (6.15) as

1

γ
γ0 = h

(
op(a1) + op(a0)

)
γ1. (6.16)
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From equations (6.14) and (6.16) we can derive an equation for γ1

−oph(ρ2)γ1 + g1 = γ
(
h
(
op(a1) + op(a0)

)
γ1

)
.

Note that since a1 is homogeneous in ξ′, we have that hop(a1) = oph(a1). This
yields that

oph(ρ2 + γa1)γ1 = g1 − hγop(a0)γ1. (6.17)

Note that ρ2 = −i
√

gk`ξ′kξ
′
` − µ, a1 = i

√
gk`ξ′kξ

′
` and γ 6= 1, and hence ρ2 +γa1

is an elliptic symbol of order one and we may apply its parametrix Q (of order
−1) to equation (6.17) to obtain

γ1 = Q(g1 − hγop(a0)γ1) + hoph(a−1)γ1,

where a−1 is a symbol of order −1. This yields the estimate

‖γ1‖
H

3
2
sc(Γ)

≤ c
(
‖g1‖

H
1
2
sc(Γ)

+ h‖op(a0)γ1‖
H

1
2
sc(Γ)

+ h‖γ1‖
H

1
2
sc(Γ)

)
, (6.18)

where c is a constant independent of g1 and γ1.
From the definition of the semiclassical norm ‖ · ‖

H
1
2
sc(Γ)

, we have that

‖op(a0)γ1‖
H

1
2
sc(Γ)

≤ ch− 1
2 ‖γ1‖

H
1
2
sc(Γ)

. (6.19)

Now from estimates (6.13), (6.18), and (6.19) we obtain

‖γ1‖
H

3
2
sc(Γ)

≤ c
(
h

1
2 ‖v‖H1

sc(B) + h
3
2 ‖g‖L2(B) + h

1
2 ‖γ1‖

H
1
2
sc(Γ)

)
,

and for sufficiently small h we have

‖γ1‖
H

3
2
sc(Γ)

≤ c
(
h

1
2 ‖v‖H1

sc(B) + h
3
2 ‖g‖L2(B)

)
. (6.20)

From estimates (6.12) and (6.20) we have that for sufficiently small h

‖v‖H2
sc(B) ≤ ch2‖g‖L2(B). (6.21)

From the definition of semiclassical norm ‖ · ‖H2
sc(B) and h = |k2γη|−1/2 we

can derive

‖v‖L2(B) ≤ c
1

|η|
‖g‖L2(B),

where c is a constant independent of g. This proves the theorem. �
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7. Numerical Examples

We now provide a series of numerical examples in support of the theoretical
results we have obtained. In order to generate simulated scattering data to
test our methods and to construct a finite element eigensolver, we use the finite
element software FreeFem++ [15]. The scattering problem is solved by truncating
the unbounded domain and imposing the exact boundary conditions in terms
of a Dirichlet-to-Neumann operator on a circular artificial boundary (see [5,
p. 25] for details). In each case we use 51 incoming waves with directions dj ,
j = 1, . . . , 51, distributed uniformly on the unit circle, and we compute a 51×
51 matrix U with U`,m ≈ u∞(dj , d`). By the same process we obtain a matrix
H approximating h∞. In examples where we add noise to the data, we choose
ε > 0 and set

U ε`,m = U`,m

(
1 + ε

ζ`,m + iµ`,m√
2

)
, `,m = 1, . . . , 51,

where ζ`,m and µ`,m are uniformly distributed random numbers in [−1, 1] com-
puted using the rand command in MATLAB. Once the simulated scattering data
has been computed, we compute the data vector bz with the `th entry bz,` =
Φ∞(d`, z), ` = 1, . . . , 51, for some z ∈ D. Finally, we set F ε = U ε − H and
approximate the Herglotz kernel g using Tikhonov regularization as

gεz = ((F ε)∗F ε + αI)−1(F ε)∗bz.

This computation is performed using the regtools package [13]. We repeat this
process for 32 randomly placed z ∈ D and the norm of gεz is averaged. We use
the `2-norm of gεz as a proxy for ‖vg‖H1(B). The choice of 51 directions and 32

sampling points is arbitrary, but sufficiently many incoming waves are required
in order to accurately approximate the modified far field operator F .

In our finite element eigensolver, we avoid imposing the transmission con-
ditions (2.4c)–(2.4d) by using the following equivalent formulation of the mod-
ified transmission eigenvalue problem (2.4a)–(2.4d). Writing u1 = w − v and
u2 = w − 1

γ v, we have the equivalent formulation of finding (u1, u2) ∈ H̃(B) :=

H1
0 (B)×H1(B) satisfying

∆u1 +
k2

1− γ
n(u1 − γu2) =

k2γ2

1− γ
η(u1 − u2) in B (7.1a)

1

γ
∆u2 +

k2

γ(1− γ)
n(u1 − γu2) =

k2

1− γ
η(u1 − u2) in B (7.1b)

∂u2

∂ν
= 0 on ∂B (7.1c)

An equivalent variational formulation of (7.1a)–(7.1c) is to find (u1, u2) ∈ H̃(B)
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satisfying

(∇u1,∇u′1) +
1

γ
(∇u2,∇u′2)− k2

1− γ
(n(u1 − γu2), u′1)− k2

γ(1− γ)
(n(u1 − γu2), u′2)

= η

[
− k

2γ2

1− γ
(u1 − u2, u

′
1)− k2

1− γ
(u1 − u2, u

′
2)

]
∀(u′1, u′2) ∈ H̃(B). (7.2)

We use FreeFem++ to assemble the finite element matrices A (left-hand side)
and B (bracketed expression on the right-hand side) of (7.2) with P1 elements,
and we read these matrices into MATLAB and use the eigs command to solve
the generalized eigenvalue problem Au = ηBu. The original fields w, v may be
recovered as

w =
1

1− γ
(u1 − γu2), v =

γ

1− γ
(u1 − u2).

We performed tests with the unit disk and an L-shaped domain formed by
removing the square [0.1, 1.1]×[−1.1, 0.1] from the square [−0.9, 1.1]×[−1.1, 0.9]
(see Figure 4). Both of these regions were tested in [6] and hence provide a
direct comparison to results for Stekloff eigenvalues. We also performed tests
for a square and an annulus, but the results are similar to the disk and L-shaped
domain and we chose not to include them here. In the case of B 6= D, we choose
B to be a disk of radius 1.5 centered at the origin. Except for our example for
absorbing media, we choose the constant refractive index n = 4 in D. In the
case B 6= D, we extend n by one in B \D. We choose k = 1, and we investigate
different values of γ.

Before we continue, we present a result on the effect of γ on the eigenvalues.
Since γ cannot be equal to one, we might expect that some qualitative change
occurs in the eigenvalues at this value, and Figure 1 indicates that this expec-
tation is correct. For the disk with B = D (Figure 1a), no eigenvalues below
η = n = 4 have been observed whenever 0 < γ < 1, whereas one occurs in the
case B 6= D (Figure 1b). We will see in a later section that this eigenvalue is
highly sensitive to the presence of flaws. It should be noted that a higher index
of refraction may result in a negative eigenvalue even in the case B = D.

7.1. Changes in modified transmission eigenvalues due to flaws

In this section, we numerically investigate the effect of a flaw in the material
on the modified transmission eigenvalues. The perturbation estimate (5.11)
suggests that the change in an eigenvalue should depend in part on the size of
the flaw and the magnitude of the eigenfunction w in a neighborhood of the flaw,
at least for an eigenvalue of multiplicity one. From this observation, we might
expect that each eigenvalue will exhibit different sensitivity to the location and
size of a flaw, and we may infer this sensitivity from a plot of the corresponding
eigenfunction (see Figure 4). For simplicity, we consider a circular flaw D0 of
radius rc centered at (xc, yc), and we define the refractive index n as

n(x) =

{
1, x ∈ D0

4, x ∈ D \D0.
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(a) disk, B = D (b) disk, B 6= D

Figure 1: Behavior of the eigenvalues for a disk as γ varies in the range 0.1 ≤
γ ≤ 2. The crosses on each horizontal line represent the eigenvalues for that
choice of γ. The same general pattern appears for the L-shaped domain.

We investigate the sensitivity of the eigenvalues to the size and position of a flaw.
We have observed that the choice B 6= D greatly improves the ability to compute
eigenvalues from far field data, and we limit our sensitivity investigation to this
case.
First, we fix the radius of the flaw at rc = 0.05 and vary the position of the
center (xc, yc). For the disk (Figures 2a and 2b), we choose yc = 0 and 0 ≤
xc ≤ 0.8, and for the L-shaped domain (Figures 2c and 2d), we choose yc = 0
and −0.4 ≤ xc ≤ 0.8.

Second, we vary the radius of the flaw in the range 0.01 ≤ rc ≤ 0.2 with a
fixed center (xc, yc) for each region. For the disk (Figures 3a and 3b), we choose
(xc, yc) = (0, 0.3), and for the L-shaped domain (Figures 3c and 3d), we choose
(xc, yc) = (0.1, 0.4).

Testing has shown that for γ = 2, the choice B 6= D reduces the sensitivity
of the eigenvalues to flaws compared to B = D, as was observed for Stekloff
eigenvalues in [6]. However, for γ = 0.5, the choice B 6= D improves sensitivity,
likely because some eigenfunctions are larger in the center of the domain than
for γ = 2. These eigenfunctions correspond to the two most sensitive eigenvalues
for each region, and even though these eigenvalues have varying sensitivity to
position of the flaw, one of them maintains a noticeable shift that is an order
of magnitude greater than for γ = 2. Thus, we see that the ability to choose
γ freely provides a great advantage in finding an effective target signature.
Moreover, since the choice of γ only affects the computation of h∞ and not the
measured scattering data u∞, one may in practice use eigenvalues corresponding
to different values of γ as target signatures.

As we stated earlier, the shift in each eigenvalue is related to the correspond-
ing eigenfunction w in the neighborhood of the flaw. In Figure 4, we plot the
eigenfunction w corresponding to two eigenvalues for each region with γ = 0.5.
When an eigenvalue has multiplicity one, the perturbation estimate (5.11) con-
sistently predicts whether an eigenvalue will shift based on the magnitude of
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(a) disk, γ = 0.5 (b) disk, γ = 2

(c) L-shaped domain, γ = 0.5 (d) L-shaped domain, γ = 2

Figure 2: Sensitivity of modified transmission eigenvalues to changes in the
position of a flaw for the case B 6= D and both γ = 0.5 (left column) and
γ = 2 (right column). We plot the change in the first few eigenvalues for each
region due to the presence of the flaw. The numbers in each legend refer to
the computed eigenvalue of the unflawed region. Note that the sensitivity of
the first few eigenvalues to changes in the index of refraction due to a flaw is
significantly increased if γ = 0.5 instead of γ = 2.
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(a) disk, γ = 0.5 (b) disk, γ = 2

(c) L-shaped domain, γ = 0.5 (d) L-shaped domain, γ = 2

Figure 3: Sensitivity of modified transmission eigenvalues to changes in the size
of a flaw for the case B 6= D and both γ = 0.5 (left column) and γ = 2 (right
column). We plot the change in the first few eigenvalues for each region due
to the presence of the flaw. The numbers in each legend refer to the computed
eigenvalue of the unflawed region. Note that the sensitivity of the first few
eigenvalues to changes in the index of refraction due to a flaw is significantly
increased if γ = 0.5 instead of γ = 2.
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(a) disk, η1 = −7.1723 (b) disk, η7 = 10.002

(c) L-shaped domain, η1 = −12.3088 (d) L-shaped domain, η7 = 10.1031

Figure 4: Plots of the eigenfunction w (scaled by 1/ ‖v‖`2) for two eigenvalues
for each region, where we have superimposed D onto each plot. Each eigenvalue
in the left column is sensitive to flaws in the region, and each eigenvalue in the
right column is insensitive to flaws due to the difference in the magnitude of w
inside D.

the eigenfunction w in a neighborhood of the flaw. Note that, to a first-order
approximation, from (5.11) we have that this shift is not affected by multiplying
w and v by a constant, and hence we have scaled w by 1/ ‖v‖`2 in Figure 4.
For an eigenvalue of multiplicity two, one count of the eigenvalue consistently
shifts in the presence of a flaw away from the center of the domain, and the
other count varies little. However, our choice of B as a disk places the region
D in the center of the domain, and hence we do not observe significant shifts of
eigenvalues with multiplicity.

7.2. Computing modified transmission eigenvalues from far field data

In Section 5 we showed that modified transmission eigenvalues may be computed
from far field data by solving the far field equation (5.1). As described at the
beginning of this section, we use Tikhonov regularization in order to solve the
discrete version of this equation, a procedure which can be justified by using the
generalized linear sampling method [2]. We focus our attention on the eigenvalue
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(a) disk, ε = 0.01 (b) disk, ε = 0.05

(c) L-shaped domain, ε = 0.01 (d) L-shaped domain, ε = 0.05

Figure 5: Shift in the peaks of the norm of gεz due to the presence of a flaw in
the case B 6= D with γ = 0.5. The noise is set at ε = 0.01 (left column) and
ε = 0.05 (right column). Each cross refers to the eigenvalue for the unflawed
domain, and each × symbol refers to the eigenvalue for the flawed domain. The
peaks in the norm of gεz clearly shift due to the flaw in each domain, even in the
presence of noise.

corresponding to γ = 0.5 which displays the greatest sensitivity to the presence
of flaws for each region (η1 = −7.1723 for the disk and η1 = −12.3088 for the
L-shaped domain), and we introduce noise to the scattering data as described
above. In Figure 5 we present our results for detecting a flaw of radius rc = 0.1
in the disk and the L-shaped domain using far field data. For the disk, we choose
(xc, yc) = (0.3, 0.2), and for the L-shaped domain, we choose (xc, yc) = (0.1, 0.4).
We note that when we compute the approximation of h∞ for each value of η,
we do not include the presence of the flaw in the region, as in practice we would
not have any a priori information about the size or location of the flaw. We note
that for both regions, the peaks in the norm of gεz correspond to the eigenvalues
computed using our finite element eigensolver, both with and without a flaw.
Even in the presence of noise, we are able to distinguish between the two peaks
and clearly see the shift caused the flaw in each region. Further testing shows
that other eigenvalues may computed as well with similar results. However,
higher eigenvalues may appear with their peaks slightly shifted.
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(a) disk (b) L-shaped domain

Figure 6: Modified transmission eigenvalues for n = 4+4i, γ = 0.5, and B 6= D.
Many eigenvalues have small imaginary part, but none are real as predicted.
The eigenvalues in these plots appear to lie in a strip along the real axis, which
conforms to our prediction from Theorem 6.6 even though n(x) is not infinitely
differentiable in B. Note that complex modified transmission eigenvalues behave
differently than Stekloff eigenvalues [6].

7.3. Complex modified transmission eigenvalues

In this section, we investigate the case of complex-valued n. From Section 6, we
have that all of the modified transmission eigenvalues have positive imaginary
part whenever n has nonzero imaginary part on an open subset of D. In Figure
6 we plot the eigenvalues in the complex plane for n = 4 + 4i and both the
disk and the L-shaped domain with γ = 0.5 and B 6= D, and we see that
all eigenvalues in this plot have positive imaginary part as expected, though
many have small imaginary part. Moreover, the eigenvalues appear to lie in
a strip along the real axis, which conforms to our result in Theorem 6.6 even
though n(x) is not infinitely differentiable inB (as it is discontinuous across ∂D).
Note that the behavior is different than for Stekloff eigenvalues [6, Figure 11].
In Figure 7, we provide two examples which support our claim that modified
transmission eigenvalues may be detected from far field data in the case of
absorbing media. We perform the same procedure described previously, but
now we choose n = 4 + 4i and we vary η in a region of the complex plane.
For the disk (Figure 7a), we see that all three eigenvalues in this region are
detected, and for the L-shaped domain, all but one eigenvalue is detected. For
each region, the leftmost peak is more prominent than the others, suggesting
that this eigenvalue may be useful in detecting flaws as in the case of real n.
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(a) disk (b) L-shaped domain

Figure 7: Contour plot of the base 10 logarithm of the averaged norm of gεz for
n = 4 + 4i, γ = 0.5, and B 6= D. The peaks in the norm of gεz correspond to
the modified transmission eigenvalues, shown as the white ∗ symbols. Note that
the leftmost peak in each plot is more prominent than the others.

8. Conclusion

We have considered scattering of an incident plane wave by an isotropic inhomo-
geneous medium of compact support with (possibly complex-valued) refractive
index n. By introducing an artificial scattering problem depending on a (pos-
sibly complex) parameter η and a fixed parameter γ > 0, γ 6= 1, we have
constructed a modified far field operator which may be used to detect values
of the parameter η for which nontrivial solutions exist to a modified interior
transmission problem, i.e. for which η is a modified transmission eigenvalue.
We have shown that such computation is possible from given far field data, and
numerical testing has indicated that changes in the refractive index (including
the presence of cavities) result in shifts of the modified transmission eigenvalues.
This shift depends on the values of the associated eigenfunctions in a neighbor-
hood of the flaw, and the fixed parameter γ may be tuned to improve sensitivity
of the eigenvalues. As with the case of Stekloff eigenvalues, this class of eigenval-
ues has many advantages over classical transmission eigenvalues in the context
of nondestructive testing using target signatures. In particular, modified trans-
mission eigenvalues may be computed from far field data measured at a single
frequency independent of the tested material, and they may even be computed
for absorbing media. A significant practical advantage is that the artificial prob-
lem may be solved in a ball B with the support of 1 − n in its interior, which
allows for the computation and storage of the far field pattern for the artificial
problem with many different values of η in advance of testing.
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