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Abstract

The inverse electromagnetic scattering problem for anisotropic media
in general does not have a unique solution. A possible approach to this
problem is through the use of appropriate “target signatures,” i.e. eigen-
values associated with the direct scattering problem that are accessible to
measurement from a knowledge of the scattering data. In this paper we
shall consider three different sets of eigenvalues that can be used as target
signatures: 1) eigenvalues of the electric far field operator, 2) transmission
eigenvalues and 3) Stekloff eigenvalues.

1 Introduction

An important unresolved problem in electromagnetic inverse scattering theory
is how to detect flaws or changes in the constitutive parameters in an inhomo-
geneous anisotropic medium. Such a problem presents itself, for example, in
efforts to detect structural changes in airplane canopies due to prolonged ex-
posure to ultraviolet radiation and is currently resolved by simply discarding
canopies every few months and replacing them with new ones. The difficulties
in using electromagnetic waves to interrogate anisotropic media is due to the
fact that the corresponding inverse scattering problem no longer has a unique
solution even if multiples frequencies and multiple sources are used [11]. Hence
alternate approaches to the nondestructive testing of anisotropic materials need
to be developed.

A possible approach to the target identification problem for anisotropic ma-
terials is through the use of appropriate “target signatures,” i.e. eigenvalues as-
sociated with the direct scattering problem that are accessible to measurement
from a knowledge of the scattering data. The earliest attempt to do this was
based on the use of so-called “scattering resonances” corresponding to the com-
plex poles of the scattering operator. Such an approach appeared particularly
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fruitful since there is a deep and well-developed theory of such resonances that
is readily available to the practitioner [16]. However, the use of scattering res-
onances as target signatures ultimately proved unsuccessful in electromagnetic
interrogation due to the difficulty in determining the location of the complex
resonances from measured scattering data which is known only for real values
of the wave number.

A more recent effort to determine appropriate target signatures for anisotropic
materials is based on the use of transmission eigenvalues [2, 4]. As opposed
to scattering resonances, for dielectrics these eigenvalues are real and can be
readily determined from the scattering data. In view of their potential in the
nondestructive testing of dielectric materials, we will present the basic theory
of transmission eigenvalues in the next two sections of our paper and refer the
reader to the two monographs [2] and [4] for further details. In contrast to
the theory of scattering resonances, the theory of transmission eigenvalues is of
more recent origin with many questions unanswered. In particular, it has been
shown in special cases that complex transmission eigenvalues exist for dielectric
materials but whether such eigenvalues exist in general and what their physical
meaning is remains an open question.

There are two main problems with using transmission eigenvalues as target
signatures. The first of these is that such an approach is only applicable to
dielectric materials. The second is that one must interrogate the material over
a range of frequencies centered at a transmission eigenvalue, i.e. one is forced to
use multi-frequency data over a predetermined range of frequencies. A method
to overcome both of these difficulties has recently been proposed that is based
on using a modified far field operator instead of the standard far field operator
that is used to determine both scattering resonances and transmission eigen-
values. In this new approach, the frequency is held fixed and a new artificial
eigenparameter is introduced which can be determined from measured scatter-
ing data. In one version of this approach the new artificial eigenparameter turns
out to be an electromagnetic version of the classical Stekloff eigenvalue problem
for elliptic equations and we will discuss this specific class of target signatures
in Section 3 of this paper [3, 7].

2 Transmission Eigenvalues

We begin by formulating the direct electromagnetic scattering problem that
we will refer to throughout this paper. Let Ei, Hi be an incident field that
is scattered by an inhomogeneous object occupying the domain D, where we
assume that D has smooth boundary ∂D. The corresponding scattered field is
denoted by Es, Hs and E = Ei +Es, H = Hi +Hs is the total field. Then the
(normalized) Maxwell’s equations are

curl E − ikH = 0

curl H + ikN(x)E = 0
in R3 (2.1)
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where k > 0 is the wave number, x ∈ R3, N(x) is the symmetric matrix index of
refraction with entries in C1(D) and Es, Hs satisfy the Silver-Müller radiation
condition

lim
r→∞

(Hs × x− rEs) = 0 (2.2)

where r = |x|. We will assume that the incident field Ei, Hi is given by

Ei(x) = Ei(x; d, p) = i
k curl curl peikx·d

Hi(x) = Hi(x; d, p) = curl peikx·d
(2.3)

where d ∈ R3, |d| = 1, is the direction of the incident wave and p ∈ R3 is the
polarization. Under the assumption that

ξ · ReN(x)ξ ≥ α |ξ|2

ξ · ImN(x)ξ ≥ 0
(2.4)

for x ∈ D, ξ ∈ C3 and some constant α > 0 it can be shown that there exists a
unique solution E,H ∈ Hloc(curl ,R3) of (2.1)–(2.3) [14].

From (2.1)–(2.3) it is easy to show [10] that the scattered electric field
Es(x) = Es(x; d, p) has the asymptotic behavior

Es(x; d, p) =
eik|x|

|x|

{
E∞(x̂; d, p) +O

(
1

|x|

)}
(2.5)

as |x| → ∞ where x̂ = x
|x| and E∞ is the far field pattern of the scattered wave.

If we define
L2
t (S2) := {g : S2 → C3 : g ∈ L2(S2), g · ν = 0},

where S2 is the unit sphere with unit outward normal ν, the electric far field
operator Fe : L2

t (S2)→ L2
t (S2) is given by

(Feg)(x̂) :=

∫
S2
E∞(x̂; d, g(d)) ds(d). (2.6)

It can easily be seen that Fe is compact [10].
Of central importance to the inverse scattering problem is the characteriza-

tion of the null space of the electric far field operator. To this end we define an
electromagnetic Herglotz pair (E,H) to be a solution of Maxwell’s equations

curl E − ikH = 0

curl H + ikE = 0
(2.7)

of the form

E(x) :=

∫
S2
Ei(x; d, g(d)) ds(d)

H(x) :=

∫
S2
Hi(x; d, g(d)) ds(d)

(2.8)

with kernel g ∈ L2
t (S2). The proof of the following theorem can be found in [4].
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Theorem 2.1. The electric far field operator Fe : L2
t (S2)→ L2

t (S2) correspond-
ing to the scattering problem (2.1)–(2.3) is injective with dense range if and
only if there does not exist a nontrivial solution to the transmission eigenvalue
problem

curl curl E − k2N(x)E = 0
curl curl E0 − k2E0 = 0

}
in D

ν × E = ν × E0

ν × curl E = ν × curl E0

}
on ∂D

(2.9)

where ν is the outward unit normal to ∂D and E0 := Eg, H0 := Hg are an
electromagnetic Herglotz pair with kernel ikg.

Values of k for which there exist nontrivial solutions to (2.9) are called
transmission eigenvalues. Transmission eigenvalues play an important role in
the theory of inverse scattering. In particular, as we shall see, these eigenvalues
can be determined from the far field data and give qualitative information on
the anisotropic index of refraction. As noted in the introduction, this is of
particular importance in the inverse scattering problem for anisotropic media
since the anisotropic material parameters are not uniquely determined from the
far field data. The mathematical theory of transmission eigenvalues is based on
the following two fundamental results due to Cakoni, Gintides, and Haddar [6]
(see also [4]), where for real N(x) we define

n∗ := inf
x∈D

inf
‖ξ‖=1

ξ ·N(x)ξ, n∗ := sup
x∈D

sup
‖ξ‖=1

ξ ·N(x)ξ.

Theorem 2.2. Assume that for every ξ ∈ C3, |ξ| = 1, and some constants
α > 0, β > 0 one of the following inequalities is valid:

1) 1 + α ≤ n∗ ≤ ξ ·N(x)ξ ≤ n∗ <∞, x ∈ D,

2) 0 < n∗ ≤ ξ ·N(x)ξ ≤ n∗ ≤ 1− β, x ∈ D.

Then there exists an infinite countable set of positive transmission eigenval-
ues corresponding to (2.9) with +∞ as the only accumulation point.

Note that, in contrast to scattering resonances, the above theorem says that
for real N(x) there exist positive transmission eigenvalues and, as we shall see
in the next section, these can be determined from measured far field data and
thus can be used as target signatures. It can be shown (c.f. Theorem 8.12 of
[10]) that if N(x) is not real-valued then positive transmission eigenvalues do
not exist.

Theorem 2.3. Let k1,D,N(x) be the first positive transmission eigenvalue for
(2.9) and let α and β be positive constants. Denote by k1,D,n∗ and k1,D,n∗

the first positive transmission eigenvalue of (2.9) for N = n∗I and N = n∗I,
respectively, and let ‖·‖2 denote the Euclidean operator norm.

1) If ‖N(x)‖2 ≥ α > 1, then 0 < k1,D,n∗ ≤ k1,D,N(x) ≤ k1,D,n∗ .
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2) If 0 < ‖N(x)‖2 ≤ 1− β, then 0 < k1,D,n∗ ≤ k1,D,N(x) ≤ k1,D,n∗ .

Assuming that k1,D,N(x) can be computed from the far field measurements,
Theorem 2.3 provides an approach to obtaining qualitative information on N(x)
by computing a constant n such that k1,D,N(x) is the first positive transmission
eigenvalue corresponding to (2.9) with N := nI for this n. The above theorem
then implies that n∗ ≤ n ≤ n∗. Since N(x) is positive definite, n∗ = λ1 and
n∗ = λ3 where λ1 is the smallest and λ3 is the largest eigenvalue of N(x). As
an example, let D = (0, 1)× (0, 1) and

N =

(
1/6 0
0 1/8

)
.

Then λ1 = 0.125, λ3 = 0.166 and the computed n = 0.135 [5].

2.1 Measurement of Transmission Eigenvalues

We will now consider the problem of determining transmission eigenvalues from
the measured scattering data. In particular, we will assume that the index of
refraction is real-valued and make use of Theorems 2.1 and 2.2. To this end, we
need the following theorem from [9] (the result in [9] assumed that N(x) was a
scalar but the same proof is valid for N(x) a symmetric matrix satisfying the
assumption (2.4)).

Theorem 2.4. Let Eig, H
i
g and Eih, H

i
h be electromagnetic Herglotz pairs with

kernels g, h ∈ L2
t (S2), respectively, and let Eg and Eh be the solutions of (2.1)–

(2.3) with Ei, Hi replaced by Eig, H
i
g and Eih, H

i
h respectively. Then

k

∫∫
D

ImN(x)Eg · Eh dx = −2π(Feg, h)− 2π(g, Feh)− (Feg, Feh) (2.10)

where (·, ·) denotes the inner product on L2
t (S2).

If ImN(x) = 0 then it is an easy consequence of this theorem that the
compact operator Fe is normal and hence has an infinite number of eigenvalues
[9]. In this case it can also easily be seen from (2.10) that if Feg = λg then

0 = −2π(λg, g)− 2π(g, λg)− |λ|2 (g, g)

which implies that
|λ+ 2π| = 2π (2.11)

i.e. the eigenvalues of the electric far field operator all lie on the circle (2.11). A
similar calculation can be done if, instead of using the electric far field operator,
we use the magnetic far field operator, i.e. if

Hs(x; d, p) =
eik|x|

|x|

{
H∞(x̂; d, p) +O

(
1

|x|

)}
(2.12)
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and the magnetic far field operator Fm : L2
t (S2)→ L2

t (S2) is defined by

(Fmg)(x̂) :=

∫
S2
H∞(x̂; d, g(d)) ds(d). (2.13)

It is again easily seen that Fm is compact. In a similar manner to the electric far
field operator, it can be shown that Fm is injective with dense range provided
k is not an eigenvalue of the interior transmission problem

curl (N(x)−1 curl H)− k2H = 0
curl curl H0 − k2H0 = 0

in D

ν × E = ν × E0

N(x)−1(ν × curl E) = ν × curl E0
on ∂D

(2.14)

and that if N(x) is real then the compact operator Fm is normal and hence has
an infinite number of eigenvalues. An identity analogous to (2.10) can also be
established for the magnetic far field operator Fm [12] and used to show that
the eigenvalues of Fm all lie on the circle∣∣∣∣λ− 2πi

k

∣∣∣∣ =
2π

k
. (2.15)

If N(x) is not real, then we may still establish the existence of infinitely many
eigenvalues of Fe and Fm using Lidski’s theorem [10], as we show in the following
theorem. We first remark that both Fe and Fm are trace-class operators, as can
be seen by considering truncated spherical harmonic expansions of the kernel of
each operator.

Theorem 2.5. If ImN(x) is positive on a nonempty open set in D, then Fe
has infinitely many eigenvalues.

Proof. Since Fe is a trace-class operator, by Lidski’s theorem it remains to
show that Fe has a finite-dimensional nullspace and an imaginary part which
is nonnegative. Unfortunately, the formula (2.10) does not provide the second
requirement, and we instead show it for a slightly modified operator F̃e. In
order to prove the first part, we show that under our assumption on N no
real transmission eigenvalues can exist, from which Theorem 2.6 implies that
Fe is injective. Indeed, if E,E0 satisfies the homogeneous interior transmission
problem (2.9), then we see from the equation for E0 in D and the integration
by parts formula for the curl operator that∫

∂D

[(
curl E0 × E0

)
· ν −

(
curl E0 × E0

)
· ν
]
ds = 0.

Applying the vector identity (a×b) ·c = −a · (c×b), the boundary conditions,
and the same vector identity again yields∫

∂D

[(
curl E × E

)
· ν −

(
curl E × E

)
· ν
]
ds = 0,
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and it follows from another application of the integration by parts formula that

0 =

∫∫
D

(
curl curl E · E − E · curl curl E

)
dx

= 2ik2
∫∫

D

ImN(x) |E|2 dx.

Thus, we observe that E = 0 on the open set D0 := {x ∈ D : ImN(x) = 0},
and by the unique continuation principle it follows that E = 0 in all of D. This
result implies that E0 = 0 as well, and we conclude that k is not a transmission
eigenvalue.

In order to prove the second part, we rewrite (2.10) in terms of F̃e := −ikFe
as

ik2
∫∫

D

ImN(x)Eg · Eh dx = 2π(F̃eg, h)− 2π(g, F̃eh)− i

k
(F̃eg, F̃eh), (2.16)

from which it follows that for all g ∈ L2
t (S2) we have

Im(F̃eg, g) =
1

2i

[
(F̃eg, g)− (g, F̃eg)

]
=

1

4πi

[
ik2
∫∫

D

ImN(x) |Eg|2 dx+
i

k

∥∥∥F̃eg∥∥∥2]
≥ 0.

Therefore, the assumptions of Lidski’s theorem are satisfied for the operator
F̃e := −ikFe, and we conclude that F̃e and hence Fe has infinitely many eigen-
values.

A similar computation establishes the result for the magnetic far field opera-
tor Fm. Note that the definition of the electric and magnetic far field operators
in [12] differ by a factor of 4π from the ones that we are using.

We now present two methods for determining transmission eigenvalues from
the measured scattering data. We first note that the transmission eigenvalue
problems (2.9) and (2.14) are seen to be equivalent by a simple change of depen-
dent variables and hence have the same eigenvalues. Hence there is no ambiguity
in simply referring to the eigenvalues of (2.9) and (2.14) as transmission eigen-
values. We will restrict our attention to considering H∞(x̂; d, p). We always
assume that ImN = 0 and that D is known (D can be determined by using the
linear sampling method — c.f. [4]).

We first show how transmission eigenvalues can be determined from the
magnetic far field operator Fm.

Definition 2.6. If the solution E0 of (2.9) is the electric field of an electromag-
netic Herglotz pair then we call the transmission eigenvalue k a nonscattering
wave number.
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It is clear that the concept of nonscattering wave numbers is far more re-
strictive than the concept of transmission eigenvalues. Indeed, the only case
known to date when a transmission eigenvalue is a nonscattering wave number
is the case when D is a ball and N(x) = n(|x|)I. We define

He,∞(x̂; z, p) :=
ik

4π
(x̂× p)e−ikx̂·z (2.17)

where z ∈ R3 and note that the right-hand side of (2.17) is the far field pattern
of the magnetic field of an electric dipole. We now let gαz ∈ L2

t (S2) be the
Tikhonov regularized solution of the magnetic far field equation

(Fmg)(x̂) = He,∞(x̂; z, p) (2.18)

i.e. gαz is the solution to

(αI + F ∗mFm)gαz = F ∗mHe,∞. (2.19)

We then have the following result (c.f. Theorem 4.44 of [2] for the scalar case;
the proof in the vector case proceeds in the same manner).

Theorem 2.7. Assume that D is simply connected and that N(x) satisfies
one of the two conditions stated in Theorem 2.2. Assume further that k is
not a nonscattering wave number and let Hgαz denote the magnetic field of the
electromagnetic field defined by (2.8). Then for any ball B ⊂ D, ‖Hgαz ‖L2(D) is
bounded as α→ 0 for almost every z ∈ B if and only if k is not a transmission
eigenvalue.

In particular, if one plots k versus ‖gαz ‖L2(S2) for several choices of points z
then the location of transmission eigenvalues will appear as sharp peaks in the
graph (for the scalar case see Figure 4.2 of [2]).

We now turn our attention to a second method for determining transmission
eigenvalues from the magnetic far field operator Fm which is based on the be-
havior of the phase of the eigenvalues of the compact normal operator Fm. To
this end, we recall that if k > 0 is not a transmission eigenvalue then Fm = Fm,k
is injective where we have explicitly noted the dependence of Fm on k. Hence
if k > 0 is not a transmission eigenvalue, we have the existence of a complete
orthonormal basis (gj(k))∞j=1 of L2(S2) such that

Fm,kgj(k) = λj(k)gj(k) (2.20)

where λj(k) 6= 0 forms a sequence of complex numbers that goes to zero as
j →∞. Define

λ̂j(k) :=
λj(k)

|λj(k)|
. (2.21)

We then have the following theorem due to Lechleiter and Rennoch [13]:
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Theorem 2.8. Assume that condition 1 (respectively, condition 2) of Theorem
2.2 is valid. Let k0 > 0 and let (k`) be a sequence of positive numbers converging

to k0 as `→∞. Assume there exists a sequence (λ̂`) = λ̂j`(k`) for some index j`
such that λ̂` → −1 (respectively λ̂` → +1) as `→∞. Then k0 is a transmission
eigenvalue.

Note that since Fm,k is compact and all the eigenvalues lie on the circle

(2.15), the only possible accumulation points of the sequence λ̂` are −1 and +1.
The criterion of Theorem 2.8 can be used as an indicator of transmission

eigenvalues. However, the hard part is to prove that it occurs for every trans-
mission eigenvalue. We refer the reader to [13] for a further discussion on this
issue.

3 Stekloff Eigenvalues

So far we have seen two families of eigenvalues that can be determined from
scattering data:

Eigenvalues of the Electric Far Field Operator: These can be computed
directly from the far field pattern using single frequency data. However,
it is not easy to determine how changes in the material properties of the
object (i.e. N(x)) perturb the eigenvalues.

Transmission Eigenvalues: These have a direct relation to N(x) as shown in
Theorem 2.3. However, they have to be computed using multi-frequency
data and can only be determined for dielectric scatterers.

We shall now introduce a family of eigenvalues from [7] that can be computed
from the far field pattern at a single frequency, and for which a simple pertur-
bation theory is known. This is achieved by constructing a modified far field
operator using an auxiliary problem which includes an appropriate eigenparam-
eter.

To define this problem choose a domain B such that either 1) B = D or 2)
B is a ball containing D in its interior. We also need an operator S : L2

t (∂B)→
L2
t (∂B) such that S is self-adjoint, bounded and

〈Su, u〉 ≥ 0 for all u ∈ L2
t (∂B),

where 〈·, ·〉 is the L2 inner product on ∂B. Next we define, for any sufficiently
smooth vector field w, the tangential component of w on ∂B by

wT = (ν × w)× ν on ∂B.

Finally we need to choose an impedance parameter λ ∈ R with λ > 0 (note
that a standard impedance parameter would typically be complex). Now we
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can define the solution ES of the following generalized impedance problem

curl curl ES − k2ES = 0 in R3 \B (3.1)

ν × curl ES = λSES,T on ∂B (3.2)

Ei + EsS = ES in R3 \B (3.3)

lim
r→∞

(curl EsS × x− ikrEsS) = 0. (3.4)

This scattering problem has a unique solution for any k > 0 as shown in [7] (for
any λ, any solution is always unique).

Then, as usual for a scattering problem, the scattered field EsS has the asymp-
totic expansion

EsS(x) =
exp(ikr)

r
ES,∞(x̂, d; p) +O

(
1

r2

)
as r →∞,

and we can then define the impedance far field operator by

(FSg)(x̂) =

∫
S2
ES,∞(x̂; d, g(d)) ds(d).

The modified far field operator is then defined by

FM = Fm − FS .

We can see a link between the modified far field operator and the interior Stekloff
eigenvalue problem as argued in [7]. There it is shown that FM is injective with
dense range provided λ is not a generalized Stekloff eigenvalue of the problem

curl curl w − k2Nw = 0 in B, (3.5)

ν × curl w − λSwT = 0 on ∂B. (3.6)

It is then necessary to analyze the existence of generalized Stekloff eigenval-
ues, and this analysis depends on the choice of S. The most obvious choice
corresponding to the standard impedance boundary condition is S = I. Unfor-
tunately, direct calculation of the eigenvalues in the case when N = 1 and B
is a ball shows that there are two families of eigenvalues having different accu-
mulation points (one at infinity and one at zero). Indeed in this case, assuming
N = 1, if λ is an eigenvalue then so is −k2/λ. Thus they cannot be analyzed as
the eigenvalues of a compact operator.

Instead, in [7] we make the choice of S as follows. Let u ∈ L2
t (∂B) and define

q ∈ H1(∂B)/R by solving
∆∂Bq = curl ∂B u.

Note that this assumes that if B = D then ∂D has just one connected compo-
nent. Then Su = ~curl ∂Bu. Here ∆∂B is the Laplace-Beltrami operator on ∂B,
and curl ∂B and ~curl ∂B are the scalar and vector surface curls, respectively.
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Using S we can now write the generalized Stekloff eigenvalue problem as an
operator equation. We introduce the operator T : H(div0

∂B , ∂B)→ H(div0
∂B , ∂B)

where
H(div0

∂B , ∂B) = {u ∈ L2
t (∂B) | ∇∂B · u = 0 on ∂B}

defined as follows. For given f ∈ H(div0
∂B , ∂B) we define w to be the weak

solution of

curl curl w − k2εrw = 0 in B

ν × curl w = −f on ∂B.

This is a well posed problem provided k2 is not an interior Neumann eigenvalue
for the curl-curl operator. These eigenvalues form a discrete set and from now
on we assume k2 > 0 is not such an eigenvalue. Then

Tf = SwT on ∂B.

The fact that SwT is surface divergence free can be used to show that Tf is
actually in (H1/2(∂B))3 and hence the operator T is compact. Furthermore it
is self adjoint, and consequently there exist infinitely many eigenvalues µ with
associated eigenfunction u 6= 0 for the problem

Tu = µu.

Considering the definition of T , we see that if µ is an eigenvalue for T then
λ = −1/µ is a generalized Stekloff eigenvalue. Thus we conclude:

Theorem 3.1 (Thm. 3.6 of [7]). When εr is real, and k2 is not an interior
Neumann eigenvalue for the curl-curl operator, there exists a countable set of
real generalized Stekloff eigenvalues that accumulate at infinity.

Supposing now that we can measure generalized Stekloff eigenvalues, we can
assume that changes in these eigenvalues can give information about changes in
N(x) as is the case for the Helmholtz equation [3]. To see this, suppose (w, λ),
w 6= 0 is a generalized Stekloff eigenpair for permittivity N(x) and that (wδ, λδ)
is the corresponding eigenpair for N(x) + δN(x) where ‖δN‖L∞ is small. Then
assuming that w ≈ wδ (for example, when the eigenvalue is simple and the
perturbation δN is small), we have, neglecting quadratic terms, that

λ− λδ ≈ −k2
(δNw,w)

〈SwT , SwT 〉
(3.7)

where 〈., .〉 is the L2 inner product on ∂B and (., .) is the L2 inner product on
B.

The main question now is how to determine generalized Stekloff eigenvalues
(or at least a few of them) from far field scattering data. As in the case of
transmission eigenvalues, this involves the far field equation, and this time we
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use the electric far field equation. The outgoing electric field due to a point
dipole at position z with polarization q in free space is [10]

Ee =
i

k
curl x curl x(qΦ(x, z))

where curl x denotes the curl with respect to x and Φ is the fundamental solution
of the Helmholtz equation

Φ(x, y) =
exp(ik|x− y|)

4π|x− y|
, x 6= y.

The far field pattern due to the dipole source is then given by

Ee,∞(x̂, z; q) =
ik

4π
(x̂× q)× x̂ exp(−ikx̂ · z)

where x̂ ∈ S2 is the observation direction (for comparison, see (2.12) for the
definition of the magnetic far field pattern, and (2.17) for the magnetic far field
pattern of a dipole source).

For generalized Stekloff eigenvalues, the far field equation corresponding to
(2.18) is then to seek gz,q ∈ L2

t (S2) such that

(FMgz,q)(x̂) = Ee,∞(x̂, z; q) for all x̂ ∈ S2. (3.8)

As in the case of transmission eigenvalues, we actually solve a Tikhonov regu-
larized version of this problem by choosing a regularization parameter α > 0
and solving

(αI + F ∗MFM )gz,q,α = F ∗MEe,∞

where F ∗M is the L2 adjoint of FM . Note that FM depends on the Stekloff param-
eter λ, so gz,q,α is also dependent on λ. As λ varies, we can use ‖gz,q,α‖L2

t (S2)
as an indicator function for Stekloff eigenvalues. Although we cannot prove
that this is an appropriate indicator function, we can prove that there is an
approximate solution of (3.8) that does have this property. All numerical tests
suggest that the solution of the above regularized problem can indeed serve as
an indicator function.

In a similar way to the proof of Theorem 2.7 we can now prove the analogous
result for Stekloff eigenvalues. To do this we need to recall the definition of the
electric Herglotz wave function

vg(x) = −ik
∫
S2
g(d) exp(−ikx · d) dsd.

Theorem 3.2 (Thm. 4.2 of [7]). Assume λ is not a Stekloff eigenvalue and k2

is not an interior Neumann eigenvalue for the curl-curl problem. Let z ∈ D and
q be fixed. Then for every ε > 0 there exists a function gε ∈ L2

t (S2) that satisfies

lim
ε→0
‖FMgε − Ee,∞(·, z; q)‖L2

t (S2) = 0

and such that ‖vgε‖L2
t (B) is bounded as ε→ 0.
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Conversely we can show that if λ is a Stekloff eigenvalue, ‖vgε‖L2
t (B) cannot

remain bounded as ε → 0 for almost every z ∈ D. These results suggest
that a graph of ‖vgε‖L2

t (S2) against λ will show peaks at the Stekloff eigenvalues
(provided we sample several points z ∈ D). In practice we do not use ‖vgε‖L2

t (S2)
to detect eigenvalues because it is somewhat expensive to compute (we would
replace gε by gz,q,α). Instead we use as a surrogate ‖gz,q,α‖L2

t (S2).

4 Numerical Examples

Numerous examples of the computation of transmission eigenvalues exist in the
literature (c.f. [4]) and so we will not present more here. Instead we will focus
on the two sets of eigenvalues discussed in this paper that can be computed
at a single frequency: 1) eigenvalues of the electric far field operator and 2)
generalized Stekloff eigenvalues.

Our numerical examples are all computed using synthetic far field data.
This data is computed using the Netgen [15] finite element library using second
order edge elements and a fifth order approximation to curved surfaces. We use
a spherical Perfectly Matched Layer, at a distance of half a wavelength from the
circumscribing sphere for B, of thickness one quarter of a wavelength. The PML
parameter is chosen to give approximately 0.6% relative error in the computed
far field pattern for scattering by a penetrable sphere of unit radius (measured
in the L2 norm). In all the calculations the wave number is chosen to be k = 1
so the wavelength in free space is 2π.

The far field pattern FS of the generalized Stekloff scattering problem needed
for the solution of (3.8) is computed by the same code with the addition of
the calculation of an approximation to the operator S computed using third
order finite elements in H1(∂B). Generalized Stekloff eigenvalues for arbitrary
structures are computed using the same finite elements but now on a bounded
domain as described in [7].

The far field operators are discretized by quadrature on the unit sphere. We
use a finite element grid on the unit sphere having 99 nodes (made by netgen)
and use vertex based quadrature on each element to calculate the weights for
each vertex value of the far field pattern.

Two domains are considered for the scatterer. The first is the unit cube, and
the second is the (hockey) puck which is a circular cylinder of radius 3/2 and
unit height centered at the origin. The latter scatterer has been suggested as a
good experimental model, being dielectric and which can easily be damaged by
drilling out portions. Experimental results are not considered here.

4.1 Eigenvalues of the Far Field Operator

In this section we investigate the use of eigenvalues of the electric far field oper-
ator as a target signature. Due to the ease of computing such eigenvalues, they
seem to be a natural choice for this purpose, but a significant drawback is the
lack of theory concerning their response to changes in the material parameters
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(a) unit cube (b) puck

Figure 1: The computed eigenvalues of the electric far field operator with εD = 2
and no noise. The eigenvalues lie on the circle |λ+ 2π| = 2π and appear to
converge to zero as predicted.

of an inhomogeneous medium. Thus, our study is confined to a collection of
numerical examples, and to facilitate a direct comparison we perform the same
numerical experiments as we will for Stekloff eigenvalues. In order to compute
the eigenvalues of the electric far field operator Fe, we first discretize the oper-
ator using quadrature to obtain a matrix A. When we investigate the effect of
noisy data, we obtain a noisy far field matrix Aε by multiplying each component
of the far field data by 1 + ε ζ+iµ√

2
, where ε > 0 is a fixed parameter and ζ, µ

are both uniformly distributed random numbers in [−1, 1] computed using the
rand command in MATLAB. The eigenvalues of Aε are then computed using the
eig command in MATLAB. In Figure 1 we see that the eigenvalues of the far field
operator for both the unit cube and the puck lie on the circle |λ+ 2π| = 2π as
implied by Theorem 2.4.

An important property of a target signature is that it is stable in the presence
of noise. In Figure 2 we plot the eigenvalues of the far field operator for both the
unit cube and puck with εD = 2 for different amounts of noise, and in Figure
3 we perform the same test with εD = 2 + 2i. In the presence of absorption
(complex εD) the eigenvalues move inside the circle |λ+ 2π| = 2π.

We remark that although the eigenvalues near the origin are highly sensitive
to noise, the eigenvalues with larger magnitude tend to remain localized. This
stability is promising, and the distribution of the eigenvalues near the origin
may even provide some measure of the noise level.

Of course, our primary point of inquiry is whether the eigenvalues of the far
field operator reliably shift due to a change in an inhomogeneous medium. In
Figure 4 we plot the eigenvalues corresponding to εD = 2 and εD = 2.5 for both
the unit cube and puck. We remark that the eigenvalues with larger magnitude
exhibit a noticeable shift due to this change, which are precisely the eigenvalues
that remained stable in the presence of noise in our previous test.
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(a) unit cube (b) puck

Figure 2: The computed eigenvalues of the electric far field operator with εD = 2
and various levels of noise. The eigenvalues of larger magnitude remain stable
in the presence of noise, whereas those near the origin are highly unstable.

(a) unit cube (b) puck

Figure 3: The computed eigenvalues of the electric far field operator with εD =
2 + 2i and various levels of noise. The eigenvalues of larger magnitude remain
stable in the presence of noise, whereas those near the origin are highly unstable.
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(a) unit cube (b) puck

Figure 4: The computed eigenvalues of the electric far field operator with εD = 2
and εD = 2.5, where no noise has been added. The eigenvalues shift due to the
overall change in εD, and a greater shift is exhibited by eigenvalues of larger
magnitude.

4.2 Stekloff Eigenvalues

We now perform numerical tests for generalized Stekloff eigenvalues. In order to
compute an approximate solution to the electric far field equation (3.8), we use
the same matrix A described for the computation of eigenvalues of the electric
far field operator, and we add noise in the same manner. We first comment
on the choice of the domain B for both the unit cube and puck. The only
requirement is that each scatterer is contained in B, but a natural choice is to
choose B to be a ball centered at the origin. We remark that when we solve the
far field equation for each sampled value of λ, we do so for 10 randomly chosen
z in a ball (of radius 1/4 for the cube and 1/3 for the puck) contained inside
D and average the norms of the solutions to serve as our indicator function.
In Figures 5 and 6 we plot the average norm of g, the solution obtained from
applying Tikhonov regularization to (3.8), against the Stekloff parameter λ for
the cases in which B = D and B is a ball, respectively. We see that the peaks
in the plot approximate the first couple of eigenvalues well for both the unit
cube and the puck when B is chosen to be a ball, but it is difficult to detect
any eigenvalues reliably when B = D.

In Figures 7 and 8 we provide the same plots as in Figures 5 and 6, respec-
tively, for various levels of noise. For the case B = D, the plot for the cube
exhibits a peak in the presence of noise which does not coincide with any of the
eigenvalues, and a similar peak appears in the plot for the puck near the eigen-
value of smallest magnitude. For the case B 6= D, we observe that only a couple
of the smallest eigenvalues in magnitude remain detectable in the presence of
noise for both the unit cube and the puck, and the noise seems to reduce the
prominence of the peaks rather than shift them.

In Figures 9 and 10 we investigate the shift of generalized Stekloff eigenvalues
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(a) unit cube, B = D (b) puck, B = D

Figure 5: A plot of the average norm of g against the Stekloff parameter λ with
εD = 2.0 and no noise, where B = D. The stars represent the exact eigenvalues
computed using finite elements. We observe the difficulty in reliably detecting
any eigenvalues.

(a) unit cube, B is the unit ball (b) puck, B is the ball of a radius 1.7

Figure 6: A plot of the average norm of g against the Stekloff parameter λ with
εD = 2.0 and no noise, where B is chosen to be a ball centered at the origin.
The stars represent the exact eigenvalues computed using finite elements. We
observe that the first couple of eigenvalues are detected in each case.
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(a) unit cube, B = D (b) puck, B = D

Figure 7: A plot of the average norm of g against the Stekloff parameter λ
with εD = 2.0 and B = D for various levels of noise. The stars represent
the exact eigenvalues computed using finite elements. Though some prominent
peaks appear in the presence of noise for both scatterers, they do not correspond
reliably to any of the eigenvalues.

(a) unit cube, B is the unit ball (b) puck, B is the ball of a radius 1.7

Figure 8: A plot of the average norm of g against the Stekloff parameter λ with
εD = 2.0 and B 6= D for various levels of noise. The stars represent the exact
eigenvalues computed using finite elements. Only a couple of eigenvalues remain
detectable in the presence of noise.
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(a) unit cube, B = D (b) puck, B = D

Figure 9: A plot of the average norm of g against the Stekloff parameter λ with
εD = 2.0, 2.5 and no noise. The symbols ‘+’ and ‘×’ represent the exact eigen-
values computed using finite elements for εD = 2.0 and εD = 2.5, respectively.
The exact eigenvalues clearly shift and there is some difference in the plot of
the indicator function due to the overall change in εD.

due to an overall change in εD from 2 to 2.5. For the case B = D we see that
the exact eigenvalues shift and that there is some difference in the plot of the
average norm of g, but since these two do not correspond well, it is difficult
to make any definite conclusions about their usefulness in detecting changes in
εD. The case B 6= D displays a reduced sensitivity in the eigenvalues, with only
the smallest eigenvalues for the puck exhibiting any noticeable shift. However,
this choice of B improves the ability to detect eigenvalues and consequently this
shift may be seen in the peaks of the plot of the average norm of g.

The perturbation estimate (3.7) suggests that the shift of a Stekloff eigen-
value due to a change in εD is related to the magnitude of a corresponding
eigenfunction in a neighborhood of the change, and in Figures 11 and 12 we
plot a cross section of an eigenfunction corresponding to the cube and puck,
respectively. In Figure 11b we see that D is disjoint from the regions in which
the eigenfunction w is greatest, which suggests that an overall change in εD for
the unit cube will not result in a large shift in the corresponding eigenvalue,
as we observed. In contrast, we see in Figure 12b that D intersects with the
regions of large magnitude of w and explains the observed shift of the corre-
sponding eigenvalue for the puck in Figure 10. Though precise knowledge of the
geometry and material properties of the scatterer must be known in order to
take advantage of this information, this relationship between the eigenfunctions
and the material properties may be highly useful in nondestructive testing of
materials. In particular, it might allow for the localization of flaws in a material
by observing which eigenvalues shift and which do not.

An important advantage of Stekloff eigenvalues over transmission eigenvalues
is that Stekloff eigenvalues may in principle be computed for absorbing media,
i.e. when εD has a nonzero imaginary part. Though the present theory does
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(a) unit cube, B is the unit ball (b) puck, B is the ball of a radius 1.7

Figure 10: A plot of the average norm of g against the Stekloff parameter
λ with εD = 2.0, 2.5 and no noise. The symbols ‘+’ and ‘×’ represent the
exact eigenvalues computed using finite elements for εD = 2.0 and εD = 2.5,
respectively. We observe no noticeable shift in the eigenvalues for the unit cube,
but we do observe a shift in the smallest eigenvalues for the puck.

(a) Cross section of unit cube (b) Cross section of eigenfunction

Figure 11: A cross section of the unit cube surrounded by a ball and the corre-
sponding cross section of an eigenfunction.

20



(a) Cross section of puck (b) Cross section of eigenfunction

Figure 12: A cross section of the puck surrounded by a ball and the correspond-
ing cross section of an eigenfunction.

not include a proof of existence of electromagnetic Stekloff eigenvalues in this
case, in Figures 13 and 14 we present an example of their computation for the
unit cube and the puck when εD = 2 + 2i and B is chosen to be a ball. In these
examples we have paired the plot for each scatterer with its noisy counterpart in
order to obtain a more direct measure of the effect of noise. We observe that all
of the eigenvalues in this sampling region are detected when no noise is present,
and one remains detectable to a reasonable degree of accuracy in the presence of
7% noise. It should be noted that the computational expense is greatly increased
by the necessity to sample in a region of the complex plane rather than in an
interval on the real line. However, as in the previous examples for real εD, the
computation of the modified Stekloff problems may be performed ahead of time
for a given region B and applied to any case in which D ⊆ B.

5 Conclusion and Open Problems

The fact that the electric far field data does not uniquely determine the material
properties of an anisotropic medium presents many difficulties in the detection
of changes in the material properties of a medium, and we have seen that vari-
ous approaches using the idea of a target signature are available. An important
question is which of these target signatures should be chosen for a given appli-
cation, and unfortunately the answer is not entirely straightforward. Although
the theory of transmission eigenvalues is applicable to dielectric media, the use
of target signatures for absorbing media at this time rests with either the eigen-
values of the electric far field operator or generalized Stekloff eigenvalues, a pair
with complementary strengths and weaknesses. On one hand, we have observed
a noticeable shift in the eigenvalues of the electric far field operator due to an
overall change in εD, whereas Stekloff eigenvalues do not appear to shift as reli-
ably. On the other hand, the relationship between Stekloff eigenvalues and the
permittivity εD is apparent in the variational formulation and lends itself to in-
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(a) unit cube, no noise (b) unit cube, 7% noise

Figure 13: A base 10 contour plot of the average norm of g against the Stekloff
parameter λ in the complex plane for the unit cube with εD = 2 + 2i and two
different noise levels. Here we choose B to be the unit ball. The white stars
represent the exact eigenvalues computed using finite elements. We observe that
all of the eigenvalues in this region are detected when no noise is present, and
one remains detectable with 7% noise.

(a) puck, no noise (b) puck, 7% noise

Figure 14: A base 10 contour plot of the average norm of g against the Stekloff
parameter λ in the complex plane for the puck with εD = 2+2i and two different
noise levels. Here we choose B to be the unit ball. The white stars represent
the exact eigenvalues computed using finite elements. We observe that all of
the eigenvalues in this region are detected when no noise is present, and one
remains detectable with 7% noise.
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vestigation by standard techniques in the theory of partial differential equations,
whereas little is known about the eigenvalues of the electric far field operator
beyond their distribution in the complex plane. In addition, the use of Stekloff
eigenvalues requires some decision-making on the choice of B: choosing B = D
often improves sensitivity at the expense of reliable detection of eigenvalues,
and choosing B 6= D improves the detection of eigenvalues while reducing their
sensitivity to changes in the medium. Thus, any attempt to use these methods
would require some experimentation to determine the best choice, and there are
multiple trade-offs to consider.

However, the story likely does not end with this rather disappointing ob-
servation, as these are not the only target signatures under current study. In
particular, there are a number of possible ways in which the electric far field
operator can be modified. An example in acoustic scattering modifies the far
field operator with that corresponding to scattering by an auxiliary homoge-
neous medium, and the eigenparameter of interest η is the index of refraction of
the auxiliary medium [1, 8]. An important advantage of this method is that the
auxiliary scattering problem also depends on an additional parameter γ which
may be tuned to improve the sensitivity of the eigenvalues to changes in the
material properties, thus overcoming the loss of sensitivity resulting from the
choice B 6= D.

In Figure 15 we show a direct comparison between Stekloff eigenvalues and
these so-called modified transmission eigenvalues for acoustic scattering of an
L-shaped domain, where we have used the recently developed generalized linear
sampling method (cf. [1]) in order to detect the eigenvalues from far field data.
This domain has been used for numerical testing of Stekloff eigenvalues and
modified transmission eigenvalues previously (cf. [3] and [8], respectively), and
we see that the shift in the eigenvalues due to a circular flaw located at (xc, yc) =
(0.1, 0.4) of radius rc = 0.05 is much more pronounced for modified transmission
eigenvalues than Stekloff eigenvalues. It should be noted that for the case of
Stekloff eigenvalues there exist peaks in the GLSM indicator corresponding to
some of the other exact eigenvalues shown, but the height of these peaks is
considerably less than the one visible. We remark that the modified transmission
eigenvalues correspond to the choice γ = 0.5 in [8] and that instead using γ = 2
produces poor results.

This example indicates that, at least for acoustic scattering and with a
proper choice of γ, modified transmission eigenvalues provide more informa-
tion about the material properties of the scatterer than Stekloff eigenvalues.
This observation is not too surprising, as can be seen from the fact that for
spherically stratified media there exists a single Stekloff eigenvalue correspond-
ing to a spherically symmetric eigenfunction, whereas there exist infinitely many
such modified transmission eigenvalues. Extending this approach to Maxwell’s
equations is the focus of our current research.

23



(a) Stekloff eigenvalues (b) Modified transmission eigenvalues

Figure 15: A direct comparison of Stekloff eigenvalues and modified transmission
eigenvalues (with γ = 0.5) for acoustic scattering by an L-shaped domain. The
shift in the eigenvalues due to a circular flaw located at (xc, yc) = (0.1, 0.4) of
radius rc = 0.05 is much more pronounced for modified transmission eigenvalues
than Stekloff eigenvalues. The red ’+’ symbol represents the exact eigenvalues
for the unflawed domain, and the red ’×’ symbol represents the exact eigenvalues
for the domain with a circular flaw.
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