See my complete list of publications in Google Scholar.

Offshore wind

  1. Golbazi, M., C. L. Archer, and S. Alessandrini, 2022: Surface impacts of large offshore wind farms. Environmental Research Letters, doi: 10.1088/1748-9326/ac6e49
  2. Al Fahel, N., and C. L. Archer, 2020: Observed onshore precipitation changes after the installation of offshore wind farms. Bulletin of Atmospheric Science and Technology, doi: 10.1007/s42865-020-00012-7
  3. Golbazi, M., and C. L. Archer, 2019: Methods to estimate surface roughness length for offshore wind energy. Advances in Meteorology, 2019, 5695481, 15 pp., doi: 10.1155/2019/5695481
  4. Pan, Y., C. Yan, and C. L. Archer, 2018: Precipitation reduction during Hurricane Harvey with simulated offshore wind farms. Environmental Research Letters, 13(8), 084007, doi:10.1088/1748-9326/aad245
  5. Archer, C. L., B. A. Colle, D. L. Veron, F. Veron, and M. J. Sienkiewicz, 2016: On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast. Journal of Geophysical Research – Atmospheres, 121(15), 8869-8885, doi: 10.1002/2016JD024896
  6. Colle, B. A., M. J. Sienkiewicz, C. L. Archer, D. L. Veron, F. Veron, W. Kempton, and J. E. Mak, 2016: Improving the Mapping and Prediction of Offshore Wind Resources (IMPOWR): Experimental overview and first results. Bulletin of the American Meteorological Society, August 2016, 1377-1390, doi: 10.1175/BAMS-D-14-00253.1
  7. Firestone, J., C. L. Archer, M. P. Gardner, J. A. Madsen, A. K. Prasad, and D. E. Veron, 2015: Opinion: The time has come for offshore wind power in the United States. Proceedings of the National Academy of Sciences, 112(39), 11985-11988, doi: 10.1073/pnas.1515376112
  8. Jacobson, M. Z.,C. L. Archer, W. Kempton, 2014: Taming hurricanes with arrays of offshore wind turbines, Nature Climate Change, 4,195–200, doi: 10.1038/nclimate2120
  9. Archer, C. L., B. A. Colle, L. Delle Monache, M. J. Dvorak, J. Lundquist, B. H. Bailey, P. Beaucage, M. J. Churchfield, A. C. Fitch, B. Kosovic, S. Lee, P. J. Moriarty, H. Simao, R. J. A. M. Stevens, D. Veron, J. Zack, 2013: Meteorology for coastal/offshore wind energy in the United States: Recommendations and research needs for the next 10 years. Bulletin of the American Meteorological Society, doi: 10.1175/BAMS-D-13-00108.1
  10. ​Dvorak, M. J., E. D. Stoutenburg, C. L. Archer, W. Kempton, and M. Z. Jacobson, 2012: Where is the ideal location for a US East Coast offshore grid? Geophysical Research Letters, 39(6), doi: 10.1029/2011GL050659
  11. ​Dvorak, M. J., C. L. Archer, and M. Z. Jacobson, 2010: California offshore wind energy potential. Renewable Energy, 35(6), 1244–1254, doi: 10.1016/j.renene.2009.11.022
  12. Jiang, Q., J. D. Doyle, T. Haack, M. J. Dvorak, C. L. Archer, and M. Z. Jacobson, 2008: Exploring wind energy potential off the California Coast. Geophysical Research Letters, 35(20), L20819, doi: 10.1029/2008GL034674

Wakes and wake losses in wind farms

  1. Ma, Y.,C. L. Archer, and A. Vasel-Be-Hagh, 2022: Comparison of individual versus ensemble wind farm parameterizations inclusive of sub-grid wakes for the WRF model. Wind Energy, doi: 10.1002/we.2758
  2. Wu, S., and C. L. Archer, 2021: Near-ground effects of wind turbines: Observations and physical mechanisms. Monthly Weather Review, doi: 10.1175/MWR-D-20-0186.1
  3. Archer, C. L., S. Wu, Y. Ma, and P. A. Jiménez, 2020: Two corrections for turbulent kinetic energy generated by wind farms in the WRF model. Monthly Weather Review, 148(12), 4823–4835, doi: 10.1175/MWR-D-20-0097.1
  4. Nouri, R., A. Vasel-Be-Hagh, and C. L. Archer, 2020: The Coriolis force and the direction of rotation of the blades significantly affect the wake of wind turbines. Applied Energy, 277, doi: 10.1016/j.apenergy.2020.115511
  5. Yan, C., Y. Pan, and C. L. Archer, 2019: A general method to estimate wind farm power using artificial neural networks. Wind Energy, doi: 10.1002/we.2379
  6. Archer, C. L., and A. Vasel-Be-Hagh, 2019: Wake steering via yaw control in multi-turbine wind farms: Recommendations based on large-eddy simulationSustainable Energy Technologies and Assessments, 33, 34-43, doi: 10.1016/j.seta.2019.03.002
  7. Archer, C. L., S. Wu, A. Vasel-Be-Hagh, J. F. Brodie, R. Delgado, A. St. Pé, S. Oncley, and S. Semmer, 2019: The VERTEX field campaign: Observations of near-ground effects of wind turbine wakes. Journal of Turbulence, 20(1), 64-92, doi: 10.1080/14685248.2019.1572161
  8. Archer, C. L., A. Vasel-Be-Hagh, C. Yan, S. Wu, Y. Pan, J. F. Brodie, and A. E. Maguire, 2018: Review and evaluation of wake loss models for wind energy applications. Applied Energy, 226, 1187-1207, doi: 10.1016/j.apenergy.2018.05.085
  9. Pan, Y., and C. L. Archer, 2018: A hybrid wind-farm parametrization for mesoscale and climate models. Boundary-Layer Meteorology, doi: 10.1007/s10546-018-0351-9
  10. Vasel-Be-Hagh, A., and C. L. Archer, 2017: Wind farm hub height optimization. Applied Energy, 195, 905-921, doi: 10.1016/j.apenergy.2017.03.089
  11. Ghaisas, N., and C. L. Archer, 2016: Geometry-based models for studying the effect of wind farm layout. Journal of Atmospheric and Oceanic Technology, 23(3), 481-501, doi: 10.1175/JTECH-D-14-00199.1

Food and energy

  1. Jin, E., N. Al Fahel, P. Mondal, H. Li, and C. L. Archer, 2020: Energy footprint of food: The case of corn production in Delaware. Food and Energy Security, 9(3), doi: 10.1002/fes3.222

Air quality

  1. Archer, C.L., Cervone, G., Golbazi, M., Al Fahel, N., and C. Hultquist, 2020: Changes in air quality and human mobility in the USA during the COVID19 pandemic. Bulletin of Atmospheric Science and Technology, doi: 10.1007/s42865-020-00019-0
  2. Moghani, M., and C. L. Archer, 2020: The impact of emissions and climate change on future ozone concentrations in the USA. Air Quality, Atmosphere & Health, doi: 10.1007/s11869-020-00900-z
  3. Archer, C. L., J. F. Brodie, and S. Rauscher, 2019: Global warming will aggravate ozone pollution in the U.S. Mid-Atlantic. Journal of Applied Meteorology and Climatology, 58(6), 1267-1278, doi: 10.1175/JAMC-D-18-0263.1
  4. Moghani, M., C. L. Archer, and A. Mirzakhalili, 2018: The importance of transport to ozone pollution in the U.S. Mid-Atlantic. Atmospheric Environment, 191, 420-431, doi: 10.1016/j.atmosenv.2018.08.005
  5. Brodie, J. F., C. L. Archer, and S. A. Rauscher, 2017: Ozone pollution in Delaware: How does climate change influence ozone-related health? Delaware Journal of Public Health, 3(6), 6-11.

Large-eddy simulations (LES) of wind farms

  1. Yan. C., and C. L. Archer, 2018: Assessing compressibility effects on the performance of large horizontal-axis wind turbines. Applied Energy, 212, 33-45, doi: 10.1016/j.apenergy.2017.12.020
  2. Xie, S., and C. L. Archer, 2017: A numerical study of wind-turbine wakes for three atmospheric stability conditions. Boundary-Layer Meteorology, 165(1), 87-112, doi: 10.1007/s10546-017-0259-9
  3. Ghaisas, N. S., C. L. Archer, S. Xie, S. Wu, and E. Maguire, 2017: Evaluation of layout and atmospheric stability effects in wind farms using large-eddy simulation. Wind Energy, 20(7), 1227-1240, doi: 10.1002/we.2091
  4. Vasel-Be-Hagh, A., and C. L. Archer, 2016: Wind farms with counter-rotating wind turbines. Sustainable Energy Technologies and Assessments, doi: 10.1016/j.seta.2016.10.004
  5. Xie. S., C. L. Archer, N. Ghaisas, and C. Meneveau, 2017: Benefits of collocating vertical-axis and horizontal-axis wind turbines in large wind farms. Wind Energy, 20(1), 45-62, doi: 10.1002/we.1990
  6. Xie, S., N. Ghaisas, and C. L. Archer, 2015: Sensitivity issues in finite-difference large-eddy simulations of the atmospheric boundary layer with dynamic subgrid scale models. Boundary-Layer Meteorology, 157(3), 421-445, doi: 10.1007/s10546-015-0071-3
  7. Xie, S., and C. L. Archer, 2015: Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation, Wind Energy, 18(10), 1815–1838, doi: 10.1002/we.1792
  8. Archer, C. L., S. Mirzaeisefat, and S. Lee, 2013: Quantifying the sensitivity of wind farm performance to array layout options using Large-Eddy Simulation. Geophysical Research Letters, 40(18), 4963–4970, doi: 10.1002/grl.50911

Wind power and the electric grid

  1. Santos-Alamillos, F., C. L. Archer, L. Noel, C. Budischak, and W. Facciolo, 2017: Assessing the economic feasibility of the gradual decarbonization of a large electric power system. Journal of Cleaner Production, 147, 130-141, doi: 10.1016/j.jclepro.2017.01.097
  2. Noel, L., J. F. Brodie, W. Kempton, C. L. Archer, and C. Budischack, 2017: Cost minimization of generation, storage, and new loads, comparing costs with and without externalities. Applied Energy, 189, 110-121, doi: 10.1016/j.apenergy.2016.12.060
  3. Archer, C. L., H. P. Simão, W. Kempton, W. B. Powell, and M. J. Dvorak, 2017: The challenge of integrating offshore wind power in the U.S. electric grid. Part I: Wind forecast error. Renewable Energy, 103, 346-360, doi: 10.1016/j.renene.2016.11.047
  4. ​Simão, H. P., W. B. Powell, Archer, C. L., and W. Kempton, 2017: The challenge of integrating offshore wind power in the U.S. electric grid. Part II: Simulation of electricity market operations. Renewable Energy, 103, 418-431, doi: 10.1016/j.renene.2016.11.049
  5. Mason, J. E., and C. L. Archer, 2012: Baseload electricity from wind via Compressed Air Energy Storage. Renewable and Sustainable Energy Reviews, 16(2), 1099–1109, doi: 10.1016/j.rser.2011.11.009
  6. Archer, C. L., and M. Z. Jacobson, 2007: Supplying baseload power and reducing transmissions requirements by interconnecting wind farms. Journal of Applied Meteorology and Climatology, 46(11), 1701–1717, doi: 10.1175/2007JAMC1538.1
  7. Kempton, W., C. L. Archer, A. Dhanju, R. W. Garvine, and M. Z. Jacobson, 2007: Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses. Geophysical Research Letters, 34(2), L02817, doi: 10.1029/2006GL028016

Airborne wind energy

  1. Archer, C. L., L. Delle Monache, and D. Rife, 2014: Airborne Wind Energy: Optimal locations and variability. Renewable Energy, 64, 180–186, doi: 10.1016/j.renene.2013.10.044
  2. Archer, C. L., 2013: Chapter 5 – An introduction to meteorology for airborne wind energy. In Airborne wind energy – Fundamentals and applications. Springer, ISBN 978-3-642-39964-0, 81–94
  3. Archer, C. L., and K. Caldeira, 2009: Global assessment of high-altitude wind power. Energies,2(2), 307–319, doi: 10.3390/en20200307

Wind resource assessment

  1. Archer, C. L., and M. Z. Jacobson, 2013: Geographical and seasonal variability of the global “practical” wind resources. Applied Geography, 45, 119–130, doi: 10.1016/j.apgeog.2013.07.006
  2. Rogner, H.-H., R. F. Aguilera, C. L. Archer, R. Bertani, S. C. Bhattacharya, M. B. Dusseault, L. Gagnon, H. Haberl, M. Hoogwijk, A. Johnson, M. L. Rogner, H. Wagner and V. Yakushev, 2012: Chapter 7 – Energy Resources and Potentials. In Global Energy Assessment – Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, 423–512
  3. Jacobson, M. Z., and C. L. Archer, 2012: Saturation wind power potential and its implications for wind energy. Proceedings of the National Academy of Sciences, 109(39), 15679–15684, doi: 10.1073/pnas.1208993109
  4. Archer, C. L., and M. Z. Jacobson, 2005: Evaluation of global wind power. Journal of Geophysical Research – Atmospheres, 110(D12), doi: 10.1029/2004JD005462
  5. Archer, C. L., and M. Z. Jacobson, 2003: The spatial and temporal distributions of U.S. winds and wind power at 80 m derived from measurements. Journal of Geophysical Research – Atmosphere, 108(D9), doi: 10.1029/2002JD0020076

Meteorology and climate change

  1. Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophysical Research Letters, 35(8), L08803, doi: 10.1029/2008GL033614 ​
  2. Archer, C. L., M. Z. Jacobson, and F. L. Ludwig, 2005: The Santa Cruz Eddy. Part I: Observations and statistics. Monthly Weather Review, 133, 767–782, doi: 10.1175/MWR2885.1
  3. Archer, C. L., and M. Z. Jacobson, 2005: The Santa Cruz Eddy. Part II: Mechanisms of formation. Monthly Weather Review, 133, 2387–2405, doi: 10.1175/MWR2979.1