ADVANCING CARBON DIOXIDE CATALYSIS

Feng Jiao is the Robert Grasselli Development Professor of Chemical and Biomolecular Engineering at the University of Delaware.

Engineering professor receives major Department of Energy grants

September 25, 2020

Climate-conscious consumers often take steps to curb their emissions of greenhouse gases. For example, you might drive a hybrid car to reduce your use of fossil fuels, which release carbon dioxide into the atmosphere during combustion. These approaches reduce the amount of carbon dioxide added to the atmosphere. Some scientists are also working on ways to subtract carbon dioxide from the atmosphere. The goal is to capture the greenhouse gas and transform it into another substance altogether. Sound like magic? It’s not — it’s chemistry. One of the leaders in this field of carbon capture and utilization is Feng Jiao, Robert Grasselli Development Professor of Chemical and Biomolecular Engineering at the University of Delaware.

Continue reading…

JACS Paper Highlighted in Nature Catalysis

A collaboration of CCST faculty

A collaboration of CCST faculty; Prof. Feng Jiao (Robert Graselli Development Professor of Chemical and Biomolecular Engineering), Prof. Bingjun Xu (Centennial Development Professor of Chemical and Biomolecular Engineering) and Prof. Levi Thompson(Elizabeth Inez Kelly Professor of Engineering), just reported in the Journal of the American Chemical Society important findings on the function of Cu-catalyzed electrocatalytic transformation of carbon dioxide/monoxide to valuable multicarbon molecules, an attractive strategy for combating climate change. Using in situ surface-enhanced Raman spectroscopy (SERS) they investigate the speciation of four commonly used Cu surfaces, they show that surface oxygen-containing species indeed exist in the alkaline electrolyte at potentials relevant to the carbon oxides reduction reaction on all types of Cu surfaces investigated. The presence of CO is necessary to stabilize surface oxide/hydroxide species on the Cu foil but not for micro/nanostructured Cu. They conclude that while CuOx and CuOx/(OH)y species do exist under reaction conditions, these species are unlikely to be the active sites facilitating the formation of C2 oxygenates.

The details of the report can be found here (https://doi.org/10.1021/jacs.0c02354) and here (https://doi.org/10.1038/s41929-020-0464-7)

RENEWABLE ENERGY ADVANCE

New characterization techniques developed at the Catalysis Center for Energy Innovation may help improve electrochemical storage technologies, such as fuels cells used in UD’s hydrogen fuel cell buses.

UD researchers report new method for characterizing materials that might eventually help store energy

May 18, 2020

Renewable technologies are a promising solution for addressing global energy needs in a sustainable way. However, widespread adoption of renewable energy resources from solar, wind, biomass and more have lagged, in part because they are difficult to store and transport.
Continue reading…

Nanocatalysts From Metals

Prof. Feng Jiao

Shock treatment makes nanocatalysts from metals that are ‘impossible’ to mix

April 30, 2020

Recent news article on Prof. Jiao’s group in Chemistry World discussing their recent publication in Science Advances.

Click here to read the article

GOING SMALL YIELDS BIG RESULTS

Interdisciplinary team of researchers from UD and BNL pictured left to right are: Top row: Jiayi Fu, Jonathan Lym Middle row: Weiqing Zheng, Konstantinos Alexopoulos, Alexander V. Mironenko Bottom row: Dionisios G. Vlachos, J. Anibal Boscoboinik.

Atomic-scale catalysts may pave the way for converting biomass to fuels, chemicals

Apr. 06, 2020

University of Delaware researchers from the Catalysis Center for Energy Innovation (CCEI) and collaborators at the U.S. Department of Energy’s Brookhaven National Laboratory have developed a new class of catalysts for converting agricultural biomass, such as plant waste, into valuable fuels and chemicals.
Continue reading…